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Abstract

Introduction—Current tools for automated skull stripping, normalization, and segmentation of 

non-human primate (NHP) brain MRI studies typically demonstrate high failure rates. Many of 

these failures are due to a poor initial estimate for the affine component of the transformation. The 

purpose of this study is to introduce a multi-atlas approach to overcome these limitations and drive 

the failure rate to near zero.

Materials and Methods—A library of study-specific templates (SST) spanning three Old 

World primate species (Macaca fascicularis, M. mulatta, Chlorocebus aethiops) was created using 

a previously described unbiased automated approach. Several modifications were introduced to the 

methodology to improve initial affine estimation at the study-specific template level, and at the 

individual subject level. These involve performing multiple separate normalizations to a multi-

atlas library of templates and selecting the best performing template on the basis of a covariance 

similarity metric. This template was then used as an initialization for the affine component of 

subsequent skull stripping and normalization procedures. Normalization failure rate for SST 
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generation and individual-subject segmentation on a set of 150 NHP was evaluated on the basis of 

visual inspection.

Results—The previous automated template creation procedure results in excellent skull 

stripping, segmentation, and atlas labeling across species. Failure rate at the individual-subject 

level was approximately 1%, however at the SST generation level it was 17%. Using the new 

multi-atlas approach, failure rate was further reduced to zero for both SST generation and 

individual subject processing.

Conclusions—We describe a multi-atlas library registration approach for driving normalization 

failures in NHP to zero. It is straightforward to implement, and can have application to a wide 

variety of existing tools, as well as in difficult populations including neonates and the elderly. This 

approach is also an important step towards developing fully automated high-throughput processing 

pipelines that are critical for future high volume multi-center NHP imaging studies for studies of 

drug abuse and brain health.
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Non-human primate; segmentation; cynomolgus; vervet; rhesus; INIA19; voxel based 
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Introduction

Accurate normalization, segmentation, and skull-stripping in non-human primate (NHP) 

MRI scans are notoriously difficult challenges for automated algorithms. Human tools 

typically perform very poorly with NHP scans and require fine-tuning before they can be 

applied on primate data (McLaren et al. 2010; McLaren et al. 2009; Maldjian et al. 2014). 

The large differences in the extracranial musculature and skull morphology between humans 

and NHP, and between NHP species are a large part of the problem for these algorithms, 

which ultimately rely on intensity based similarities between an object and the target. The 

brain represents a relatively small portion of the information in these NHP images. This 

results in frequent normalization failures for these algorithms which rely on minimization of 

error and invariably target the bulky and quite variable extracranial NHP tissues. These 

failures are quite obvious on visual inspection. Existing NHP-specific tools also can 

demonstrate high failure rates, even for experienced users. Our own experience with several 

NHP-specific tools (Wang et al. 2014; Fedorov et al. 2011) has demonstrated failure rates as 

high as 50%.

We recently introduced a fully automated methodology for creation of NHP study-specific 

templates, label-atlases, and 6-class tissue probability maps to improve performance of 

automated skull stripping, segmentation, and normalization(Maldjian et al. 2014). This 

method utilizes an unbiased diffeomorphic population averaging technique to generate a 

study specific template (SST), and a diffeomorphic normalization approach for skull 

stripping on the basis of a target template mask (B. Avants and Gee 2004; B. B. Avants et al. 

2008). A study-specific 6-class segmentation tissue probability map (TPM) and label atlas is 

then created using the inverse transforms. For individual subjects, the initial skull stripping 

and affine transformation is estimated on the basis of a diffeomorphic registration to the 

Maldjian et al. Page 2

Neuroinformatics. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SST. Final skull stripping and segmentation is performed within VBM8 (http://

dbm.neuro.uni-jena.de/vbm.html) using the 6-class study-specific TPM. The VBM8 

technique uses an adaptive Maximum A Posterior technique without needing constant a 
priori information on tissue probabilities, resulting in excellent tissue class separation.

