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Abstract

Analysis of the neural code for sensory-motor latency in smooth pursuit eye movements reveals 

general principles of neural variation and the specific origin of motor latency. The trial-by-trial 

variation in neural latency in MT comprises: a shared component expressed as neuron-neuron 

latency correlations; and an independent component that is local to each neuron. The independent 

component arises heavily from fluctuations in the underlying probability of spiking with an 

unexpectedly small contribution from the stochastic nature of spiking itself. The shared component 

causes the latency of single neuron responses in MT to be weakly predictive of the behavioral 

latency of pursuit. Neural latency deeper in the motor system is more strongly predictive of 

behavioral latency. A model reproduces both the variance of behavioral latency and the neuron-

behavior latency correlations in MT if it includes realistic neural latency variation, neuron-neuron 

latency correlations in MT, and noisy gain control downstream from MT.
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Introduction

To create accurate movements, the nervous system must deal with the fact that neural 

responses vary from movement-to-movement and, within a single movement, from neuron-

to-neuron. Some of the neuron-to-neuron variation is noise and can be eliminated by pooling 

across groups of nominally identical neurons. But, some of the variation is correlated across 

neurons and is more challenging to eliminate, at least by simple averaging. The correlated, 

or shared, variation can propagate through a sensory motor circuit and drive movement-by-

movement variation in performance. Our goal is to understand the nature of motor variation, 

its representation in the nervous system, and how neuron-by-neuron variation is managed.

The system we study, smooth pursuit eye movements, offers a number of advantages that 

allow us to ask how neural circuits operate in the face of variation. The architecture of the 

neural circuit for pursuit is known (Figure 1). We can record and quantify the latency and 

amplitude of neural responses at many sites in the circuit. We already know from a thorough 

analysis of trial-by-trial variation in pursuit behavior (Osborne et al., 2005) and neural 

responses (Hohl et al., 2013; Lee and Lisberger, 2013) how pursuit speed and direction are 

controlled by the representations of target speed and direction in extrastriate area MT. In line 

with the general theory outlined in the prior paragraph, our analysis revealed two 

components of variation in the spike frequency of MT neurons. One component is shared, 

presumably results from common inputs to MT neurons, and propagates through the 

sensory-motor circuit to create movement-by-movement variation in pursuit direction and 

speed. A second component is independent in each neuron, has been presumed to arise from 

the stochastic nature of spiking, and can be eliminated by averaging across large populations 

of neurons.

Our goal in the present study was to use sensory-motor latency to understand better how 

variation is processed in the nervous system. Latency varies from trial-to-trial, and also 

depends on many features of a behavioral task, including the modality of the sensory input, 

the strength of a sensory stimulus, the contingencies of the behavioral task, and the level of 

attention to the stimulus. In vision, for example, brighter stimuli cause neural responses with 

shorter latencies as well as shorter behavioral reaction times (Lisberger and Westbrook, 

1985; Miles et al., 1986; Gawne et al., 1996; Warzecha and Egelhaaf, 2000; Bell et al., 2006; 

Lee et al., 2007; Sundberg et al., 2012). Also, auditory sensory neural responses have short 

latencies compared to visual sensory responses (Celesia and Puletti, 1971; Clark et al., 

1995), as do the motor responses to acoustic versus visual stimuli (Shelton and Kumar, 

2010).

Sensory latency defines motor latency to a large degree, but the simple relationships between 

stimulus and response may belie more complex and interesting internal neural processing. In 

some paradigms, for example, neural activity ramps to a threshold that appears to trigger a 

motor response (Hanes and Schall, 1996; Roitman and Shadlen, 2002). The rate of rise of 

the ramp, and therefore the behavioral reaction time, could vary from movement-to-

movement, perhaps as a function of the strength of the evidence favoring a given movement 

(Gold and Shadlen, 2002; Roitman and Shadlen, 2002), the magnitude of the expected 

reward (Hikosaka and Watanabe, 2000; Hollerman et al., 1998; Metzger et al., 2006; 
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Takikawa et al., 2002), or the subject’s level of attention (Herrington and Assad, 2009). Even 

for a simple visual-motor reflex, the ocular following response, latency can be explained by 

a model that integrates the sensory signal to a threshold, reaching the threshold sooner for 

stimuli of higher contrast (Miles et al., 1986). In pursuit eye movements, behavioral 

evidence suggests that latency variation represents sensory errors in estimating the time 

when the target started to move (Osborne et al., 2005). However, the behavioral evidence is 

mute on the form of the sensory variation. Does sensory latency vary in lock-step with motor 

latency? Or does integration of variable sensory amplitudes lead to ramps that reach 

threshold at varying times?

In the present paper, we measure the variation in the estimates of latency in area MT, as well 

as in downstream motor areas. In broad strokes, the resulting picture agrees with that for 

speed and direction. The code for latency contains shared variation that is expressed as 

neuron-neuron latency correlations. The shared variation in MT, when amplified by a noisy 

downstream gain control, is sufficient to account for the behavioral variation in latency. 

