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Abstract
A siphon is a device that is used to drain a container, with water rising inside a hose in the

form of an inverted U and then going down towards a discharge point placed below the initial

water level. The siphon is the first of a number of inventions of the ancients documented

about 2.000 years ago by Hero of Alexandria in his treatise Pneumatics, and although the

explanation given by Hero was essentially correct, there is nowadays a controversy about

the underlying mechanism that explains the working of this device. Discussions concerning

the physics of a siphon usually refer to concepts like absolute negative pressures, the

strength of liquid’s cohesion and the possibility of a siphon working in vacuum or in the pres-

ence of bubbles. Torricelli understood the working principle of the barometer and the impos-

sibility of pumping water out of wells deeper than 10.33 m. Following Torricelli’s ideas it

would also not be possible to build a siphon that drives pure water to ascend higher than

10.33 m. In this work, we report the first siphon that drives water (with surfactant) to ascend

higher than the Torricellian limit. Motivated by the rising of sap in trees, we built a 15.4 m

siphon that shows that absolute negative pressures are not prohibited, that cohesion plays

an important role in transmitting forces through a fluid, and that surfactants can help to the

transport of water in a metastable regime of negative pressures.

Introduction
Intrigued about the existence of the vacuum, in 1644 Torricelli invented the mercury barome-
ter, establishing a conceptual connection between the weight of our atmosphere and the impos-
sibility of pumping water out of wells deeper than 10 m. Torricelli realized that the production
of a partial vacuum at the top of the extracting tube allowed the atmospheric pressure at the
lower part of the well to push the liquid to rise towards the lower pressure zone produced by
the pump. Thus, it would be impossible to pump or to support a water column higher than
10.33 m inside a siphon or a barometer, since this would imply absolute negative pressures.
Nevertheless, mercury barometers with absolute negative pressure exist [1]. Moreover, about
one hundred years ago the currently accepted explanation for the rising of sap inside trees chal-
lenged Torricelli’s ideas [2]. Nowadays, it is well established that tiny pores in the leaves can
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produce negative pressures inside the xylem of a tree which can pull water columns towards
heights much larger than the Torricellian limit.

Capillary forces produced at the pores in the leaves are transmitted by cohesive forces
between water molecules and can sustain the weight of water columns greater than one hun-
dred meters. Water inside the capillaries in the xylem is pumped due to transpiration at the
leaves in a process described by the cohesion tension theory [3–5]. Water under absolute nega-
tive pressures should boil at ambient temperature forming bubbles that would eliminate the
cohesive forces. However, nature provides trees with some not completely well understood
mechanisms that forbid bubble nucleation, and that even make possible to refill the capillaries
after an embolism [6, 7].

The effects of forces produced by pressure differences on fluids are typically explained using
only pushing forces because many people do not believe that fluids are capable of pulling.
Some years ago a report in Discovery Magazine about the mechanism used by trees to raise
water mentioned the existence of negative pressures and produced criticisms of several scien-
tists against the journalist. Fortunately, she wrote a second column [8] after asking the opinion
of respected scientists in the fields of physics and botany, resulting in a story full of contradic-
tions between experts. The main conclusion was that negative pressures do exist, and that the
physics community still has problems in accepting the existence of negative pressures that are a
well established fact for botanists.

The idea of a fluid that can only push follows naturally from the “ideal gas model”, where
the only mechanism available for momentum transfer is by means of collisions between atoms
or molecules. In this scenario it is possible to diminish the pressure by lowering the density of
the fluid, up to the point where there is no longer any fluid left, or by lowering the kinetic
energy of its molecules, up to the point where all molecules stop and there is no exchange of
momentum. In this model both cases correspond to a situation of zero pressure, which cannot
be further lowered. It is in this context where pulling forces or negative pressures are absurd.
However, if there are attractive forces pulling (instead of pushing) molecules or atoms, then
negative pressures are perfectly well defined. Because attractive intermolecular forces do exist,
negative pressures are expected to appear when liquids are pulled. It has to be noted that,
although the topic is controversial, negative pressures are frequently measured to catalog prop-
erties of liquids [4, 9–12].

