
Design, syntheses, and anti-tuberculosis activities of conjugates 
of piperazino-1,3-benzothiazin-4-ones (pBTZs) with 2,7-
dimethylimidazo [1,2-a]pyridine-3-carboxylic acids and 7-
phenylacetyl cephalosporins

Mark W. Majewskia,≠, Rohit Tiwaria,c,≠, Patricia A. Millera, Sanghyun Chob, Scott G. 
Franzblaub, and Marvin J. Millera

aDepartment of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, 
USA

bInstitute for Tuberculosis Research, College of Pharmacy, MIC 964, Rm. 412, University of 
Illinois at Chicago, IL, 60612, USA

Abstract

Tuberculosis (TB) remains one of the most threatening diseases in the world and the need for 

development of new therapies is dire. Herein we describe the rationale for the design and 

subsequent syntheses and studies of conjugates between pBTZ and both the imidazopyridine and 

cephalosporin scaffolds. Overall some compounds exhibited notable anti-TB activity in the range 

of 2 to 0.2 μM in the microplate alamar blue (MABA) assay.
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Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), rivals HIV/AIDS as the 

most notorious single infectious agent, posing a significant risk to global health. In 2013, it 

was estimated by the World Health Organization that one-third of the world population was 

infected with latent TB, approximately 9 million people fell ill with TB, and 1.5 million died 

of TB.1 The emergence of multi-drug resistant (MDR) and extensively drug resistant (XDR) 

TB have only put further pressure on the medicinal community, as these new strains pose 

great challenges to existing treatments.2 Further, the classic TB drug regimens have many 

issues associated with them, such as long treatment duration and adverse drug-drug 

interactions.3 In an effort to expand structure-activity-relationship studies of potential anti-

TB agents, we were interested in designing hybrid scaffolds. Herein, we describe the 

synthetic coupling of piperazino-1,3-benzothiazin-4-ones (pBTZs)4 with 2,7-

dimethylimidazo [1,2-a]pyridine-3-carboxylic acids and cephalosporins and anti-TB 

evaluations of the synthesized conjugates.

The current TB treatment regimen for drug sensitive forms of the disease is long and 

involves at least 6 months of therapy involving many of the front line orally active anti-TB 

agents (e.g. rifampin, isoniazid).5 This approach often suffers from poor patient compliance 

and can further lead to the progression of drug resistant TB forms. One potential way of 

slowing resistance has been the use of drug cocktails that keep the mycobacterial population 

in check by inhibiting not one, but multiple biochemical processes.6 Fortunately, a number 

of promising anti-TB agents in development have distinct targets. Nitroimidazoles 

(PA-824),7 benzothiazinones (BTZ043),8 and imidazopyridines carboxamides9 all have been 

reported to be potent anti-TB agents (Figure 1) and do not share target similarities.

Work by Makarov et al. have shown that combination therapy of pBTZ169, bedaquiline, and 

pyrazinamide was more effective than the frontline TB regimen in murine models.10 

Moreover, Lechartler et. al. recently demonstrated that the combination of clofazimine, a 

frontline anti-leprosy agent with pBTZ169 was found to be synergistic against both 

replicating and non-replicating Mtb.11 Intuitively, agents can be designed in a way that they 

might have multiple targets. Therefore, we envisioned chemical conjugation of 1,3-

benzothiazin-4-ones, DprE1 inhibitors, with 7-acylamino cephalosporins and 2,7-

dimethylimidazo[1,2-a]pyridine-3-carboxylic acids. Cephalosporins and BTZs target the 

peptidoglycan and arabinogalactan component of the bacterial cell wall respectively, 

whereas the imidazo[1,2-a]pyridine-3-carboxamides have been shown to inhibit the cellular 

energy dependent process.12

The β-lactam family continues to be a hallmark of medicinal chemistry, having been 

discovered over 80 years ago, yet still making up the majority of the antibiotic market. 