However, a surprise arises from analysis of the sources of independent variation in latency in 

MT. Much of the independent variation is present in the underlying probability of spiking, 

which we equate loosely with the integrated synaptic inputs to the neuron. An unexpectedly 

small amount of the independent variation could be attributed to the stochastic nature of 

spiking. We think that our analysis provides lessons for the processing of neural signals 

more generally.

Results

Our approach was to study the trial-by-trial relationship between the latency of smooth 

pursuit eye movements and the latency of neural responses in extrastriate area MT. Our data 

show that 40–70% of the trial-by-trial variation in behavioral latency can be attributed to 

correlated variation in the latency of responses to moving stimuli in MT; our modeling 

suggests potential sources of the remaining latency variation. In the course of analyzing and 

modeling our data, we also discovered a surprising feature of how noise is managed as 

signals pass through a neural circuit.

We have reanalyzed, for new purposes, previously published recordings of the electrical 

activity of single neurons and pairs of single neurons in extrastriate visual area MT (Lee and 

Lisberger, 2013), as well as single neurons in the floccular complex of the cerebellar cortex, 

and two groups of brainstem neurons (Joshua et al., 2013; Medina and Lisberger, 2007). 

During recordings, monkeys tracked a “step-ramp” of target position (Figure 2A) after 

Rashbass (1961). After a short reaction time of ~100 ms, monkeys initiate smooth eye 

movements in the direction of target motion. A target step customized for the ramp speed 

compensates for the latency of pursuit and allows monkeys to produce smooth eye 

movements without saccades, or with saccades delayed sufficiently beyond the initiation of 

pursuit to allow us to analyze saccade-free initiation of smooth pursuit. For each recording 

session, we presented many repetitions of the same small number of step-ramp target 

motions.
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Relationship between pursuit latency and neural latency

We first estimated the strength of the trial-by-trial relationship between neural and 

behavioral latency (gray traces in Figure 2A). We used an objective method to evaluate 

pursuit latency for each behavioral trial (see Methods), and sorted all trials for a given 

neuron into five groups (quintiles) according to pursuit latency. For each quintile, we used a 

similar objective method to estimate the latency and amplitude of the mean spike density 

function (see Methods). The example MT neuron analyzed in Figures 2B and C shows a 

clear progression of neural response latencies in relation to the 5 groups of behavioral 

response latencies. Regression analysis shows a strong and statistically significant 

relationship between neural and behavioral latency (Figure 2D, t-test, p < 0.05), and a much 

weaker relationship between neural response amplitude and behavioral latency (Figure 2E).

The strength of the relationship between neural and behavioral latency increases as the 

signals progress from MT to the final motor pathway (Figure 2F, Supplementary Figure 1A–

D). For each neuron, we computed the sensitivity of neural latency to behavioral latency as 

the slope of the regression line (Figure 2D). Sensitivity averaged 0.18 for neurons from area 

MT and increased to 0.77 for Purkinje cells in the cerebellar floccular complex. Sensitivity 

was approximately 1 for the last-order brainstem interneurons that receive monosynaptic 

inhibition from the floccular complex (FTNs) and for neurons in the Abducens nucleus. In 

contrast, we found no consistent relationship between neural response amplitude and pursuit 

latency in any of the 4 areas we studied (Figure 2G).

We conclude that neural latency rather than response amplitude determines behavioral 

latency. At least for the conditions we used, pursuit latency does not appear to be determined 

by a ramp-to-threshold mechanism. This conclusion is supported by the observation that 

mean pursuit latency tracks mean neural latency in MT almost perfectly when we change the 

form or contrast of the moving visual stimulus (J. Yang and S.G. Lisberger, unpublished 

observations).

Trial-by-trial correlation between pursuit latency and neural latency

The nervous system relies on single spike trains of many neurons to generate a motor 

response to a single presentation of a stimulus. To understand how a population of neurons 

encodes the latency of a behavioral response, we analyze the trial-by-trial variation in neural 

latencies, and its correlation i) among MT neurons and ii) between MT neurons and pursuit 

latency. Previously, the magnitude and sign of neuron-behavior amplitude correlations has 

been informative about the details of neural processing downstream from area MT (Hohl et 

al., 2013).

To estimate neuron-behavior latency correlations, we used the fact that the regression slope 

of z-scored data is equal to Pearson’s correlation coefficient (Rodgers and Nicewander, 

1988). We estimated neural and behavioral latency in each trial (see Methods), binned the 

trials for each neuron into 5 equal-sized quintiles ordered by response latency (Figure 3A), 

and plotted the z-scored neural versus behavioral latencies (Figure 3C, D). For z-scoring, we 

estimated the standard deviation of the latency of neural responses by plotting average 

latency in each of the quintiles as the x-values in a distribution (Figures 3B, blue symbols) 
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and fitting a Gaussian with the constraint that the x-value for each point was the mean of one 

of the quintiles of the Gaussian.

