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Abstract

Independent Component Analysis (ICA) has been widely applied to electroencephalographic 

(EEG) biosignal processing and brain-computer interfaces. The practical use of ICA, however, is 

limited by its computational complexity, data requirements for convergence, and assumption of 

data stationarity, especially for high-density data. Here we study and validate an optimized online 

recursive ICA algorithm (ORICA) with online recursive least squares (RLS) whitening for blind 

source separation of high-density EEG data, which offers instantaneous incremental convergence 

upon presentation of new data. Empirical results of this study demonstrate the algorithm's: (a) 

suitability for accurate and efficient source identification in high-density (64-channel) realistically-

simulated EEG data; (b) capability to detect and adapt to non-stationarity in 64-ch simulated EEG 

data; and (c) utility for rapidly extracting principal brain and artifact sources in real 61-channel 

EEG data recorded by a dry and wearable EEG system in a cognitive experiment. ORICA was 

implemented as functions in BCILAB and EEGLAB and was integrated in an open-source Real-

time EEG Source-mapping Toolbox (REST), supporting applications in ICA-based online artifact 

rejection, feature extraction for real-time biosignal monitoring in clinical environments, and 

adaptable classifications in brain-computer interfaces.

Keywords

Independent component analysis; blind source separation; electroencephalography; biomedical 
signal processing; nonstationarity

(shh078@ucsd.edu).

HHS Public Access
Author manuscript
IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2017 March 01.

Published in final edited form as:
IEEE Trans Neural Syst Rehabil Eng. 2016 March ; 24(3): 309–319. doi:10.1109/TNSRE.2015.2508759.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



I. Introduction

Independent Component Analysis (ICA), as a means for blind source separation (BSS), has 

enjoyed great success in telecommunications and biomedical signal processing [1]. In 

biomedical applications, such as scalp electroencephalography (EEG), ICA methods have 

been widely used to separate artifacts such as eye blinks and muscle activities [2] and to 

study brain activities [3]. For example, ICA can extract fetal electrocardiography (ECG) 

from maternal abdomen electrode recordings [4], and it can also isolate pathological 

activities associated with disease states of epilepsy [5]. In addition, applying ICA to remove 

task-irrelevant activities and reduce dimensionality of data can improve the performance of 

Brain-Computer Interfaces (BCI) [6].

The application of ICA to EEG data is justified by a reasonable assumption that multi-

channel scalp EEG signals arise as a mixture of weakly dependent latent non-Gaussian 

sources [7]. Although several ICA algorithms have been developed [1] to learn these sources 

from channel mixtures, most of the algorithms require access to large amount of training 

data and are only suitable for offline applications. Furthermore, the offline ICA algorithms 

commonly assume spatiotemporal stationarity of the data, as in the widely used Infomax 

ICA [8] and FastICA [9] algorithms. For a few ICA methods that allow non-stationarity such 

as Adaptive Mixture ICA [10], they are computationally expensive. In many real-world 

applications, including real-time functional neuroimaging [11], artifact rejection and 

adaptive BCI [6], online (sequential) source separation methods are needed. Desirable 

properties of an online method include fast convergence, real-time computational 

performance, and adaptivity to non-stationary data.

Many existing online ICA methods are listed in Table I. Two major learning rules are least-

mean-squares (LMS) and recursive-least-squares (RLS) methods. LMS-type algorithms use 

stochastic gradient descent approaches and are computationally simple, but they require 

careful selection of an appropriate learning rate for stable convergence. Examples include 

Equivariant Adaptive Separation via Independence (EASI) [12] and Natural Gradient (NG) 

[13] methods. RLS-type algorithms accumulate past data in an exponentially decaying 

fashion and use Sherman-Morrison matrix inversion to achieve higher convergence rate and 

better tracking capability, yet require complex computation [14], [15]. This category 

includes the RLS approach of Nonlinear PCA (RLS-NPCA) [16], Iterative Inversion [17], 

and Natural Gradient-based RLS (NG-RLS) [18]. Alternatively, Online Recursive ICA 

(ORICA) [19] gives an RLS-type recursive rule by solving a fixed-point approximation and 

has been shown to exhibit fast convergence and low computational complexity [20]. Readers 

can refer to [15], [17] and [21] for theoretical relationships and comparisons between the 

above methods.

The aforementioned papers focused on theoretical derivations and proofs of convergence and 

only demonstrated applications of the methods to low-density data (fewer than 10 channels) 

and simulated “toy” examples such as sinusoidal and square waves. When the number of 

channels and sources increases, many existing algorithms exhibited slow convergence and 

poor real-time performance [9]. In a recent study, a real-time online ICA method for high-
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density EEG was proposed [20]. The method was compared with other offline ICA methods, 

and its stability and steady-state performance were analyzed in [22].

Additionally, an important advantage of online ICA methods is their ability to adapt to 

spatiotemporal non-stationary data, a common occurrence in real-world applications. For 

instance, spatial non-stationarity in the ICA (un)mixing matrix can arise as a consequence of 

location shifts in either sensors or sources, or changes in electrode impedances. However, 

few of the online ICA methods have been carefully studied under non-stationary conditions. 