Our experience using this method in several hundred NHP normalizations and segmentations 

has demonstrated a marked improvement over existing NHP tools, with very low failure 

rates (Maldjian et al. 2014). While these may occur at the individual-subject level, a failure 

at the SST creation level can be especially problematic, as further processing of a cohort is 

halted until the SST can be created. When normalization errors occur for human studies, the 

common advice is to manually re-orient the object image, and attempt the normalization/

segmentation again. Invariably, this approach is successful at overcoming the problem as it 

provides a better initialization for the affine component of the transformation. Some of this 

can be alleviated by the use of standard scan orientation protocols. The failure of these 

normalization approaches is often due to a poor initial estimate of the affine transformation 

component of the registration procedure. While manual re-orientation is a viable solution, it 

is not practical in the context of developing fully automated robust registration procedures. 

For multimodal studies, header information is critical when coregistering or carrying 

transformations forward to functional MRI studies or diffusion tensor imaging (DTI) studies. 

Multiple series are often acquired with different voxel sizes, slice coverage, and plane of 

acquisition, in which image header information can be used to coregister between series and 

with the computed structural transformation. Altering this information in the structural 

image by manual re-orientation introduces additional software intervention, potential errors 

in data provenance, sources of potential bias, and serious liabilities for functional image 

analyses when not appropriately tracked. The purpose of this study is to describe a method 

for driving the NHP fully automated image normalization error rate to zero.

Materials and Methods

Overview of Procedures

A flow chart of the procedures is provided in Figure 1.The methodology uses a variety of 

strategies to target the affine normalization component of the registration procedure. The 

main strategy is to select the best initial affine transformation based on registrations to a 

library of SSTs and corresponding brain masks. The best performer is then used to generate 

a native space skull-stripped brain image. Note that the best performer may be an 

interspecies registration (e.g., rhesus target SST for a vervet object). The normalization of 

the skull-stripped brain to the appropriate skull-stripped template brain (e.g., vervet skull-

stripped object to vervet skull-stripped SST) can then proceed without difficulty. The use of 

interspecies templates is not a confounding variable, since the purpose is to create a native 

space skull stripping, without altering the morphology of the object scan. This identical 

strategy can be employed during the generation of a new SST, or when processing individual 

subjects against an SST. A variation of this strategy can be used during the initial creation of 

a new SST. In this step, an unbiased population template averaging procedure is used based 

on a list of native space subjects. The output is in the space of the initial subject in the list. 

Since the order of the subjects provided to the algorithm does not matter for generating an 

Maldjian et al. Page 3

Neuroinformatics. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dbm.neuro.uni-jena.de/vbm.html
http://dbm.neuro.uni-jena.de/vbm.html


unbiased template, the list can be re-ordered on the basis of which native space image 

provides the best performance in matching to the template. The template remains unbiased 

in that all subjects are used in generating the template, and no single subject is serving as the 

template or target. The output space for final orientation of the template is not considered a 

bias, although this can have an effect on subsequent normalization performance. The 

resulting affine transformation can additionally be used as an initialization for the final 

diffeomorphic registration procedure. Similarly, the affine transformation for each individual 

subject from the population template generation procedure can be used as an initialization 

for the final normalization/segmentation of the individual subject with the SST.

MRI scans

Previously acquired MRI scans of 150 monkeys including vervets (Chlorocebus aethiops), 

cynomolgus (Macaca fascicularis), and rhesus (Macaca mulatta) from the Wake Forest 

University Primate Center (Winston-Salem, NC) were used in this study. These scans were 

part of multiple ongoing studies funded by the National Institute on Alcohol Abuse and 

Alcoholism (NIAAA), National Institute on Drug Abuse (NIDA), and the National Heart, 

Lung and Blood Institute (NHLBI). Separate MRI cohorts for scanning included 30 vervets, 

16 cynomolgus, 6 rhesus, 41 cynomolgus, 42 cynomolgus, and 15 vervet monkeys. All 

procedures were conducted in compliance with State and Federal laws, standards of the US 

Department of Health and Human Services, and guidelines established by the Wake Forest 

University Health Sciences Institutional Animal Care and Use Committee as well as the 

National Institute of Health Guide for the Care and Use of Laboratory Animals (NIH 

Publications No. 80-23).