The example neuron illustrated in Figure 3 showed a trial-by-trial correlation of 0.55 

between neural and pursuit latency (Figure 3C), and a weaker correlation of 0.13 between 

neural response magnitude and pursuit latency (Figure 3D). We obtained very similar results 

when we analyzed data from single trials (gray symbols) instead of the averages for the 5 

quintiles (large black symbols), and when we binned the data according to neural latency 

instead of pursuit latency.

For the four populations of neurons we analyzed, the neuron-behavior latency correlations 

increased as signals passed through the pursuit circuit. Values averaged 0.15 in area MT, and 

increased to 0.37 in floccular Purkinje cells and about 0.6 in floccular target neurons (FTNs) 

and Abducens neurons (Figure 3E, see Supplementary Figure 1E–H for population 

histograms). In contrast, the trial-by-trial correlation between neural response magnitude and 

pursuit latency, obtained through a procedure analogous to the latency analysis, was very 

close to zero in all four areas (Figure 3F, Supplementary Figure 1I–L). This supports our 

conclusion that neural latency rather than response amplitude determines behavioral latency.

Validation of computational methods for estimating neural latency

Measurement of neural latencies from single trials is challenging, especially for cortical 

neurons with irregular spiking. To provide an independent test of the veracity of our 

methods, we created model neurons with artificial spike trains where we controlled the 

latency in each trial. Analysis of the model spike trains with the same procedures used for 

our real data confirmed that we were able to recover the latencies used to generate each 

model spike train.

For each run of the simulation we started with the mean probability of spiking from our 

population of MT neurons (Figure 4A) and jittered it in time with a standard deviation of 20 

ms to create 100 underlying probabilities of spiking with 100 different, known latencies. 

Then, we generated three spike trains (see Methods) for each trial using three different 

coefficients of variation (0.4, 0.7, and 1.0). We evaluated the latency of each model spike 

train and measured the correlation between estimates of latency and the known latency in 

each model trial. We did so either using data from individual trials, or by binning the trials 

into quintiles, as before.

Our analysis revealed strong but imperfect correlations between the latency of the 

underlying probability of spiking and the measured latency (Figure 4B). As expected, the 

stochastic nature of spiking introduces some independent variation in neural latency. Thus, 

the correlation between the latency of the underlying probability of spiking and the 

measured latency of the model spike trains decreased as the CV of the artificial spiking 

increased. The correlation was larger for the quintiled data, indicating that our analysis 

improved marginally the estimates of the actual latency. Of course, it is not possible to 

dissociate how much of the “independent” noise in this model comes from neuron’s spiking 

statistics (CV) and how much comes from measurement errors. However, we are reassured 

by the fact that the quintile analysis is able to recover 36% of the variance of the latency of 
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the underlying probability of spiking when the CV is 1, and much more when CV is 0.4 

(Figure 4B).

Several observations demonstrate that our measures of latency were not influenced by 

response amplitude. First, when we created model spike trains with fluctuations in both 

response latency and amplitude, measured latency was correlated only with actual latency 

and measured rate was correlated only with actual rate (Figure 4C, D). The response 

amplitudes of the model spike trains varied by a scale factor of standard deviation 0.4, and 

latencies had a standard deviation of 20 ms. Second, the sensitivity of behavioral latency to 

neural latency was unaffected by restricting the range of neural response amplitudes to ±0.4 

or ±0.8 standard deviations of the mean response amplitude for each neuron (Supplementary 

Figure 2A). Even though the neural latency varied systematically, the neural response 

amplitude was invariant across the quintiles for both the full data set and the analysis of 

trials with response amplitudes within 0.8 SD of the mean (Supplementary Figure 2B). 

Finally, if neural response amplitude had a systematic influence on our estimates of latency, 

then correlations between behavioral latency and neural response amplitude should have 

appeared in our data. They did not (Figures 2F, G).

Neuron-neuron latency correlations in MT

Correlated variation of neural responses within a population is an important factor in 

determining the magnitude of the variation of decoded population output (Zohary et al., 

1994; Huang and Lisberger, 2009; Moreno-Bote et al., 2014) as well as the neuron-behavior 

correlations (Shadlen et al., 1996; Lee and Lisberger, 2013). Indeed, without neuron-neuron 

correlations, averaging across the large number of neurons in MT should render behavioral 

variation very small and preclude neuron-behavior correlations (Schoppik et al., 2008). 

Therefore, our next step was to analyze neuron-neuron latency correlations for 40 pairs of 

MT neurons that met two criteria: i) >50 repetitions of a stimulus that evoked responses 

statistically higher than baseline firing rate in both neurons; and ii) mean response latencies 

of both neurons <100 ms.