Further investigation is needed to characterize algorithmic performance and optimal 

parameter selection using non-stationary simulated and real EEG data.

In this study, we extend ORICA as formulated in [19] and [20], and the contributions are 

three-fold. Firstly, we demonstrate ORICA's suitability for accurate and efficient source 

identification in a realistic simulation of stationary 64-channel EEG data. Specifically, we 

include a serial orthogonalization step of the unmixing matrix in the ORICA algorithm, and 

we systematically examine the impact of parameters such as the forgetting factor and block 

sizes for pre-whitening and ORICA on algorithmic performance. Secondly, we examine 

ORICA's capability to adaptively decompose spatially non-stationary 64-channel EEG data 

corresponding to abrupt displacements of electrodes, a common source of spatial non-

stationarity in real-world mobile applications. We introduce a non-stationarity index and an 

adaptation approach for non-stationarity detection and online adaptation. Thirdly, we 

evaluate ORICA's real-world applicability for rapidly extracting principal brain and artifact 

sources using 61-channel real EEG data recorded from a subject performing an Eriksen 

flanker task [23]. We demonstrate that ORICA and offline Infomax ICA [24] obtain 

comparable results in terms of extracting informative independent components (ICs) and 

their single trial and averaged event-related potentials (ERPs), yet ORICA can learn the ICs 

online with less than half of the data. Finally, the proposed ORICA pipeline is made freely 

available as functions supported in BCILAB [25] and EEGLAB [26], and it is also 

integrated in an open-source Real-time EEG Source-mapping Toolbox (REST) [27].

II. Methods

Standard ICA assumes a linear generative model x = As, where x represents scalp EEG 

observations, s contains unknown sources, and A is an unknown square mixing matrix. The 

objective is to learn an unmixing matrix B = A−1 such that the sources are recovered exactly, 

up to an unknown permutation and scaling matrix, by y = Bx, where y represent the 

recovered source activations. A column of B−1 represents the spatial distribution of a source 

over all channels, often referred to as a “component map.”

It is desirable to optimize the ICA contrast function, a measurement of the degree of 

independence between sources such as kurtosis or mutual information, under the 

decorrelation constraint Ry = E[yyT] = I. Hence the separating process can be factored into 

two stages as B = W M, where M is the whitening matrix that decorrelates the data and W is 

the weight (preferably orthogonal) matrix that optimizes the ICA contrast function [12], 

[18]. Serial update rules of M and W and detailed features are presented in the following 

subsections.

Hsu et al. Page 3

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A. Online recursive-least-squares (RLS) pre-whitening

Pre-whitening (decorrelating) the data reduces the number of independent parameters an 

ICA update must learn, and can improve convergence [1]. Pre-whitening may be efficiently 

carried out in an online RLS-type learning rule [18]:

(1)

where n is the number of iterations, Mn is the whitening matrix, vn = M nxn is the 

decorrelated data, λn is a forgetting factor, and I is the identity matrix. A non-overlapping 

block of data xn with a block size Lwhite is used at each iteration to reduce the computational 

load and to increase the robustness of the estimated correlation matrix . This RLS-type 

whitening rule exhibits faster convergence than LMS whitening methods [18].

B. Online recursive ICA (ORICA)

The ORICA algorithm can be derived from an incremental update form of the natural 

gradient learning rule of Infomax ICA [28]:

(2)

where yn = W nvn, η is a learning rate, and f(·) is a nonlinear activation function. In the limit 

of a small η and assuming a fixed f(·), the convergence criterion 〈f (y) · yT〉 = I leads to a 

fixed-point solution in an iterative inversion form [19]:

(3)

where  is the Moore-Penrose pseudoinverse of Wn and λn is a forgetting factor for an 

exponentially weighted series of updates. It should be noted that λn differs from η, which is 

the step size for stochastic gradient optimization.

Following [19], applying the Sherman-Morrison matrix inversion formula to Eq. 3, the final 

online recursive learning rule becomes:

(4)

The near-identical forms of Eq. 4 and Eq. 1 allow us to understand ORICA as a nonlinear (or 

kernel) form of the RLS whitening filter: ORICA's use of non-linearity f(·) allows for 

independence of sources for moments above second order.

Following the Eq. 4, the orthogonality of the weight W is not guaranteed. To preserve the 

decorrelation property of recovered source activities y = WMx and maintain learning 

stability, we apply an orthogonal transformation to W after each ICA update:
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(5)

where D and V contain, respectively, the eigenvalues and eigenvectors of . Note 

that this orthogonalization step is costly compared to the ORICA update. A possible 

alternative would be to reformulate the ORICA update rule under the orthogonal constraint 

or combine the serial whitening and weight updates into a single update rule [12].

