Table 2.
Strategies to Prevent Prosthetic Joint Infections by Improving the Antimicrobial Surface Properties of Titanium-Based Orthopaedic Implant Materials
Method | Organism(s) | Antibacterial | System | Observation(s) | Ref |
---|---|---|---|---|---|
Oxidative nanopatterning of Ti | MRSA, Candida albicans | Surface topography | in vitro | S. aureus adhesion reduced; C. albicans aggregations reduced | 90 |
Antibiotic impregnated microspheres | S. aureus | Tobramycin | in vivo | Total absence of infection; no effect on bone ingrowth | 99 |
Covalently tethered vancomycin | S. epidermidis | Vancomycin | in vitro | Prevention of colonization and biofilm formation | 100 |
Antiseptic dye coating | S. aureus | Gendine (chlorhexidine) | in vitro | Total prevention of bacterial adherence | 110 |
Galvanic Cu deposition | S. aureus | Inactivate catabolic pathways | in vitro | Total clearing of adherent bacteria | 95 |
HA-chitosan polyelectrolyte with RGD | S. aureus | Chitosan | in vitro | Adhesion reduced by 80% for 21 days | 108 |
Antibiotic loaded hydrogel coating | S. aureus, S. epidermidis | Various antibiotics | in vitro | Inhibition of biofilm and planktonic growth | 104 |
UV irradiation | S. aureus, S. epidermidis | Spontaneous wettability | in vitro | Bacteria adhere, not firmly attached | 85 |
UV C irradiation | S. aureus, S. epidermidis | Increased ROS | in vitro | Bacteria killed for 60 min after UV treatment | 86 |
Zn TiO2 | E. coli, S. aureus | ZnO mediated ROS | in vitro | Inhibition attachment | 115 |
Zn-implanted Ti | E. coli, S. aureus | Zn ions | in vitro | Partial antibacterial effect; E. coli more inhibited than S. aureus | 116 |
Alkali treatment | S. aureus, E. coli | Nanoroughness, increase local pH | in vitro | Bacteriostatic effect, reduced proliferation | 117 |
Ag coating | Staphylococcus sp., Bacillus sp., Enterococcus sp., Corneybacterium | Ag ions | in vivo | Reduced infection rate | 97 |
Material painting of N,N-dodecyl, methyl-PEI coating | S. aureus | Immobilized hydrophobic polycationic chains | both | Total absence of infection | 107 |
Superhydrophobic TiO2 nanotube | S. aureus | Superhydrophobic surface | in vitro | Reduced adhesion | 118 |
Mesoporous TiO2 coating | E. coli | Cephalothin controlled release | in vitro | All bacteria killed on contact | 119 |
Photocatalytic TiO2 layer | S. aureus, S. epidermidis, P. aeruginosa | Increased ROS | in vitro | Antibacterial effect after 60 min UV treatment | 120 |
Silk Sericin surface | S. aureus, S. epidermidis | Silk sericin | in vitro | Reduced adhesion | 121 |
Ag-doped TiO2 nanotube | S. aureus | Ag ions | in vitro | Planktonic clearing, reduced adhesion | 91 |