
Real-time Data Acquisition and Maximum-Likelihood Estimation 
for Gamma Cameras

L.R. Furenlid [Member, IEEE],
Department of Radiology and the College of Optical Sciences, University of Arizona, Tucson, AZ 
85724 USA

J.Y. Hesterman, and
College of Optical Sciences, University of Arizona, Tucson, AZ 85724 USA

H.H. Barrett [Senior Member, IEEE]
Department of Radiology and the College of Optical Sciences, University of Arizona, Tucson, AZ 
85724 USA

L.R. Furenlid: furen@radiology.arizona.edu; J.Y. Hesterman: jyh@email.arizona.edu, author@lamar.colostate.edu; H.H. 
Barrett: barrctt@radiology.arizona.edu

Abstract

We have developed modular gamma-ray cameras for biomedical imaging that acquire data with a 

raw list-mode acquisition architecture. All observations associated with a gamma-ray event, such 

as photomultiplier (PMT) signals and time, are assembled into an event packet and added to an 

ordered list of event entries that comprise the acquired data. In this work we present the design of 

the data-acquisition system, and discuss algorithms for a specialized computing engine to reside in 

the data path between the front and back ends of each camera and carry out maximum-likelihood 

position and energy estimations in real time while data was being acquired..
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I. Introduction

We have developed and applied modular gamma-ray cameras that acquire data with a raw 

list-mode acquisition architecture. We divide the data acquisition task into a front-end that 

performs digital event detection and list-mode entry generation, and a back-end that buffers 

data. All observations associated with a gamma-ray event, such as photomultiplier (PMT) 

signals and time, are assembled into an event packet and added to an ordered list of event 

entries that comprise the acquired data. The raw observations are recorded with the full 

acquired precision in order that position and energy estimation algorithms of arbitrary 

complexity can be applied to the analysis of the original data. It is a particular benefit that 

carefully collected calibration data can be incorporated into the estimation process to 

account for minor manufacturing variations present in the cameras..
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The event processor is realized in FPGA firmware. The event-detection algorithm is fully 

pipelined with an algorithm diagrammed in Fig. 1. A continuous entering stream of nine 12-

bit data words every 30 nanoseconds are summed, analyzed for an event maximum by a 

combination threshold trigger and first-derivative zero-crossing detector, and packaged into 

an event packet in six stages driven by a 33 MHz clock. A pile-up rejector is implemented as 

a state-machine that holds a detected event long enough to ensure that no second trigger 

occurs within the support of the analog shaping amplifiers. Each processor digests 3.5 

gigabits of raw data per second.

Since our imaging systems typically have many cameras (16–24) operating in parallel [1], 

the post-acquisition computing required to perform maximum-likelihood position and 

energy estimation on an event by event basis is considerable. In this work we are 

investigating the design of a specialized computing engine that could reside in the data path 

between the front and back ends of each camera and perform the estimation computations in 

real time while data are being acquired. The result, an x and y position, can be concatenated 

onto the original data packet such that the original intent of information conservation is still 

accomplished.

II. Data Acquisition Hardware

A. Front-end Event Processors

The front end board is designed to be mounted in proximity to the modular gamma-ray 

camera it serves. The board is roughly divided as analog on the left side and digital on the 

right, with the A/D converters straddling the boundary. The analog filters are modular and 

mounted in 30-pin SIMM sockets to allow for easy exchange of filter function. The 

processor board with its array of analog amplifiers is shown in the photo of Fig. 2. A single 

FPGA forms the core of the list-mode engine.

Data transmission and control lines are connected to the back end with a single, standard 

cat-5 twisted-pair cable.

B. Back-end Buffers

The back-end board in Fig. 3 conforms to the 66 MHz 64-bit PCI form factor and utilizes a 

field programmable system chip (FPSC) that combines a general purpose gate array with an 

ASIC core dedicated to the implementation of the PCI interface. Substantial socketed buffer 

memory is provided on this board that permits the accumulation of lengthy lists of data 

before a transfer must be made to disk. Two channels of data are accommodated on each 

back-end buffer card. A kernel-level driver memory maps the data buffers and about a dozen 

control registers into the user’s virtual address space.

III. List-Mode Data

The advantages of List-mode data collection, the recording of the full set of observations 

associated with a data event as an entry in an ordered list, have been demonstrated in prior 

work [2–3]. In brief, statistical methods applied to estimate individual photon properties 

such as energy and position, or the fluence function, or even the tomographically 
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reconstructed source object always have access to the data observations at their full collected 

precision.

For the modular scintillation camera, the data comprises the peak amplitudes of the shaped 

PMT signals and the time when the event occurred, as shown in Fig. 4. Scans with 

collimated sources can be used to acquire calibration data.