The underlying conceptual connection between the pumping of sap in trees and the expla-
nation given by Hero on the working mechanism behind siphons, provided the motivation to
try to demonstrate the existence of absolute negative pressures by building the first siphon
capable of raising water over the supposedly impossible height of 10.33 m.

The driving force in siphons
Hero correctly explained that siphons are driven by a weight imbalance between water columns
[13], but nowadays there is a debate between people who believe that siphons are driven by
pressure differences and people who believe that siphons are driven by the force of gravity. The
discussion is also polarized between people who believe that the pushing mechanism of pres-
sure is the only mechanism transmitting forces inside fluids, and those who believe that molec-
ular pulling forces can also play a relevant role [14–19].

To identify the driving force that moves water in a siphon, we will start by considering the
static case where the discharging end of the hose is maintained closed using a stopper. In this
situation the stopper provides a force that makes it possible to produce zero net forces on any
portion of the liquid. In this static situation the pressure inside the hose at points B and D in
Fig 1 corresponds to the atmospheric pressure p0, and the weight of the liquid inside the
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segment of the hose between D and the discharging end of the hose at E (shown in black in the
minimalist siphon of Fig 1b) plus the force on this segment due to the atmospheric pressure at
D are exactly balanced by the force produced by the stopper at E. After removing the stopper,
the weight of this portion of liquid (that corresponds to the net force on this segment) causes it
to fall, which in turn diminishes the pressure at D producing a pressure gradient that drives the
siphon. Thus, the value of the atmospheric pressure p0 is irrelevant and the force that maintains
the fluid in motion can emerge from pushing forces produced by collisions of air molecules at
the open surface of the fluid at B and/or from the pulling produced by cohesive forces between
the liquid’s molecules that are transmitted from the falling portion of the fluid.

Regions of absolute negative pressures are present in mercury barometers with columns tal-
ler than 760 mm and in mercury siphons working in a vacuum [9, 20]. Recently a siphon using
an ionic liquid was demonstrated to transfer liquid from one container to another inside a vac-
uum chamber [21]. This siphon provides an excellent example that shows that the atmospheric
pressure is irrelevant, because in this experiment there are no external pushing forces and the
underlying force that drives the fluid to move can only be the gravitational force. Besides, the
initial motion of the unbalanced portion of fluid can only be transmitted by cohesive pulling
forces. On the other hand, searching the web for “Pouring and Siphoning a Gas” it is possible
to find a video from Flinn Scientific of a gas siphon that provides an excellent example of
siphoning action transmitted solely by pushing forces related to atmospheric pressure, in

Fig 1. a) A simple siphon. b) Minimalist version of the siphon shown in (a) that highlights the driving mechanism of siphons.

doi:10.1371/journal.pone.0153055.g001
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which the initial pressure gradient –and the source of energy keeping the fluid in motion– is
produced again by the weight of the unbalanced portion of gas shown schematically in the
right section of Fig 1b. All siphons are driven by the weight of this unbalanced column and,
taking aside extreme examples of siphons in vacuum or gas siphons, the forces transmitted
inside the fluid are a mix of pressure forces that push and cohesive forces that pull.

Bubbles and our first experiments
It is common for trees to suffer and to recover from embolisms, but for siphons bubble forma-
tion in a regime of negative pressures is a lethal problem. Bubbles can exist in a siphon working
in regimes of positive pressures as long as the weights of the fluid inside the right and left sec-
tions of the hose are different. A siphon raising water higher than 10.33 m should have regions
of negative pressures where the fluid is in a metastable state and can boil at ambient tempera-
ture. For these siphons, the presence or the nucleation of a bubble would disconnect the cohe-
sive forces and therefore the siphoning action would stop.

To avoid the presence of air bubbles in our experiments, a 31 m hose lying on the ground
was filled by siphoning tap water from a container. Then the hose was suspended from both
ends in an almost vertical position, it was shaken and left suspended for several days to allow
the remaining bubbles in the fluid to rise towards the ends of the hose. To build the siphon
shown in Fig 2, we lowered both ends while maintaining them closed and pointing upwards,
thus preventing the bubbles accumulated there to move towards the main section of the hose.
The middle region was raised by using a frame in the form of a semicircular arc, to obtain a
siphon with a height H of about 15 m between points B and C of Fig 2. This procedure formed
U-shapes at both ends of the hose and allowed us to trap the bubbles in the end segments of
the hose. These U-shapes where then submerged in containers filled previously with tap water
and the siphon was ready for the opening of the valves at points A and E.