1) Block-update rule—The typical single measurement vector approach [29] requires 

application of the update rule (Eq. 4) for each data sample, which can be computationally 

expensive, particularly for the commonly-used MATLAB (The Mathworks, Natick, MA) 

runtime environment. To reduce the computational load and ensure consistent real-time 

performance, we may adopt an multiple measurement vector approach [29] and perform 

updates on short blocks of samples. To achieve this without loss of accuracy, we solve Eq. 4 

for time index l = n to l = n+L–1, assuming yl is approximated as Wnvl and λl is small. This 

leads to a block-update rule [20]:

(6)

In this form, the sequence of updates can be vectorized for fast computation. Note that Eq. 6 

appropriately accounts for the decaying forgetting factor at each time point. This keeps the 

approximation error to a minimum.

2) Forgetting factor—The forgetting factor λ determines an effective length of a time 

window wherein data are aggregated. A large value of λ corresponds to a short window 

length. In this case, much heavier weights are applied to new data than past data, yielding 

fast adaptation and convergence yet large errors and variability. As a general rule, a large λ is 

preferred during initial learning to promote fast convergence; a small λ is suggested at 

convergence to minimize variance. To this end, we adopt the forgetting factor with time-

varying annealing defined in [19]:

(7)

where λ0 is a fixed initial forgetting factor and γ determines the rate of exponential decay of 

λ towards zero as a function of time. The same forgetting factor is applied to the RLS 

whitening filter, although theoretically it can be different.

3) Nonlinear function—The choice of non-linearity f(·) depends on the probability 

distribution of the sources. Lee et al. [28] proposed an extended Infomax ICA algorithm that 

adopts distinct activation functions to separate subgaussian and supergaussian sources based 

on an estimate of source kurtosis. Here we follow [1], [19] and choose the component-wise 

nonlinearity f(y) = −2 tanh(y) for supergaussian sources and f(y) = tanh(y) −y for 

subgaussian sources.
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4) Number of sub- and super-gaussian sources—While approaches for adaptively 

selecting f(y) within ORICA have been proposed [19], these are heuristic and presently lack 

convergence proofs. In practice, we found that both convergence speed and run-time 

performance were improved by pre-assuming a fixed number of sub- and super-Gaussian 

sources. The detail of selecting an appropriate number was discussed in Section V and the 

effect of inaccurate assumptions was explored in Section IV.

C. Non-stationarity detection

In this study, the non-stationarity refers to any changes in the ICA model x = As, including 

spatial non-stationarity of the mixing process between sources and the measurements A and 

temporal non-stationarity of probability distributions of source activities s. Hence the non-

stationarity might arise from switching of active brain sources, transient muscle activities, 

sensor displacement, or impedance changes. Our goal is to propose a generic approach to 

detect and adapt to the non-stationarity in EEG data.

1) Non-stationarity index—As previously described, ORICA is derived from a fixed 

point solution to the convergence criterion 〈y · f(y)T〉 = I, reflecting independence of sources 

moments above second order. Violation of this criterion once an algorithm reaches steady-

state can be interpreted as a change in the latent source or mixture distribution, which leads 

us to define the following heuristic non-stationarity index:

(8)

where ∥ · ∥F represents the Frobenius norm and n is the current sample point. After ICA 

decomposition converges, δns would remain small when data are stationary, while δns would 

increase and fluctuate when data are non-stationary.

2) Adaptation of the forgetting factor—If the non-stationarity index δns increases 

above a threshold, we may interpret this as evidence of a change in the latent mixing matrix 

and increase the RLS forgetting factor allowing ORICA to more rapidly adapt to the new 

mixing matrix. In this study, the threshold value was heuristically chosen to be a percentage 

(e.g. 1-10%) of initial δns, which was several standard deviations above the mean of δns at 

convergence in the simulated stationary data. Once δns reached the threshold, we increased 

the forgetting factor to its initial value.

III. Materials

A. Data collection

The performance of ORICA was evaluated under simulated and real-world conditions. 

Previous works of online ICA mostly used “toy” simulations with artificially constructed 

sources (sinusoids, i.i.d. random data, etc), stationary mixing matrices, and relatively small 

numbers of channels and sources. Here we generated high-density EEG (64 channels and 64 

sources) under more realistic conditions, including use of auto-correlated stochastic sources, 

realistic source locations and mixing matrices derived from Boundary Element Method 

(BEM) modeling, and spatial non-stationarity. Simulated data were generated using the EEG 
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simulation module in Source Information Flow Toolbox (SIFT) [30], using an approach 

similar to [31].

1) Simulated spatially stationary EEG data—To test ORICA's performance in 

separating stationary EEG sources, we generated 64 supergaussian independent source time-

series from stationary and random-coefficient order-3 autoregressive (AR-3) models (300Hz 

sampling rate, 10-min), assigned each source a random cortical dipole location, and 

projected these through a zero-noise 3-layer BEM forward model (MNI “Colin27”) with 

standard 10-20 electrode locations matching the 64-channel Cognionics montage used 

subsequently for real-world ORICA evaluation. This yielded 64-channel EEG data.