Neuron-neuron latency correlations were present in many pairs of neurons. The simplest 

demonstration of this phenomenon comes from averaging the firing rate of one neuron in a 

pair within the quintiles defined by the single-trial neural latencies of the other neuron 

(Figure 5A–D). The average firing rates separate to a greater extent when ordered by each 

neuron itself (Figure 5A, B), but they still show a correlated progression when ordered by 

the latencies of the other neuron (Figure 5C, D). Analysis of the z-scored data reveals 

neuron-neuron latency correlations that were statistically significant (slopes different from 

zero, F-test, p<0.05) in Figures 5F and G for the analyses based on both the quintiles (large 

black symbols) and the individual trials (gray symbols). The neuron-neuron latency 

correlations tended to be positive across our whole sample of MT neurons (Figure 5E), and 

the mean correlation of ~0.1 was significantly different from zero (p<10−5, two-tailed t-test). 

Details of how we estimated neuron-neuron latency correlations appear in the Methods.
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Components of variation in neural latencies

Up to this point, we have considered the relationship between neural and behavioral latency, 

in effect analyzing a decoding question. Now, we turn to analysis of the encoding of latency 

by using a computational approach to understand the origin of the variation in latencies of 

the spike trains of MT neurons. We ask whether variation in what we will call the 

“underlying probability of spiking aligns with the shared component of variation in neural 

latency, while the stochastic nature of spike timing aligns with the independent component.

First, we estimated the variation in the latency of the underlying probability of spiking. We 

represented the underlying probability of spiking for each neuron as the average spike 

density function across 50–100 trials. We then simulated the underlying probability of 

spiking in individual trials by jittering the mean response in time according to a Gaussian 

distribution with a standard deviation of σprob. We created a model spike train for each 

jittered trace, constrained to have the same coefficient of variation of interspike intervals 

(CV) as the neuron being modeled. We estimated the neural latency of each simulated spike 

train, and calculated the standard deviation of latency, σspikes. We repeated the simulations 

using a range of values of σprob and established the relationship between σprob and σspikes for 

each neuron (Figure 6A). We then estimated the actual standard deviation of the latency of 

the underlying probability of spiking as the value σprob for the value of σspikes that matched 

our original analysis of the actual data.

The analysis in Figure 6 divides latency variation into two components that are due to the 

underlying probability of spiking (the inputs to a neuron?) and the stochastic timing of 

spikes in each trial. Almost all MT neurons showed non-zero values of the standard 

deviation of the latency of the underlying probability of spiking, and many showed standard 

deviations that were quite large (x-axis of Figure 6B). We take this as evidence that variation 

in the underlying probability of spiking is a major contributor to the variation in the latency 

of neural responses in MT. In Figure 6B, the vertical distance from each symbol to the line 

of slope 1 shows the surprisingly small contribution of the stochastic timing of spikes to 

variation in neural latency.

Next, we estimated the trial-by-trial MT-pursuit latency correlations between spiking 

probability and the eye velocity in the initiation of smooth pursuit. To do so, we used a 

relationship derived in the Methods:

(1)

Here, Rprob,eye and Rspikes,eye define the MT-pursuit latency correlations for the underlying 

probability of spiking and the actual spike trains, and σprob and σspikes were defined earlier. 

We can compute Rprob,eye because we measured Rspikes,eye and σspikes, and we can read the 

value of σprob off of graphs like Figure 6A.

The neuron-behavior latency correlation for the underlying probability of spiking averaged 

0.28 across our sample of neurons (Figure 6C, black bars), compared to an average 

correlation of 0.15 for the latency of spike trains (Figure 6C, gray bars). Thus, the latency of 
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the underlying probability of spiking of the average MT neuron explains ~8% of pursuit 

latency variation. This number seems large, considering the number of synapses between 

area MT and the final behavior and the number of neurons in area MT. However, we also 

note that the neuron-behavior latency correlation for the underlying probability of spiking 

would be 1 if all independent variation were attributed to the stochastic nature of spiking. 

We conclude that trial-by-trial variation in the underlying probability of firing is an 

important contributor to independent variation in neural latency in MT. Later, we will 

evaluate quantitatively how much of the latency variation might arise downstream from MT 

(Schoppik et al., 2008).

We estimated the neuron-neuron latency correlation for the underlying probability of spiking 

using the same computational approach described above. We created a computational model 

of each pair of neurons, created neuron-neuron correlation in the underlying probability of 

spiking, and laid down simulated spike trains for each trial in each neuron (see Methods). 

We analyzed the correlations between the model spike trains for many different values of 

correlation of the underlying probability of firing. The analysis created graphs of neuron-

neuron correlation for spike trains as a function of that for the underlying probability of 

spiking (e.g. Figure 6D). We fitted a regression line to the measurements, and used the line 

to estimate the neuron-neuron latency correlation for the underlying probability of spiking 

given that for the actual spike trains of the two neurons. We excluded 12 pairs of MT 

neurons where the regression analysis explained less than 40% of the variance in graphs like 

Figure 6D. Three pairs yielded estimates of latency correlation in the underlying probability 

of spiking that were slightly greater than 1: we set those values to one.