Imaging data was obtained under general anesthesia. Briefly, the animals were sedated with 

10-15 mg/kg ketamine and transported to the MRI Center where anesthesia was maintained 

via inhaled 1.5-3% isoflurane (Czoty and Nader 2015; Czoty et al. 2013; Czoty and Nader 

2012). The animals were artificially ventilated to control physiological parameters across 

animals. Expired C02, oxygen saturation, heart rate, respiratory rate, and isoflurane 

concentration were monitored using an anesthesia monitor and pulse oximeter. Body 

temperature was maintained using warm blankets. At the end of scanning, the isoflurane and 

ventilator were shut off and the animals breathed a mixture of oxygen and room air during 

recovery from anesthesia. Animals were then extubated, provided pipeline oxygen until they 

recovered to sit in an upright position, returned to their home cages, and monitored until 

they were fully alert.

Imaging was performed on either a 1.5T or a 3T GE scanner with a circularly-polarized, 

single channel dedicated RF coil with an internal diameter of 18.4 cm (Litzcage, Doty 

Scientific, Columbia, SC), using a 3D SPGR sequence (TI 600ms, TE 3.432ms, TR 8.16ms; 

flip angle 15°; matrix 256×256 matrix; FOV 12.8 cm; 0.5 mm isotropic resolution).

SST Library

A library of multiple SSTs was created using our previously described methods (Maldjian et 

al. 2014). One SST was created for each study cohort for which the imaging data was 

acquired. These included 1 rhesus SST (6 subjects), 2 vervet SST (30 subjects and 15 
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subjects), and 3 cynomolgus SST (16, 41, and 42 subjects) (Figure 2). Creation of each SST 

involves generation of an unbiased population average template from the existing study-

specific MRI scans, skull-stripping, tissue segmentation, and propagation of atlas labels. We 

make use of the INIA19 rhesus template to facilitate tissue segmentation and for propagation 

of the atlas labels, as it provides one of the most complete label segmentations currently 

available (Rohlfing et al. 2012). Additional label atlases can easily be incorporated. We have 

recently added the UNC subcortical and cortical label atlases (https://www.nitrc.org/

projects/primate_atlas/), as well as manual probabilistic atlases into the automated SST 

generation procedure. The final atlas labels are generated in rigidly aligned population 

template space to avoid introducing any morphologic differences in species. For the template 

creation and normalization procedures we use symmetric diffeomorphic registration. 

Symmetric diffeomorphic registration (SyN) captures both large deformations and small 

shape changes (B. B. Avants et al. 2008) and provides consistently high accuracy across 

subjects and label sets (Klein et al. 2009). For each SST, we also generate a 6-class TPM and 

a 6-level Dartel multi-resolution template for use with SPM and VBM8 (http://

dbm.neuro.uni-jena.de/vbm.html).

Population Average (subject-space strategy)

The population template is initially built using a diffeomorphic shape and intensity 

averaging technique (B. Avants and Gee 2004; B. B. Avants et al. 2008) constructed from all 

the subject scans for that cohort. The procedure accepts a list of native subjects to use in 

constructing the population average. The output space of the population average is in the 

space of the first subject on the list. In order to generate the SST, segmentation, and label 

maps, the population template is then registered to the INIA19 template. This step is a 

potential source of normalization error for the SST. We have adopted several strategies to 

eliminate normalization errors, and specifically, affine related errors, in generating this SST. 

The first strategy is at the level of choice of subject space for the initial population template. 

Each individual subject is registered to the INIA19 template, and the best performer is 

determined on the basis of an image similarity metric (Figure 3). In this study, we used the 

maximum of the pairwise image covariance, as implemented in the VBM8 toolbox 

(cg_check_cov) for the similarity metric. The input list to the population averaging 

procedure is then re-ordered with the best performer first. The output space of the unbiased 

population template is thus closer to that of that of the target template.

SST and TPM (multi-atlas library strategy)

The SST and corresponding TPM are created by registering the population template to the 

INIA19 Template and segmentation priors (Rohlfing et al. 2012). This is facilitated by a 

registration-based skull stripping, matching the population template to the INIA19 Template. 