2) Simulated spatially non-stationary EEG data—To evaluate ORICA's capability to 

adapt to spatial non-stationarity, we simulated abrupt shifts of the electrode montage during 

continuous recording. We first generated 30 minutes of temporally stationary AR-3 source 

data, as described above. The data was partitioned into thirds. For each 10 minute segment, 

64 channel EEG data was generated using a unique BEM forward (mixing) matrix, 

corresponding respectively to (a) the standard electrode montage, (b) a 5 degree anterior cap 

rotation, and (c) a subsequent 10 degree posterior cap rotation (5 degree posterior rotation 

from standard position). The procedure is illustrated in Figure 5a.

3) Real EEG data—One session of high-density EEG data was collected from a 24 year-

old right-handed male subject using a 64-channel wearable and wireless EEG headset with 

dry electrodes (Cognionics, Inc) [32]. In the 20 minutes session, the subject performed a 

modified Eriksen flanker task [23] with a 133 ms delay between flanker and target 

presentation. The subject was asked to press buttons according to the target stimuli as 

quickly as possible. Flanker tasks are known to produce robust error-related negativity 

(ERN, Ne) at frontal-central electrode sites. The goal here is to extract these event-related 

potential (ERP) components from high-density EEG data in a real-world setting using the 

proposed ORICA pipeline.

B. The ORICA pipeline

As shown in Figure 1, the ORICA pipeline continuously fetched the streamed data with 

variable size LB in the online buffer and processed the data with the three filters in sequence: 

a Butterworth IIR high-pass filter, an online RLS whitening filter, and an ORICA filter. The 

high-pass filter removed the trend and low-frequency drift, ensuring the zero-mean criterion 

for ICA was satisfied. For each update, the pipeline computed and output the whitening 

matrix M and the weight matrix W according to Eq. 1 and Eq. 6. The next non-overlapping 

data chunk was then used for the subsequent update.

The pipeline was implemented and analyzed in a simulated online environment using 

BCILAB, an open source MATLAB toolbox designed for BCI research [11], [25]. It was 

initialized with the first second of data segment from the dataset. For the simulated 64-ch 

stationary data, we investigated the effect of the parameters on empirical convergence, and 

we used block sizes Lwhite = LICA = 16 as an example to show the decomposed components 

since the block sizes returned satisfactory results in the shortest computational time. For the 
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simulated 64-ch non-stationary data and real 61-ch data, we used Lwhite = 8 and LICA = 1, 

which were found to be optimal for the simulated stationary data. Table II summarizes the 

parameters of the three filters.

C. Data processing and analysis

We applied additional procedures to process and analyze the recorded EEG data from the 

subject. Firstly, an automatic removal of bad (e.g. flatlined or abnormally correlated) 

channels was applied prior to the ORICA pipeline using BCILAB routines, which removed 

3 out of 64 channels. Secondly, following application of the ORICA pipeline, the source 

activities were epoched in a −400 to 600 msec window time locked to subject's responses 

(button press), yielding 693 epochs (104 error and 589 correct trials). The epochs were 

averaged to produce ERPs and were analyzed offline in EEGLAB [26].

D. Performance evaluation

1) Performance index—If the ground truth (N-by-N) mixing matrix A is known, a 

performance index PI for assessing quality of source separation can be defined as [33]:

(9)

where C(n) = W nM nA. This measures a normalized total cross-talk error of the estimated 

whitening matrix M and weight matrix W, accounting for scale and permutation ambiguities. 

For perfect separation at convergence, PI approaches zero.

2) Best-matched correlation coefficients and Hungarian algorithm—PI reflects 

ORICA's global performance across all components. However, it is also useful to evaluate 

convergence of individual independent components (ICs), i.e. rows of W. One metric is the 

Pearson correlation between an estimated IC and its counterpart in a “ground truth” weight 

matrix, W*. Due to permutation ambiguities, a matching algorithm is required for optimal 

pairing of rows of W and W*. This study used the Hungarian method [34] to maximize the 

sum of absolute pairwise correlations. We used Niclas Borlin's implementation in 

EEGLAB's matcorr(·) function.

IV. Results

A. Simulated 64-ch stationary EEG data

1) Evaluation of the decomposed components: Figure 2a plots the correlation magnitudes 

between ORICA components and their ground-truth counterparts. The components were 

sorted such that smaller component ID represented faster convergence. We observed that all 

components coverged, i.e. correlation magnitudes approached 1, by the end of the 10-minute 

session. A common empirical heuristic for the number of training samples required for 

separating N stable ICA sources using Infomax ICA was kN2, where k > 25 [24]. For 64 

channels, the heuristic time required for convergence amounted to 642 × 25 = 102400 

samples = 5.7 minutes with a 300 Hz sample rate. By 5.7 minutes, 77% (91%) of ICs 
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reached a correlation magnitude of 0.95 (0.8); by 3.5 minutes, more than half of the ICs 

reached a correlation magnitude of 0.95. Figure 2b shows the evolution of the component 

maps of a randomly selected IC #29 and its correlation magnitudes with ground truth. This 

IC converged to a steady-state correlation magnitude of 0.95 under 4 minutes. The 

superimposed global performance index (1 – PI, in green) exhibited a similar convergence 

trajectory. Figure 3 shows 300-msec time-series of four representative ICs reconstructed by 

ORICA at 3, 6, and 9 minutes. At 9 minutes, ORICA correctly reconstructed all the source 

dynamics with the errors approached 0. At the heuristic time 5.7 minutes, only ID #58 had 

not converged. Interestingly, components such as IC #3 converged within 3 minutes. Both 

decomposed component maps and recovered source dynamics demonstrated ORICA's 

suitability for accurate and efficient decomposition of high-density (64-channel) data, albeit 

with systematic variation in convergence speed.