Neuron-neuron latency correlations in the underlying probability of spiking ranged from 

-0.5 to 1, as shown in the marginal histogram of Figure 6E. They averaged 0.29 and were 

about four times larger than the correlations for spike trains. Figure 6E suggests a structure 

in the neuron-neuron correlations, where pairs of neurons with more similar latencies had 

higher values of correlation. However, the small number of pairs in our sample made it 

impossible to specify an equation that would describe the structure, or to verify the statistical 

significance of the suggested structure.

It is noteworthy that the values of neuron-neuron latency correlation for the underlying 

probability of spiking are well below one for most pairs of neurons: therefore, there is 

considerable independent variation in the underlying probability of spiking. We conclude 

that the independent and shared components of neural latency variation do not map directly 

onto the variation caused by stochastic, irregular spike timing and shared inputs. Further, the 

low neuron-neuron latency correlations agree with our finding of relatively small neural-

behavior latency correlations for the underlying probability to spiking. They imply that low 

neuron-neuron latency correlations, rather than downstream noise, probably cause the low 

values of neuron-behavior latency correlation.

A sensory source for variation in pursuit latency?

The analyses we have completed so far enable a computational analysis to quantify how 

much of the variation in pursuit latency can arise from correlated variation in neural latency 

in MT. We simulated a population of 1000 spiking MT neurons that mimicked i) the neuron-

Lee et al. Page 8

Neuron. Author manuscript; available in PMC 2017 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neuron latency correlations between underlying probability of spiking, ii) the mean and 

variance of firing rate as a function of time, and iii) the latency variation and CV of our 

sample of MT neurons (see Methods). It was critical to know the distribution of neuron-

neuron correlations in underlying probability of spiking for this exercise (red curve in 

marginal histogram to Figure 6E), because there is no other way to create spike trains with 

correlated latencies other than starting from the underlying probability of firing. We ran the 

simulation 200 times to represent 200 trials of target motion. For each simulated trial, we 

used a linear decoder to pool the 1000 spike trains from the neurons in the population and 

create a population spike density function:

(2)

where Ė′(t) is the simulated eye velocity as a function of time, ai is the decoding weight for 

the ith model neuron, G denotes a Gaussian function with σ=10 ms, and S⃗i(t) is the spike 

train. We estimated behavioral latency on each simulated trial using Ė′(t) the same way we 

had for the pursuit data.

Decoding the model MT population response could account for up to 7 ms of the 10 ms 

standard deviation of the actual latency of pursuit reported by Osborne et al. (2005). The 

exact prediction depended on our assumptions about neuron-neuron latency correlations. 

The standard deviation of the predicted latency was close to zero when we set the neuron-

neuron latency correlations to the biologically unreasonable value of zero (Figure 6F, black 

filled diamond). The standard deviation of predicted latency increased to 7 ms as we 

increased the “delta-latency constant” of the structure in neuron-neuron latency correlations 

up to a value of 24 ms (the red curve in Figure 6E). The standard deviation of the predicted 

latency was 4 ms when we assumed a Gaussian distribution of otherwise unstructured 

neuron-neuron latency corrections across the MT population with a mean value equal to the 

mean of 0.29 in our data (Figure 6F, open circle). Doubling or halving the number of 

neurons in the simulation did not alter these conclusions.

The conclusions from Figure 6F depend to some degree on assumptions about how the MT 

population is decoded to drive eye velocity. Reasoned changes in the decoder’s weights 

could increase or decrease the predicted behavioral latency variation. For example, 

weighting each neuron in proportion to its neural latency variation or its mean neuron-

neuron latency correlation with its neighbors increased the predicted variation of behavior 

latency. Weightings in inverse proportion of those parameters decreased the predicted 

variation in behavioral latency. The magnitude of these effects was fairly small, but could be 

enhanced by widening the range of decoding weights. At an extreme, driving pursuit only 

with neurons that lack neuron-neuron latency correlations with their neighbors would create 

the situation where MT contributes nothing to the variation in behavioral latency. We will 

return to this issue in the Discussion, but for now we suggest that the correlated latency 

variation in MT probably accounts for 40–70%, but not all, of the variation in pursuit 

latency.
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Sensory latency variation and downstream multiplicative noise can account fully for the 
behavioral latency variation and neuron-behavior latency correlations

As a final step, we evaluated whether a source of variation downstream from MT could 

increase the variation in the pursuit latency predicted by our model. We needed to ask this 

question carefully. While downstream noise definitely would increase the predicted variation 

in pursuit latency, it would have the undesirable effect of reducing the magnitude of MT-

pursuit latency correlations (Schoppik et al., 2008). In Figure 7, we search for a form of 

downstream noise that i) amplifies the latency variation emerging from MT to predict a 

standard deviation of pursuit latency of 10 ms and ii) predicts MT-pursuit latency 

correlations of ~0.28 for the underlying probability of firing.