Currently, the cephalosporin class of β-lactam antibiotics is the most widely used type of β-

lactam, with sales estimated at 11.9 billion dollars, topping the list of antibacterial agents in 

2009.13 As shown in Figure 2, one of the reasons the cephalosporins have endured the test of 

time is because a multitude of different functionalities have been successfully incorporated 

at the C-3’ position of the cephalosporin core (1). To date, a myriad of different agents, such 

as quinolone antibiotics (1)14 and pyridyl N-oxide toxins (2)15 have been conjugated to the 

cephalosporin core. With the above precedence in mind, we focused on the syntheses and 

anti-TB evaluations of conjugates of pBTZs and cephalosporins.
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The major scaffolds considered for this study are illustrated in Figure 3. Our synthetic 

strategy involved the synthesis of the 1,3-benzothiazin-4-one scaffold, wherein we opted to 

utilize the core of the recently reported analog of BTZ043, pBTZ,16 as one can introduce 

appropriate substituents at the terminal piperazinyl nitrogen potentially without affecting the 

target interaction (DprE1) with the nitro aromatic functionality. The next part involved 

syntheses of imidazopyridine-pBTZ conjugate without (Scheme 2) and with (Scheme 3) 

different linkers. Lastly, the syntheses of appropriately functionalized cephalosporins were 

performed (Schemes 4 and 5).

The primary scaffold, pBTZ (Figure 3) for synthetic and biological activity studies, was 

synthesized as a TFA salt by removing the Boc group of its N-Boc-protected precursor (Boc-

pBTZ-Boc, Figure 3), which in turn was synthesized according to the published 

procedure.17 For the syntheses of our first pBTZ-imidazopyridine conjugate, a previously 

published procedure was used to generate the necessary carboxylic acid.18 This intermediate 

was then reacted with pBTZ to give conjugate 4 (Scheme 1).

In order to explore the effect of a linker between pBTZ and the imidazopyridine scaffold, we 

chose to incorporate 4-aminomethyl benzoic acid as a representative amino acid linker. As 

shown in Scheme 2, the Boc group of benzyl 4-(((tert-
butoxycarbonyl)amino)methyl)benzoate (5) was deprotected and the subsequent amine (6) 

was coupled with 3 to obtain 2,7-dimethylimidazo[1,2-a]pyridine-3-carboxamide, 7. 

Compound 7 was then subjected to hydrogenolysis to give carboxylic acid 8 which was used 

without further purification for coupling with pBTZ in the presence of 

tetramethylfluoroformamidinium hexafluorophosphate (TFFH) and DIPEA to obtain the 

final conjugate 9 in 36% yield.

For our syntheses of pBTZ-cephalosporin conjugates, we began with the construction of two 

activated cephalosporins for eventual pBTZ conjugation. As shown in Scheme 3, starting 

with commercially available 7-aminocephalosporanic acid (7-ACA), tert-butyl 

esterification19 followed by acylation and enzymatic deprotection20 gave 10. The hydroxyl 

group was then converted to an activated carbonate by reaction with 1,2,2,2-

tetrachloroethylchloroformate to give 11. Cephalosporin 11 was then coupled to pBTZ to 

give 12 and deprotection with TFA gave conjugate 13.

As with our pBTZ-imidazopyridine syntheses, we were also interested in exploring the 

effect of a linker on the anti-TB activities of the cephalosporin-pBTZ conjugates. As a result 

of the lipophilic cell wall (thick layer of mycolic acids) characteristic of Mtb, we tested 

various protected cephalosporin-pBTZ conjugates to see whether these more lipophilic 

protected cephalosporins would exhibit anti-TB activity. As shown in Scheme 4, we started 

with cephalosporin 10. Reaction with thionyl chloride gave 14a in good yield and 

subsequent reactions of 14a and 14b (commercially available) with NaI and pBTZ gave 

intermediates 15a–b. Deprotection of 15b with TFA gave conjugate 16.

All compounds were then subjected to anti-TB evaluations against Mtb in the Microplate 

Alamar Blue assay (MABA). 21 As shown in Table 1, a number of compounds exhibited 

good activity against Mtb including the broad activity that conjugates 4 and 15a exhibited 
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against the H37Rv strain of Mtb in two different mycobacterial growth media (7H12 and 

GAS). Although notable, the observed activities of all highlighted conjugates were still 

significantly lower than either the prototype imidazopyridine analogs or pBTZ 169, BTZ043 

or the precursor pBTZ-Boc. The anti-TB evaluations of conjugate 9 indicated that the 

introduction of a linker between the imidazopyridine scaffold and pBTZ was detrimental for 

anti-TB activity. We additionally explored the syntheses and anti-TB evaluations of amino 

acid linkers such as β-alanine and γ-aminobutyric acid (see Supporting Information). 