2) Effect of ORICA parameters—As shown in Figure 4, we systematically evaluated the 

effects of four ORICA parameters on convergence. The decay rate of forgetting factor γ had 

a significant impact on convergence speed, with the fastest convergence for γ = 0.6 (Figure 

4a). A sigmoidal profile for the convergence trajectory was observed for γ ≤ 0.6, while an 

exponential decay profile was observed for γ > 0.6. The ORICA block size LICA had 

negligible effect on the convergence for LICA ≤ 64 (Figure 4b). This demonstrated the 

approximation error of the block update rule (Eq. 6) was negligible for small to moderate 

block sizes. The block size of online whitening Lwhite significantly affected the ICA 

convergence (Figure 4c). Lwhite between 4 and 8 samples achieved the best performance. 

Interestingly, Lwhite = 1 was not the optimal value, mainly due to the effect of variable time 

scale of adjustments in the whitening matrix on the convergence of the subsequent ORICA. 

The pre-assumed number of subgaussian sources nsub had little effect on the convergence, 

within the range of nsub = 0 ~ 3, with the true number nsub = 0. The performance of ORICA 

was rather insensitive to assumptions on the kurtosis of the sources. For the above results, 

we set γ = 0.6, LICA = 1, Lwhite = 1, and nsub = 0 unless otherwise noted.

3) Quantification of computational load—Table III shows the average execution time 

required to apply the ORICA pipeline to 1-second of data, computed by averaging the 

processing rates (data size divided by time) of the incoming data chunks for 1 minute. 

Runtime was uniformly less than one second, illustrating the 64-ch data were processed 

faster than accumulated in the input buffer, and thus the pipeline was capable of real-time 

operation. The online whitening filter ran 3 to 9 times faster than ORICA did and the 

runtime monotonically decreased as the block size increased. The execution time of the 

ORICA filter was nearly halved as block size doubled when L ≤ 8, with diminishing returns 

for L ≥ 16. This allows us to balance the tradeoff between runtime of the pipeline and 

accuracy of the block-update rule.

B. Simulated 64-ch non-stationary EEG data

Figure 5 plots ORICA's peformance in tracking spatial non-stationarity in simulated 64-

channel EEG data, with the simulated abrupt shifts of the EEG cap (Figure 5a). Figure 5b 

plots the non-stationarity index δns as a function of time. The index robustly identified 

changes in the mixing matrix due to cap displacements. Figure 5c plots the performance 
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index of ORICA's decomposition as a function of time. Following the detection of non-

stationarity, ORICA's forgetting factor was reset to its initial value, and ORICA smoothly 

adapted to the new mixing matrix. Figure 5d plots the ground truth and the estimated 

component maps for a representative IC at different time-points, superimposed on a plot of 

log-transformed PI. For this IC, suitable convergence was obtained within 15 minutes, and 

improved further over time. The effect of cap rotation was captured by the concomitant shift 

of the component maps, indicating ORICA's capability to detect and adapt to the spatial 

abrupt non-stationarity.

C. Real 61-ch EEG data from the flanker task

Since the ground truth was unknown for real EEG data, we adopted the offline Extended 

Infomax ICA algorithm [28], as implemented in the EEGLAB [26] function RUNICA, as a 

“gold standard”. The robustness and stability of the algorithm on high-density EEG data had 

been shown to outperform most blind source separation algorithms [7].

To confirm whether ORICA yielded a comparable solution at convergence (average over the 

last minute) as RUNICA, we investigated event-related activities of three sets of components 

with stereotypical fronto-central, occipital, and prefrontal spatial topographies. Figure 6a 

revealed that the ORICA- and RUNICA-decomposed fronto-central ICs and their 

characteristic ERN were comparable and consistent with the results from previous studies 

[11], [35]. Figure 6b shows that averaged occipital visual-evoked potentials (VEP) elicited 

by flanker (0-50 msec window after the onset of stimulus) and target (100-150 msec window 

after) presentation were clearly observed using both methods. Figure 6c shows eye blinks 

time-locked to response (click of button), as previously described in [35]. The ERN and 

VEP shown in Figure 6 were representative, with comparable results obtained from all 

subjects, indicating the reproducibility of the ORICA pipeline. In summary, the empirical 

results demonstrated comparable performance of ORICA to RUNICA in separating 

informative ICs and resolving single trial and averaged ERPs. Furthermore, ORICA required 

significantly less computation time than RUNICA.