In our first experiments, one of the containers was raised and after opening the valves a flow
of water out of both ends of the hose was observed, a clear indication of bubble formation at
the top of the siphon. After many failed attempts, we succeeded in building a working siphon.
To confirm the operation of a higher than 10 m siphon, we decided to exchange the heights of
the containers to observe the reversal of the water flow and we added coconut milk to increase
the visibility of water. However, in all the subsequent experiments a bubble was formed after
opening the valves. We hypothesized that the presence of dishwasher surfactant used to clean
the hose in our first successful experiment was helping to prevent air bubbles to act as nucle-
ation centers. This idea was reinforced by the fact that surfactants are byproducts of the cellu-
lose industry and that trees have mechanisms that prevent bubbling at negative pressures.

Preventing the formation of bubbles
Understanding the role of gas bubbles acting as nucleation centers is the key to design success-
ful experiments that pump water in a metastable state of absolute negative pressures, as
reported by Dr. Alan Hayward in 1970. Hayward built the first mechanical pump that pulled
water to heights greater than 10.33 m. Using short periods of high pressure, he decreased the
size of the bubbles that could act as nucleation centers to avoid the bubbling of water in the
negative pressure pulling part of the pumping cycle [10, 11].

It is widely accepted that normal boiling occurs mainly at bubbles stuck to crevices in the
walls of the container and it has also been shown that bubbles trapped inside cellulose fibers
play a major role as nucleation centers in carbonated beverages [10, 22, 23]. Moreover, it is
known that surfactants favor the boiling of water at 100°C [24, 25]. To improve our under-
standing of the role played by surfactants in the prevention of bubble nucleation in a column of
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water at negative pressures, some simple experiments were designed to study the effects of
dishwasher surfactants in the bubbling of carbonated beverages.

Fig 3 shows a Petri dish and two inverted test tubes filled with carbonated water. A piece of
paper was introduced below each test tube, increasing the bubbling of CO2 due to the presence
of air bubbles trapped in the cellulose fibers of the paper which can act as nucleation centers.
Under the test tube at the left a normal piece of paper was introduced, but under the tube at the
right a piece of paper wetted with dishwasher surfactant was used. This simple experiment

Fig 2. Diagram of the setup for the siphon used in our experiments.

doi:10.1371/journal.pone.0153055.g002
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shows that cellulose fibers in both pieces of paper are acting as nucleation centers and that the
surfactant changes drastically the process of bubble formation, increasing the bubbling rate
and decreasing the bubble size. The left panel shows the larger rate of bubbling produced by
cellulose fibers wetted with surfactant just after both pieces of paper were inserted below the
test tubes. The right panel shows the larger volume of CO2 trapped at the top of the right test
tube after the strong bubbling induced by the surfactant begins to decline. It is clear from this
experiment that the surfactant helps degassing the fluid and its presence could explain why our
siphon worked in a regime of negative pressures.

Fig 3. Effects of cellulose fibers (under the left test tube) and cellulose fibers wetted with surfactant (under the right test tube) onCO2 bubbling in
carbonated water. Left panel: Just after the two pieces of paper were inserted below the test tubes. Right panel: 48 s later. A movie of this experiment is
available as supplementary material in the online version of the paper.

doi:10.1371/journal.pone.0153055.g003
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It is not completely understood how trees prevent boiling when sap is under tension, and a
common assumption is that water entering through the roots by osmosis does not contain dis-
solved air bubbles that could act as nucleation centers. But trees can refill the xylem conduits
after embolisms and although the actual mechanism is unclear [6, 7], it could be related to the
mechanisms that prevent the boiling of sap when it is transported in a regime of absolute nega-
tive pressures. Only in recent years have some authors paid attention to the effects of surfac-
tants inside the xylem of trees and its possible relationship with embolism, xylem conductivity
and bubble propagation through pit membranes [26, 27]. The results of our simple experiment
have not been reported before and could open new ways to understand the role played by sur-
factants on the transport of sap inside trees.