We start with the model MT population that assumed a Gaussian structure of neuron-neuron 

latency correlations with a mean of 0.29, and equal decoding weights for all model neurons. 

Recall that this model predicted a standard deviation of pursuit latency of 4 ms (Figure 6F). 

We then explored the effects of altering the decoded signals with different kinds of noise. As 

before, we ran the simulation 200 times to simulate 200 behavioral trials, computed the 

mean population spike density function as a template, and then estimated the latency for 

each trial by shifting and scaling the template.

We created downstream noise using Gaussian functions G(μ,σ), with mean and standard 

deviation equal to μ and σ. The full model allowed both parameters of G(μ,σ) to vary and 

defined the trajectory of pursuit as:

(3)

where P(t) is the pursuit output, η is a random variable drawn from the distribution G(μ,σ), 

MTi(t) is the time-varying spike density function of the ith model MT neuron and N=1000 
model MT neurons. We allowed μ to vary from 1 to 2.5 and σ to vary from 0 to 0.5 and ran 

the model for the full distribution of both parameters. We computed the standard deviation 

of the decoded latency and the mean model neuron-behavior latency correlations for each of 

the pairs of parameter values.

A model with multiplicative downstream noise accounted for all the statistics of our data. In 

Figures 7B and C, the gray scale indicates how much the performance of the model deviated 

from that of the actual data as a function of μ and σ. Darker colors show parameters that 

matched the data better. The red circles indicate a set of parameters that matched the 

standard deviation of latency and the MT-pursuit correlations: μ=1.4 and σ=0.22. These 

parameters implement a noisy downstream gain control (Figure 7D).

Other downstream noise models performed less well. When we constrained μ to be 1.0 so 

that the model implemented multiplicative noise without a gain adjustment, the parameters 

that reproduced the standard deviation of pursuit latency underestimated the measured 

values of MT-pursuit latency correlations (Figure 7D). The model failed in exactly the same 

way when we changed it to implement additive noise:
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(4)

We conclude that a specific model can reproduce the full statistics of pursuit latency, 

including its variation and the magnitude of MT-pursuit latency correlations. Latency 

variation would arise from correlated latency variation in MT and be amplified by a specific 

form of downstream noise. The downstream noise could be a second, independent source of 

variation in pursuit latency, or might be driven by the correlated variation in MT. In the latter 

scenario, the entire variation in pursuit latency would arise from MT.

Discussion

We have made two steps forward in understanding how a sensory code is created and 

converted into action. First, our analysis of neural responses at multiple levels of the pursuit 

circuit has provided the first complete account of the evolution of response latency through a 

sensory-motor circuit. Second, detailed analysis of the statistics of MT neuron responses has 

revealed potentially important new insights into neural codes for sensation and action. Our 

analysis suggests a change in the paradigm for understanding the origins of variation in 

neural responses and how that variation is (and is not) reduced through downstream 

decoding.

Pitfalls in measuring latency from spike trains

The challenges of estimating neural latency from noisy spike timing in single behavioral 

trials forced us to use approximations to estimate the trial-by-trial relationship between 

neural and behavioral latency. We partitioned the trials from a given neural recording session 

into 5 quintiles according to their latencies, and estimated the latency of each spike train 

iteratively using an objective, Bayesian approach. Comparison with the results of more 

standard data analysis approaches showed that our approach reduced the effects of 

measurement noise by 10–20%. Also, because our correlation analysis relies on computing a 

regression slope for z-scored data, it should be resilient against contamination by 

independent noise.

Our approach avoids the artifacts caused by tradeoffs between latency and magnitude. These 

would have contaminated our analysis if, for example, we had estimated response magnitude 

separately in fixed analysis windows (Lee et al., 2010). Other analysis methods have 

potential problems. The time when a neural response goes more than two standard 

deviations above the resting response depends on the rate of rise of the neural response. The 

time when the neural response reaches a fixed percentage of the peak response depends on 

the time and size of the peak. By scaling carefully-chosen templates and shifting them in 

time, we think we have obtained excellent estimates of the latency and amplitude of neural 

responses or eye velocity. Our approach measures latency independent of response 

amplitude, and it reproduces the known latency well in models of neural spike trains.
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Independent versus shared variation in neural responses

Prior analyses of the amplitude of neural responses and their effect on behavioral output 

have broken the trial-by-trial variation of neural responses into two components. A “shared” 

component seems to be controlled by inputs that are distributed widely to a population of 

sensory neurons. It may arise from top-down influences such as general cortical excitability 

or attention (Goris et al., 2014) or from variation that arises early in sensory processing 

(Chaisanguanthum et al., 2014). The shared component is expressed as trial-by-trial 

correlations in the responses of pairs of neurons to repetitions of a given sensory stimulus. 