This step is a critical potential area of normalization error from a poor affine estimate. This 

can be improved somewhat by using serial affine registrations as initializations, but this 

strategy alone is ineffective. We make use of our multi-atlas library of SSTs to facilitate 

accurate registration-based skull stripping. The population template is normalized to each 

SST using the diffeomorphic procedure and the best performer is selected on the basis of the 

pairwise image covariance similarity metric using the output masked and normalized skull-

stripped images. The inverse transformation is used to generate a native skull-stripped 
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population template. This native skull-stripped population template is used with the INIA 

skull-stripped image and priors to generate the final population SST, brain mask, TPM, and 

labels as previously described (Maldjian et al. 2014).

Individual Subjects

Each native space NHP undergoes an initial registration-based skull-stripping using the SST 

followed by an affine registration to the SST. The mask from the skull-stripping is dilated, 

and used as an initial estimate, with the final accurate skull stripping, normalization and 

tissue segmentation performed as part of the SPM8 new segment procedure as implemented 

in the VBM8 toolbox. The initial steps in this process are potential sources of registration 

error resulting in inadequate skull stripping, and poor affine registration, which are then 

propagated to the SPM8 procedure resulting in segmentation and normalization failure. The 

multi-atlas library of SSTs is used with each individual subject to facilitate the initial 

registration based skull-stripping. Images from individual subjects are normalized to each 

SST using the diffeomorphic procedure and the best performer is selected on the basis of the 

pairwise image similarity metric using the output masked and normalized skull-stripped 

images. The inverse transformation is used to generate a native skull-stripped individual 

image. This skull-stripped image is also used to generate the initial affine transformation to 

the actual SST. The skull-stripped mask is dilated and then carried forward with the affine 

transformation to SPM and VBM8 for the final segmentation, skull-stripping and 

normalization.

Subject Evaluation

The original automated SST-generation and subject segmentation procedure was performed 

in 150 subjects for generation of 6 SSTs and corresponding individual subject 

segmentations. This was then repeated using the multi-atlas framework. When evaluating a 

cohort with the multi-atlas approach, the SST for that cohort was excluded from the multi-

atlas library. Performance of each method was evaluated on the basis of visual assessment 

for accuracy of normalization, skull stripping, and segmentation. Evaluation was performed 

by a board certified neuroradiologist (JAM) with over 15 years of experience in the 

evaluation of image registration performance, clinical image interpretation, and 3 years of 

experience in the evaluation of NHP image segmentation and normalization algorithms. The 

failures for this evaluation were defined as obvious failures in image orientation and/or 

segmentation of grey matter, white matter, and CSF as shown in figure 4.

Results

Using the original SST approach, only 1 of the 6 SSTs demonstrated a normalization failure 

at the level of the SST generation. Figure 4 demonstrates the results of the SST creation 

procedure for the failed vervet cohort. Notably, this particular cohort was from a group of 15 

elderly vervets. The 15 individual subjects corresponding to this cohort were thus not 

included in the assessment of individual subject performance. The remaining 135 subjects 

for the other 5 SSTs demonstrated 1 segmentation/normalization failure. This provided a 

failure rate of 17% at the SST generation level, and approximately 1% at the individual 

subject level for the original method. Using the multi-atlas approach, there were no 
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normalization failures for SST generation, and no normalization/segmentation failures for 

individual subjects providing a failure rate of 0%. This included the 15 individual subjects 

that could not be processed with the original method. Figure 5 demonstrates the results of 

the automated multi-atlas labeling procedure for the previously failed vervet SST. Note that 

the optimum template selected from the multi-atlas library for this particular cohort was for 

an inter-species normalization using a cynomolgus SST. Excellent skull stripping, 

segmentation, and label mapping to a variety of atlases is demonstrated. The subsequent 

processing performance of the 15 individual vervets in this cohort using the corresponding 

vervet SST was similarly excellent.

Discussion

A great deal of research has been directed at improving normalization approaches for brain 

imaging studies. There are many normalization approaches currently available, and several 

large-scale evaluations of these approaches (Tustison et al. 2014; B. B. Avants et al. 2011; 

Klein et al. 2009). A topic which has recently garnered some attention is the performance of 

the initial affine component of these registration approaches (B. B. Avants et al. 2011). 

Image registration begins with a linear transformation followed by the nonlinear registration 

steps. The initial quality of the affine registration is in fact critical to the performance of the 

final deformable registration and accuracy of label mapping (B. B. Avants et al. 2011). 