Adopting a procedure similar to Figure 2, Figure 7a plots the correlation magnitudes 

between all ICs learned by ORICA and their best-matched RUNICA counterparts. Firstly, 

only 10% (26%) of the ORICA components reached a correlation magnitude of 0.9 (0.8) at 

the end of the session (average over the last minute). Secondly, 8% (21%) of the components 

reached a correlation magnitude of 0.9 (0.8) within 3-4 minutes, only half of the empirical 

heuristic time suggested by [24].

Among those ICs with the highest correlation magnitudes (larger than 0.95), we found a 

number of ICs with stereotypical and plausible component maps. Figure 7b plots the 

convergence profile (evolution of correlation magnitudes) for three such informative ICs: 

prefrontal (IC 1, accounting for eye-blink), occipital (IC 12, accounting for VEP), and 

fronto-central (IC 7, accounting for ERN) components. These ICs converged to their 

RUNICA counterparts within 3-4 minutes. The correlation magnitude curves of both the 

occipital and fronto-central components fluctuated across time and eventually reached a 

steady-state. In contrast, the correlation magnitude time series of the prefrontal component 

was relatively stable across the whole session.
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Figure 2a and Figure 7a exhibit significant performance differences in decomposing 

simulated versus real EEG data, which can be attributed to the differences in the quality of 

the gold standard. Those ICs producing poor correlation corresponded to non-dipolar 

sources in the gold standard, i.e., sources with high residual variance in dipole fitting, such 

as mixtures of sources or noise [7]. This phenomenon is commonly observed and reported 

when applying ICA methods to real EEG data that are inevitably noisy and likely non-

stationary [1], [6].

V. Discussion

A. Fast Convergence Speed

The ORICA pipeline was capable of accurately decomposing 64-channel simulated EEG 

data within the required heuristic convergence time (kN2) [24]. The fast convergence could 

be attributed to three important factors: (a) combining online RLS pre-whitening and 

ORICA, (b) choosing an optimal forgetting factor profile and parameters, and (c) fixing the 

numbers of modeled sub- and super-gaussian sources.

Simulation results showed that faster convergence of the whitening matrix facilitated ICA 

convergence. This was consistent with the findings in previous studies [1], [18], which 

suggested pre-whitening could significantly improve the ICA convergence by reducing the 

dimensionality of the parameter space. For online whitening, a local block-average approach 

could provide a more robust estimate than a stochastic (single sample) update approach. 

Besides RLS whitening, online LMS whitening method [12] can also be considered, which 

has lower computational complexity, but slower convergence [18].

The forgetting factor, especially its decay rate γ, had a significant effect on ORICA's 

convergence. For highly non-stationary data, a large γ and thus a shorter effective window 

size were preferred. Factors including data dimension (number of channels) and underlying 

stationarity of the data affected the choice of optimal parameters. Alternative approaches for 

adapting the forgetting factor were suggested in [17] and [36].

Fixing the numbers of sub- and super-gaussian sources increased both the stability and the 

speed of convergence, especially for high-density data. The experiments with synthetic data 

showed that the choice was not critical, and a model mismatch in these numbers could be 

tolerated. This study further examined the kurtosis of the real 61-ch EEG data and found that 

all sources were supergaussian distributed, which was consistent with previous studies [2], 

[26] that EEG signals from most brain activities and non-brain artifacts were primarily 

supergaussian. For greater accuracy under general conditions, online kurtosis estimation as 

described in [19] and [37] can be incorporated into the ORICA pipeline. This may lead to 

better steady-state performance but potentially decreased stability of convergence.

Several approaches not yet implemented in this study can further improve the convergence 

speed of ORICA. For example, dimensionality reduction methods such as PCA, or selecting 

a subset of channels prior to ORICA decomposition, can reduce the empirical convergence 

time. Another promising approach is to pre-process the data using artifact reduction methods 
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such as Artifact Subspace Reconstruction [11] to mitigate sensitivity to transient artifacts in 

noisy high dimensional EEG data.

B. Real-time processing

ORICA was implemented as a BCILAB function with block-update vectorization, and could 

easily perform real-time processing with a user-defined block-size for 64-channel EEG on a 

standard laptop. The block update rule, while approximate, incurred negligible loss in 

accuracy up to LICA = 64 for 64-channel simulated data. Even without the block-update 

(Lwhite = LICA = 1), the ORICA pipeline still ran in real-time. The block update may be most 

valuable when computational resources are constrained; for instance, when applying 

multiple data processing operations in serial or operating on a low-power mobile device.

C. Application to real EEG data

Empirical results on the 61-channel EEG data collected in the flanker task experiment 

demonstrated that ORICA could decompose brain sources and artifact ICs that resembled 

results from standard RUNICA. We observed that the most informative ICs, such as VEP 

and ERN brain sources and eye-blink artifacts, had the highest correlation magnitudes 

among all ICs and converged much quicker than the heuristic convergence time—a fortunate 

circumstance for real-time applications in mobile EEG BCI. We speculate that those 

components exhibit robust and frequently occurring statistical patterns which facilitate ICA 

separation. These observed phenomena support applications of ORICA for rapid 

decomposition of high-density data as much less time is required to decompose brain and 

artifact components.