Building a successful siphon taller than 10.33 meters
In our next experiments, we proceeded to use of a mix of tap water and dishwasher surfactant
that turned our failed 15 m siphons into successful and robust experiments. To fill the new
siphons, the mix of water and surfactant was siphoned from a container to the hose lying on
the ground in an almost horizontal position. Prior to the experiment, in order to help the bub-
bles to rise towards the ends of the hose degassing the water, the hose was placed vertically
with its ends near the upper part of a four-story building and it was shaken and left to rest for
two hours.

Fig 4 shows a photograph of the final setup before operation. This camera view captures
completely the siphon setup, where the height H = 15.4 m of the middle section of the hose can
be measured from this image using the marked one meter segments. For this siphon, 3 ml of
concentrated dish washer surfactant was diluted in 3 L of water and 22.5 g of coconut milk was
added to form a suspension in the liquid which favors the visualization of fluid flow. The den-
sity of the mix was slightly higher than that of water and its surface tension γ was measured
using the capillary rise in calibrated glass capillaries, resulting in γ = 0.63 γwater.

Fig 5 shows a close up of this experiment (obtained with a different camera) for different
heights of the left container. The upper panel shows the initial setup at t = 15 s, with the right
container in a higher position and the liquid flowing from right to left. The lower panel shows
the experiment at t = 102 s, after the left container was moved to a higher position and the liq-
uid was flowing from left to right. As can be seen in the movie of this experiment, the direction
of water flow was reversed after the initial flow from right to left was clearly visible. The siphon
kept running for a total time of 224 s, when a bubble was formed at the upper section of the
hose.

Materials and Methods
The 15.4 m siphon was intentionally buildt with materials that can be found everywhere: a) A
transparent hose with strong walls that support a pressure larger than 1 atm. b) Two stoppers
to close the ends of the hose. c) A mix of tap water and dishwasher surfactant that is siphoned
into the hose in order to avoid air bubbles. d) Two transparent containers partially filled with
tap water. e) An arched frame and a rope that are used to rise the hose to the upper part of the
building.

To visualize the water flux inside the hose we added to the mix of water and dishwasher sur-
factant a small quantity of coconut milk. This is optional and was used because we needed the
water flux to be visible in our videos.

We used a dishwasher surfactant that is sold in our country under the brand-name ‘Quix’,
which is produced by Unilever. It is a green coloured liquid, the ingredients of this particular
dishwasher are not provided by the company in our country, but the composition of simmilar
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Fig 4. Photograph of our 15.4 m siphon. Amovie of this experiment is available as supplementary material
in the online version of the paper.

doi:10.1371/journal.pone.0153055.g004
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Fig 5. A closeup of the 15.4 m siphon during operation. The upper panel shows water being siphoned from the right container to the left container. The
lower panel shows the same experiment after exchanging the heights of the containers and when water was moving from the left container towards the right
container. A movie of this experiment is available as supplementary material in the online version of the paper.

doi:10.1371/journal.pone.0153055.g005
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products comercialized in other countries made by same company contain: Anionic surfactants
such as LAS (linear alkylbenzene sulfonic acid) and SLES (sodium lauryl ether sulfate), Urea,
Ethanol, EDTA (Ethylenediaminetetraacetic acid), Citric Acid, Lemon Juice, Preservative, Col-
our and Fragrance.

Before starting a new experiment we cleaned the hose by connecting it to the tap and mak-
ing the water to flow, sometimes we also added dishwasher surfactant at the initial part of the
hose before connecting to the tap. Normal water from the tap was used in all of our experi-
ments because we wanted to produce an experiment that can be easily reproduced.

Supporting Information
S1 Video. Video of CO2 bubbling. This video shows the effects of cellulose fibers (under the
left test tube) and cellulose fibers wetted with surfactant (under the right test tube) on CO2 bub-
bling in carbonated water.
(MP4)

S2 Video. Video of a 15.4 m siphon. This video shows our experiment with a 15.4 m siphon.
(MP4)

S3 Video. Closeup of the 15.4 m siphon. This video shows a closeup of the previous experi-
ment recorded with a different camera.
(MP4)
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