Normalization failures, when not due to bad or corrupted image data, can typically be traced 

to a poor affine registration. This problem can be compounded for NHPs in which image 

similarity between object and template is often driven by the dominating non-interesting 

features of the image, specifically the skull and massive extracranial soft tissues. The 

approach we have previously described provides a marked improvement over existing tools 

in terms of normalization performance, as well as providing study-specific templates, an 

area which has been largely ignored for NHP studies. In order to obtain a quality 

normalization and segmentation, our method relies on a reasonably accurate skull stripping. 

However, in order to obtain an accurate skull-stripping, our approach relies on an accurate 

normalization. Our solution to this image-equivalent conundrum of the chicken and egg 

problem is to use multiple eggs of different varieties. Similar to human studies, the failure of 

these normalizations can be traced to a poor initial affine estimate. The multi-atlas library 

can effectively drive the normalization error rate to zero. There can be a great deal of 

variability in the size and shape of the extracranial structures in NHP. These driving image 

features can be problematic even for within-species normalization algorithms. For example, 

an elderly vervet head may have more similarity in terms of the extracranial soft tissues to a 

young cynomolgus, than to a middle-aged vervet. The multi-atlas library takes advantage of 

this variability by providing a range of templates to accomplish a clean initial skull-

stripping. Note that this approach does not introduce morphologic alterations into the 

normalization pipeline. The multi-atlas library is used strictly for the purpose of effecting a 

high quality image-based native-space skull stripping. Once the extracranial tissues have 

been cleanly removed, the existing normalization and segmentation algorithms perform very 

effectively using the skull-stripped brains. The failed vervet SST (acquired at 3T) provides a 

striking example of this approach. The automated normalization selected a cynomolgus 

template (acquired at 1.5 T) from the library to accomplish the skull-stripping. Examining 
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the representative images from the multi-atlas library in Figure 2 demonstrates this concept 

well. The third image from the left is the SST eventually created for this elderly vervet 

cohort. The last image in Figure 2 is an SST for another vervet cohort, but this is for a group 

of young vervets. Note the tremendous differences in the bulk of the extracranial soft tissues 

between these cohorts. The cynomolgus templates in the library provide more similarity to 

the elderly vervets for the normalization-based skull stripping algorithms to perform well. 

Also note that the multi-atlas approach allows the use of SSTs acquired at different field 

strengths.

The concept of a multi-atlas approach has recently gained traction for label mapping (Wu et 

al. 2015; Wang et al. 2014). Specifically, more accurate individual subject labeling can be 

achieved by mapping to multiple templates. A similar approach has recently been suggested 

for achieving segmentation as well as for skull stripping (Doshi et al. 2013). These 

approaches are designed to provide accurate segmentation on the basis of averaging the 

results of the labeling, or introducing a hierarchy and weighting of performance based on 

evaluation of a similarity metric. These approaches, however, do not address the problem of 

eliminating normalization errors altogether. A multi-atlas labeling approach can in fact be 

combined with the multi-atlas library to eliminate any affine-related registration errors in the 

labeling.

The approach outlined here is not limited to NHP. This can be useful in a variety of difficult 

normalization settings, such as in neonatal brains and in the elderly. Performing 

normalizations to a series of atlases in a library can add considerable time to the analysis of 

a subject. This can be minimized by reducing the number of nonlinear registration steps, and 

focusing on the affine component, which is typically fast, in order to quickly determine the 

best performer. A more accurate normalization can then be performed using the best 

performer. Alternatively, this approach can be reserved for use in normalization failures 

only, with automatic detection on the basis of a minimum similarity metric.