The ORICA pipeline also revealed non-stationarity in the experimental data, captured by the 

dynamics of component maps and the non-stationarity index. One challenge for ORICA and 

RUNICA is the order switching of ICs, especially for non-stationary real EEG data. This 

hinders the identification of informative ICs over time, i.e. tracking the same set of 

components regardless of the weight matrix permutations. One solution to the problem is to 

sort the current weight matrix W (t) based on the correlation matching with the previous 

weight matrix W (t–1) using the Hungarian method described in section III-D to keep track 

of the same components. This is useful for online identifying and separating artifact 

components from noisy EEG recordings.

D. Non-stationarity detection and adaptation

This study proposed using the Frobenius norm of ICA error matrix, ∥yf(y)T – I∥F, for the 

ORICA pipeline as an index to non-stationarity events in the data, identified as abrupt 

changes in the mixing matrix. This non-stationarity index measurement captured the fitness 

of the ICA model to the current data, i.e. the degree to which nonlinear decorrelation was 

achieved. Alternative forms for the non-stationarity index can be used depending on 

applications, for instance mutual information reduction (MIR) in windowed data provides a 

measure of statistical independence between sources [7] and thus can capture the changes in 

data statistics as MIR varies.
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This study also presented a method of non-stationary adaptation by increasing the forgetting 

factor when the non-stationarity index exceeds a hard threshold, e.g. 1-10% of the initial 

value when ICA had not converged. However, this method required prior knowledge of the 

hard threshold and did not address continuous variation in degree of non-stationarity. For 

selection of the threshold, it is possible to design an adaptive threshold that depends on the 

online estimated mean and standard deviation of δns. For adaption of the forgetting factor, 

one possible solution is to adopt the strategy similar to the adaptive learning rate proposed 

by Murata et al. [38] for a gradient-based algorithm in an online environment. An adaptive 

forgetting factor for ORICA, as an RLS-like recursive online algorithm, is crucial for its 

ability to track non-stationarity, calling for further investigation.

E. Applications and future directions

The proposed online ICA method for real-time processing of high-density EEG opens up 

new opportunities for the following potential applications: (1) ICA-based real-time artifact 

removal (especially for sporadic muscle activities), (2) ICA-based brain activity monitoring 

(e.g. epilepsy, etc) for clinical practice, and (3) adaptable ICA-based features for brain state 

(e.g. cognitive functions, fatigue level, etc) classification in real-time brain-computer 

interfaces.

A significant next step is to leverage ORICA for real-time source localization, for instance 

using anatomically constrained low resolution electrical tomographic analysis (LORETA) 

[39]. A recent study [27] attempted to combine online ICA and source localization, yet 

further validation of sources’ reliability were needed. Knowledge of the source locations in 

the brain can be used to assess the reliability of the sources (e.g. validate consistency of the 

source locations over time and with anatomical expectations), to provide biological 

interpretation of the decomposed sources, and to integrate with other real-time source-level 

methods such as connectivity analysis in SIFT [11], [30].

VI. Conclusion

This study proposed and demonstrated an efficient computational pipeline for real-time, 

adaptive blind source separation of EEG data using Online Recursive ICA. The efficacy of 

the proposed pipeline was demonstrated on three datasets: a simulated 64-channel stationary 

dataset, a simulated 64-channel non-stationary dataset, and a real 61-channel EEG dataset 

collected under an Eriksen flanker task. Through application of ORICA to simulated 

stationary data we (a) systematically evaluated the effects of key parameters on convergence; 

(b) characterized the convergence speed, steady state performance, and computational load 

of the algorithm; and (c) quantitatively compared the proposed ORICA method with a 

standard offline Infomax ICA algorithm. Our analysis of a simulated non-stationary 64-

channel EEG dataset demonstrated ORICA's ability to adaptively track changes in the 

mixing matrix due to electrode displacements.

Applied to 61-channel experimental EEG data, we demonstrated ORICA's ability to 

decompose brain and artifact subspaces online, with comparable performance to offline 

Infomax ICA. Furthermore, we found that subspaces of biologically plausible ICs (e.g. eye, 

occipital and frontal midline sources) could be reliably learned in much less time than 
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required by the kN2 empirical heuristic for ICA convergence. To serve the EEG and BCI 

communities, the proposed pipeline has been implemented as BCILAB [25] and EEGLAB 

compatible functions, it has also been integrated into an open-source Real-time EEG Source-

mapping Toolbox (REST) [27]. Future work will focus on further validation of this 

promising method as well as application to artifact rejection, clinical monitoring, and brain-

computer interfaces [11].
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Fig. 1. 
The ORICA pipeline for online EEG data processing. X(t) is the input data vector at time t 
and LB is the size of data in the online buffer.
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Fig. 2. 
(a) Evolution of component-wise correlation magnitudes between ORICA-decomposed ICs 

and ground truth on simulated stationary 64-ch EEG data [20]. ICs sorted with respect to 

time required to reach a correlation magnitude of 0.95 (solid curve). The dotted line is the 

heuristic time for separating 64 stable ICs. (b) Evolution of correlation magnitudes (blue) 

and component maps of a randomly selected IC #29. One minus the performance index 