Nevertheless, the anti-TB evaluations of these conjugates again indicated that the presence 

of a linker had a deleterious effect on the anti-TB activity. Interestingly, however, one of the 

imidazopyridine intermediates (7) for the syntheses of conjugate 9 was quite active with an 

MIC of 0.21 μM in 7H12 media and 4.1 μM in GAS media. Often, differences in activity in 

different media occur as the result of factors such as compound solubility, different carbon 

sources, and media age.22

SAR studies of the cephalosporin-pBTZ conjugates also revealed some media dependent 

activity against Mtb. Conjugate 15a was the most active, with MIC values of 2.03 and 1.51 

μM in the 7H12 and GAS media, respectively. The difference in activity between conjugates 

13 and 16; however, was somewhat surprising. Since both conjugates possessed the free 

carboxylate normally associated with potentiating β-lactams for activity, it was anticipated 

that activity might have been enhanced. Instead, the protected conjugates, (e.g. 12 and 15a) 

were more potent agents in general. This may be due to the greater lipophilicity of these 

intermediates relative to their free acid counterparts, thus allowing entry into Mtb. 

Interestingly, however, intermediate 15b was completely devoid of activity. Thus, it seemed 

that the choice of protecting group might significantly activate or deactivate these 

compounds.

Lastly, cephalosporin-pBTZ conjugates were also screened for antibacterial activity. As 

shown in Table 2, the conjugates targeted Gram-positive bacteria, exhibiting both potent 

zones of inhibition (see Supporting Information) and MIC values. Of outstanding interest 

was both cephalosporin-pBTZ conjugates 13 and 16, demonstrating notable inhibition 

against M. vaccae and B. subtilis, with MICs of 0.2 μM and <0.003 μM, respectively.

To summarize, we have synthesized a focused set of conjugates between pBTZ and both 

imidazopyridines and 7-phenylacetamido cephalosporins and tested them for anti-TB 

activity in the MABA assay. The product of direct conjugation between pBTZ and 

imidazopyridine (compound 4) exhibited anti-TB activity albeit not as impressive as its 

precursors and the introduction of linkers between the two precursor scaffolds in 4 resulted 

in dramatic loss of activity. Anti-TB activity was observed only for the very lipophilic 15a, 

whereas similarly lipophilic analog 15b was completely inactive. Potent Gram-positive 

antibacterial activity was seen for cephalosporin-pBTZ conjugates 13 and 15–16.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Promising anti-TB agents currently in development.
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Figure 2. 
Two examples of cephalosporin conjugates previously reported
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Figure 3. 
Scaffolds of interest in this study
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Scheme 1. 
Synthesis of pBTZ-imidazopyridine conjugate (4) without any linker.
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Scheme 2. 
Syntheses of pBTZ-imidazopyridine conjugate 9.
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Scheme 3. 
Synthesis of pBTZ-Cephalosporin 13.
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Scheme 4 . 
Synthesis of pBTZ-cephalosporin 16.
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Table 2

Minimum Inhibitory Determinations (μM) for Select Compounds.

Cmpd.
B. subtilis

ATCC6633
S. aureus

SG511
M. luteus

ATCC 10240
M. vaccae

IMET 10670

1, X = OAc <0.1 0.2 3.13 nt

BTZ043 nt >200 >200 0.03

13 0.80–1.60 12.5 nt 0.20

15a 1.56 12.5 nt 0.8

15b 0.1–0.2 1.56 nt nt

16 <0.003 0.4 1.56 12.5

Ciprofloxicin 0.15–0.32 nt nt nt

Compounds were dissolved in MeOH/DMSO

KEY: B. subtilis = Bacillus subtilis, S. aureus. = Staphylococcus aureus, M. luteus = Micrococcus luteus, M. vaccae = Mycobacterium vaccae.

nt = not tested
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