The shared component of variation dominos through the system and plays a major role in 

determining the magnitude of behavioral variation. An “independent” component is different 

in different neurons and therefore can be averaged away and does not have an impact on 

behavioral variation. At least tacitly, the field seems to attribute the shared component of 

variation to fluctuations in the integrated synaptic drive to a neuron, which we call 

“underlying probability of spiking”, and the independent component to the stochastic nature 

of spiking (Chaisanguanthum et al., 2014; Goris et al., 2014).

Our analysis suggests that a somewhat different framework holds, at least for neural and 

behavioral latency. In particular, we show that independent variation is present in the 

underlying probability of spiking. It cannot be attributed entirely, or even largely, to noise 

added by irregular spiking. Computational approaches allowed us to estimate the neuron-

neuron and neuron-behavior latency correlations for the underlying probability of spiking, 

revealing values much lower than we would expect if the independent latency noise arose 

only from the stochastic nature of spiking. On average, the underlying probability of spiking 

for each MT neuron can explain only about 8% of pursuit latency variance. Similarly, 

neuron-neuron latency correlations for underlying spiking probabilities averaged only 0.29. 

If independent variation arose only from the stochastic nature of spiking, then we would 

expect higher values of correlation. The low value of neuron-neuron latency correlations for 

the underlying probability of spiking is particularly telling because it does not depend on 

assumptions about noise added downstream from MT.

The presence of independent latency variation in the underlying probability of spiking raises 

two questions: i) how does it get there, and ii) is this also true for the amplitude of firing 

rate? The latter question will have to be evaluated by future analyses. In regards to the 

former question, we suspect that limited convergence from processing stage to processing 

stage in the visual cortex is responsible for the appearance of independent variation in the 

underlying probability of spiking. Consider two extremes. If each MT neuron received its 

synaptic inputs from only one V1 neuron, then the independent variation of the V1 neuron 

would contribute substantial variation in the underlying probability of spiking. If each MT 

neuron received its synaptic inputs from many V1 neurons, then the independent variation in 

V1 spiking would average away, and we would not have found evidence for independent 

variation in the underlying probability of spiking. We suggest that the amount of 

convergence in the inputs to MT neurons is small enough so that independent variation is not 

averaged away. Alternatively, local cortical circuits could be responsible for the appearance 

of independent variation in the underlying probability of spiking.
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The origin of behavioral response latency

Our analysis shows that neural latency determines behavioral latency, at least in the system 

we study. Three features of neural signal processing probably contribute to the increase in 

neuron-behavior latency correlations as signals pass from MT to the cerebellum to the 

brainstem. First, the cerebellum and brainstem almost certainly are downstream from any 

additional noise sources, such as the noisy gain control we suggest, so the trial-by-trial 

relationship between neural and behavioral latency should be stronger (Schoppik et al., 

2008). Second, the independent noise contributed by the stochastic nature of spiking is 

considerably lower in the cerebellum compared to MT, and still lower in the brainstem 

oculomotor circuits (Ramachandran et al., 2006). Lower independent noise will lead to 

higher neuron-behavior latency correlations. Third, anatomical convergence may increase as 

signals pass into the motor system, reducing the amount of independent variation in the 

underlying probability of spiking and allowing neurons to signal the impending movement 

with higher fidelity.

Much of the current thinking about the creation of neural latencies is based on examples of 

integrating neural activity to a threshold. For example, Miles et al. (1986) explained the 

effect of stimulus contrast and temporal frequency on the latency of the ocular following 

response with a model that integrated different visual response amplitudes to create ramps to 

threshold at different rates. In complex tasks such as the countermanding task for saccades 

(Hanes and Schall, 1996), a gap saccade task (Dorris and Munoz, 1998), or a perceptual 

decision task (Roitman and Shadlen, 2002), neurons in the superior colliculus, and the 

parietal and frontal cortices show a ramp increase in neural activity prior to saccades. 

Saccades occur when the activity crosses a threshold. Our recordings do not fit with these 

formulations because we did not see any consistent relationship between neural response 

amplitudes and behavioral latencies. The regime used by pursuit could be different because 

our task minimizes cognitive influences and studies a highly reactive sensory-motor 

behavior.