IV. Position Estimation

The output signal at each PMT anode in a modular scintillation camera is proportional to 

number of primary photoelectrons produced at the photocathode. The number of primary 

photoelectrons generated obeys Poisson statistics, and the signals in different PMTs are 

independent [4]. Thus we can write the probability of generating a particular data vector 

from an event at a particular location in terms of the mean signals in each of the PMTs 

resulting from events at that location:

(1)

To invert a given data vector with maximum-likelihood estimation, we seek the location r 
that has the maximum probability of generating the observed data. If we work with log 

likelihood for convenience, the problem can be stated as

(2)

One method for rapid maximum likelihood estimation is to pre-compute an estimated 

position for every possible input vector, and use look-up tables that treat the vector as an 

address. However, when vectors get large, in this case 108 bits, this is not a feasible 

approach. It is instead necessary to carry out a search. We have found a convenient algorithm 

for carrying out ML position estimation that is suitable for implementation in a gate array 

pipeline that can be described as follows:

i. Zero pad the region around the detector to the nearest dimension that is a power of 

two

ii. Pre-compute both terms in equation 2 that depend only on calibration data and 

scale appropriately to permit use of integer multiplications and sums

iii. For i = 1 to 6 (for a 128 by 128 “pixel” detector)

a. Compute the log likelihood at 16 test locations defined as the centers of 16 

squares that cover the detector region under test

b. Select the location with the highest log likelihood as the center of the next 

iteration’s region of interest

c. Decrease the region of interest by a factor of 2 in both dimensions
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The operation of the algorithm is graphically illustrated in Fig. 5.

V. Discussion

A maximum-likelihood search with a Poisson model (eq. 1) is at first glance an unlikely 

candidate for realization as a pipelined function in a gate array. There is a need for 

exponentials, factorials, multiplications, divisions, and sums with floating point precision, 

and the search algorithm may take an unknown number of steps to converge. In the prior 

section we show, however, that restating the problem in terms of log likelihood and using 

look-up tables containing means and log means multiplied by scaling factors (65536 is 

adequate for the sample in Fig. 5) permits the computations to be carried out with a small 

number of integer multiplications and sums. The factorial term has no position dependence 

and can be ignored for position estimation, though it needs to be reintroduced in a post-

processing step for a final likelihood evaluation if likelihood thresholding is desired.

The search itself is carried out very efficiently by the suggested algorithm. There are several 

features that make the method very suitable for synthesis in a gate array. In each step, 

exactly sixteen trial locations need to be evaluated and they can be computed in parallel. For 

a given detector size, in units of pixels or resolvable elements, die search will require the 

same number of stages each time. Each stage is a natural pipeline step. The zero-padded 

perimeter is a key feature that allows the algorithm to work smoothly out to the edges of the 

detector without any special hard-to-synthesize conditional processing.

The algorithm has shown some robustness to noise in that even if the result of the first step 

of the iteration is not the point closest to the log likelihood map maximum, the region of 

interest shrinks slowly enough that the algorithm can recover and re-center in the correct 

area in time for the final iteration.

The algorithm is fast in software, and we are already employing it for near real-time viewing 

of projection data on an experimental SPECT imager with four cameras.

VI. Conclusion

The advantage of raw-signal list-mode acquisition is that there is no information loss or 

binning in the acquisition electronics. But raw signals don’t form images until they have 

been inverted into gamma-ray interaction location. Moving position estimation out of the 

acquisition computer and towards the camera will make it possible to immediately visualize 

projections for the purpose of making decisions about experimental parameters such as 

whether the tissue of interest is in the center of the field of view.

The maximum-likelihood (ML) search algorithm proposed is independent of the probability 

model, which in this case was Poisson, and may find application in other estimation 

problems where real-time processing is desirable. Therefore, the pipelined ML estimation 

engine we are designing in VHDL will have a general purpose structure that can be adapted 

to other instrumentation projects.
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Fig. 1. 
Block diagram representation of the operation of the modular gamma cameras list-mode 

data acquisition system. Signals from PMT anodes are shaped with analog filters, digitized 

with free-running ADCs, and then scanned for events by the event detection pipeline. 

Observations associated with events are assembled into data packets and transmitted via 

LVDS to back-end buffers.
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Fig. 2. 
Front-end list-mode event processor board with key features identified. Each processor may 

be driven by its own on-board clock, or accept an external distributed clock when 

synchronization with other acquisition boards is required.
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Fig. 3. 
Back-end list-mode event buffer with key features identified. Each board can support two 

modular cameras with completely parallel and independent data channels.
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Fig. 4. 
Contents of list-mode data buffer after acquisition with modular gamma camera.
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Fig. 5. 
Log-likelihood map (zero-pad region in blue; red is region of highest likelihood) and 

progress of the search algorithm through the six iteration stages for a sample data vector (1 

event). The algorithm is operating on real data from a real camera, but in integer-only 

software for demonstration purposes.
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