Limitations

The multi-atlas approach is designed to create an excellent native space skull stripping and 

thereby eliminate downstream affine registration and normalization failures. The quality of 

this skull-stripping was determined on the basis of visual assessment. This is a common 

method employed across image-based studies for quality control, and currently, is still the 

gold standard. Failed normalizations and segmentations are quite obvious on visual 

inspection and well-known to both human and NHP neuroimaging researchers (similar to 

Figure 4). Additionally, our use of the pairwise covariance similarity metric quantitatively 

demonstrates the superiority of the use of the multi-atlas library. Differences in the resulting 

segmentations on the basis of choice of multi-atlas template for the initial skull stripping 

were not assessed. Any differences introduced on the basis of an improved native-space 

skull stripping are likely to be similar to those in existing analysis data flows in which visual 

inspection and manual intervention is frequently used to edit the final skull stripping, or 

where the use of additional tuning parameters on an individual subject basis are employed to 

effect a better “clean-up” of extraneous tissues. The final skull stripping, normalization, and 

segmentation in our procedure uses the appropriate SST and is performed within VBM8. 
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The multi-atlas framework is used strictly for the native-space skull-stripping without 

introducing morphologic changes in the brain image data. While we have proposed 

additional steps for improving the affine registration (e.g. re-ordering the population 

template subject list), for the data in this study, use of the multi-atlas approach alone for the 

native space skull-stripping is sufficient to eliminate normalization failures. Although we 

have demonstrated a zero error rate for this method using our available data, the actual error 

rate is likely to be higher. This error rate can be further mitigated as more SSTs are 

incorporated into the multi-atlas library. Additionally, the several hundred individual skull-

stripped and normalized NHP can each serve as part of the library, effectively expanding the 

range of variation for improving the success of the normalization approach and further 

driving the error rate to zero.

Conclusion

We describe a novel multi-atlas library framework for eliminating normalization and 

segmentation errors in NHP brain imaging analyses. The multi-atlas library allows for a high 

quality native space skull-stripping and initial affine estimate across a variety of species, 

effectively removing the problem of extracranial tissue that adversely affects normalization 

and segmentation performance. This approach can have a tremendous impact on the 

performance of automated NHP image analysis tools that rely on accurate matching to a 

template. It is also an important advance towards developing fully automated high-

throughput processing pipelines that are critical for future high volume multi-center NHP 

imaging studies for studies of drug abuse and brain health.
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Fig. 1. 
Flow chart of methodology. Top row: Generation of population template uses best performer 

(cross-correlation metric) from individual normalizations to INIA19 template to reorder the 

input list of images. Unbiased population template is then created from all images in the list. 

Middle row: Generation of SST uses multi-atlas library to create skull-stripped template. 

This template can then be rigidly aligned to skull-stripped INIA19 template to generate SST 

and TPM. Note that SST atlas labels are generated using stacked diffeomorphic transform 

from INIA19 space to native population template space then to rigidly aligned SST space. 

Similar procedure is used to generate INIA19 priors in rigid-aligned SST space for 

segmentation and TPM generation. Bottom row: Individual subject normalization uses 

multi-atlas library to generate native space skull-stripped image. This image can then be 

normalized and segmented using the SST and corresponding TPM.
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Fig. 2. 
Multi-Atlas Library. Representative axial image (top) and skull-stripped image (bottom) 

from multi-atlas library including INIA template and 6 study-specific templates. From left to 

right: rhesus (Macaca mulatta) (INIA19), cynomolgus (M. fascicularis), vervet (Chlorocebus 
aethiops), cynomolgus, cynomolgus, rhesus, vervet.
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Fig. 3. 
Selection of Template Output Space based on cross-correlation metric. Representative 

coronal images from a series of individual subject normalizations in a cohort to the INIA 

template demonstrates the third subject (fourth from the left) to be the best performer. From 

left to right: INIA 19 template, then individual subjects. Cross correlation values were 0.54, 

0.57, 0.65, 0.55, 0.56, 0.53,0.59 and 0.6, respectively).
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Fig. 4. 
SST Failure. Example of a SST failure with poor normalization, skull-stripping and 

segmentation using the single atlas methodology. Left to right: normalized SST with skull, 

skull-stripped template, grey matter segmentation, white matter segmentation, and CSF 

segmentation.
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Fig. 5. 
SST Multi-Atlas Segmentation. Same vervet cohort as in Figure 4, processed using fully 

automated multi-atlas approach demonstrates excellent normalization, skull stripping, 

segmentation and label mapping. From left to right: SST with skull, skull-stripped template, 

grey matter segmentation, white matter segmentation, CSF segmentation, NeuroMap 

labeling, UNC subcortical labeling, UNC cortical atlas labeling, and WFU probabilistic atlas 

labeling.
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