(green) is superimposed.
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Fig. 3. 
Source dynamics and the corresponding component maps of four representative components 

reconstructedby ORICA at (a) 3 min, (b) 6 min, or (c) 9 min of simulated mixed 64-channel 

stationary EEG data. Reconstructed source dynamic (blue) is superimposed on ground truth 

(green) with error, i.e. difference, (red). The oscillatory (autocorrelated) and burst-like 

source dynamics, as well as homogeneous component maps of the four depicted ICs, are 

characteristic of real EEG source dynamics.
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Fig. 4. 
Effect of ORICA pipeline parameters on convergence trajectory, i.e. performance index over 

time, applied to 64-ch simulated stationary EEG data. (a) Decay rate γ of forgetting factor, 

(b) block size LICA of ORICA, (c) block size Lwhite of the online whitening, and (d) pre-

assumed number nsub of subgaussian sources.
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Fig. 5. 
Application of ORICA to 64-ch simulated non-stationary EEG data consisting of three 

concatenated 10-minute sessions which simulate a 5-deg forward EEG cap rotation followed 

by a 10-deg backward cap rotation. (a) Electrode locations for each session. (b) non-

stationarity index δns = ∥yfT – I∥F detects the abrupt change between sessions. (c) The PI 
convergence curve shows the adaptation behavior. (d) Zoomed-in plots of log-scaled 

convergence curve with ground truth component maps (top row) and reconstructed IC at 

different time points.
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Fig. 6. 
Color-coded event-related potential (ERP) images (trials by time) of (a) fronto-central, (b) 

occipital, and (c) prefrontal components reconstructed by ORICA (top row) and RUNICA 

(bottom row) on real 61-ch EEG data from the flanker task, time-locked to the response at 

time 0 (vertical straight line). Averaged ERP traces are shown in bottom panel. Only error 

trials are included in (a) such that error-related negativity (ERN) can be observed as red 

arrows indicate. In (b) and (c), all trials are sorted based on reaction time, i.e. onset of 

flanker stimulus (sawtooth line) to response. A visually evoked potential (VEP) is clearly 

observed in (b). Green arrows in (c) indicate to eye blinks.
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Fig. 7. 
(a) Evolution of component-wise correlation magnitudes between ORICA- and RUNICA-

decomposed ICs on real 61-ch EEG data from the flankerTask. (b) Evolution of correlation 

magnitudes and spatial filters of three rapidly converged ICs: prefrontal (eye-blinks), 

occipital (VEP), and fronto-central (ERN) components.

Hsu et al. Page 24

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hsu et al. Page 25

TABLE I

Comparison of online ICA methods.

Name Author Year Learning rule and optimization method Pre-whitening

EASI Cardoso et al. [12] 1996 Relative gradient-based (LMS) that max. kurtosis LMS

NG Amari et al. [13] 1996 Natural gradient-based (LMS) that min. mutual information no

RLS-NPCA Karhunen et al. [16] 1997 RLS that min. LSE of NPCA criterion PCA

Iterative Inversion Cruces-Alvarez et al. [17] 2000 Quasi-Newton method with iterative inversion that decorrelates 
high order statistics

no

NG-RLS Zhu et al. [18] 2004 RLS with natural gradient that min. LSE of NPCA criterion RLS

ORICA Akhtar et al. [19] 2012 Recursive rule with iterative invesrion from fixed-point solution 
of Infomax with natural gradient

no
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TABLE II

List of parameters for the ORICA pipeline: IIR high-pass filter (IIR), online RLS whitening filter (RLS), and 

online recursive ICA filter (ICA).

Filters Parameters Values Description

IIR BW 0.2–2 Hz Transition bandwidth

RLS Lwhite 1~16 Block-average size

RLS λ 0 0.995 Initial forgetting factor

ICA γ 0.60 Decay rate of forgetting factor

ICA LICA 1~16 Block-update size

nsub 0 Number of subgaussian sources
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TABLE III

Averaged execution time (ms) for 1 sec (300 samples) 64-channel data using online RLS whitening and 

ORICA with different block sizes Lwhite AND LICA.

Time (ms) Block Size

Algorithm 1 2 4 8 16 32 64 128

RLS 35.2±5.2 23.8 ±7.9 13.5±6.0 8.6±4.3 5.3±1.5 4.1±4.5 3.0±4.2 2.5±4.9

ORICA 332±29 174±37 79.5±14.5 36.3±11.8 21.0±5.2 15.1±7.2 10.6±9.4 6.6±2.6

Run in MATLAB 2012a on a dual-core 2.50GHz Intel Core i5-3210M CPU with 8GB RAM.
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