Analysis of variation in pursuit behavior led to the hypothesis that sensory noise causes 

motor variation in pursuit (Osborne et al., 2005). Recordings from MT provided neural 

support for that hypothesis for pursuit direction and speed (Hohl et al., 2013; Lee and 

Lisberger, 2013). Until the present paper, however, the source of latency variation was a 

matter of speculation and the tools for measuring latency with the requisite precision did not 

exist. Now, we have shown that MT can account for 40–70% of the variation in pursuit 

latency. A noisy downstream gain element can account for the rest of the behavioral 

variation while remaining consistent with our data on neuron-neuron and neuron-behavior 

latency correlations. Previous studies have shown that FEFSEM is involved in gain 

modulation of pursuit amplitude (Tanaka and Lisberger, 2001), and could be the gain control 

area for sensory estimates target speed and direction (Lee et al., 2013; Yang et al., 2012); 

perhaps FEFSEM also provides a noisy gain control for pursuit latency. Further, the latency 

variation contributed by the noisy-gain control could be highly correlated with the latency 

variation in MT, in which case MT could be the sole contributor to pursuit latency variation. 

Or, latency variation may be independent in MT and FEFSEM, in which case each would 

contribute about equally.
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Our conclusions about the contribution of MT latencies to pursuit latency depend on the 

properties of the decoder that converts neural responses in MT into pursuit eye movements. 

We assume that pursuit latency arises as a side effect of pooling the population response in 

MT to estimate target direction and speed. Thus, we think of latency as an emergent property 

of a system that is designed to do something else, rather than as a parameter that the decoder 

is trying to optimize in any way. Our earlier papers imply that the decoder for pursuit is 

weighting each neuron according to its preferred speed and/or direction (Hohl et al., 2013). 

Thus, it seems unlikely that the decoder selects weights that would minimize the impact of 

MT latency variation on pursuit latency variation. Namely, we doubt that it weights neurons 

that lack neuron-neuron latency correlations with their neighbors more heavily. Thus, we 

think that the decoder used in our computational analysis probably is appropriate to simulate 

what actually happens in the nervous system.

Conclusions

Analysis of the neural code for behavioral latency has revealed that neural latency drives 

behavioral latency, at least in the reduced behavioral paradigms we use. The ramp-to-

threshold regime does not seem to apply to the initiation of pursuit eye movements. Analysis 

of the correlations among the latencies of neural spiking, the underlying probability of 

spiking, and pursuit behavior reveals that neuron-neuron correlations in a sensory area make 

a large contribution to trial-to-trial variation in behavioral latency. Further, independent 

variation appears to have a strong presence in the underlying probability of spiking, and the 

stochastic nature of spiking makes an unexpectedly small contribution. These findings are 

based on analysis of a simple cortical sensory-motor behavior, but they may generalize to 

many neural systems.

Methods

We mined previously published data from 6 monkeys. The methods for acquiring the data 

and the experimental design were described before (Joshua et al., 2013; Lee and Lisberger, 

2013; Medina and Lisberger, 2007). The data recorded during step-ramp pursuit behavior 

include 135 neurons recorded in extrastriate area MT, 40 Purkinje cells recorded in the 

floccular complex, 29 floccular target neurons recorded in the vestibular nucleus, and 40 

Abducens neurons.

To analyze neural data, we combined responses to identical stimuli by aligning the spike 

trains on the onset of stimulus motion and summing the spikes from all trials to create peri-

stimulus time histograms (PSTH). We measured neural response amplitudes after creating 

spike density functions by filtering PSTH’s with a Gaussian having a standard deviation of 

10 ms, and normalizing so that the spike density function had the units of spikes/s. We 

computed averages of eye velocity as a function of time on a millisecond time scale.

Estimation of pursuit latency and relationship to neural latency

We used an objective procedure to quantify pursuit latency and gain for each trial. We 

computed the average horizontal and vertical eye velocity across trials and used the averages 

from 20 ms before to 100 ms after the initiation of pursuit as templates. We shifted and 
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scaled the templates to obtain the best least-squares fit to the eye velocities from each 

individual trial. The free parameters of the fits were time shift (Δt), horizontal scale (Gh), 

and vertical scale (Gv) The best fitting value of Δt defined pursuit latency in each trial. We 

included a trial in our analysis only if the best-fitting adjustment of the template accounted 

for more than 90% of the variance of the actual eye velocities. We proceeded to further 

analysis only if 50 or more trials passed this screen.

We determined the slope of the relationship between neural latency and pursuit latency by 

dividing the trials into five equal-sized groups (quintiles) according to the latency of pursuit 

in each trial. We computed the mean eye velocity and the mean spike density function for 

each quintile of trials. Then, we created templates by averaging the eye velocity and spike 

density functions for all the trials in the interval from 20 ms before to 100 ms after the 

response onset. We found the five values of time shift (Δt) and neural scaling factor (G) that 

provided the best least-squares fit of the spike density template to the average spike density 

functions for each quintile. We performed the same analysis using the eye velocity template 

to fit each quintile’s average of eye velocity. The values of Δt and G for the spike density 

functions and the eye velocity averages defined the neural latency and response magnitude 

for each of the quintiles. They allowed us to compute the slopes of the relationships between 

pursuit latency and neural latency or response amplitude.

Calculation of neuron-behavior latency correlations

We estimated trial-by-trial correlations between neural latency and pursuit latency, by 

modifying a method from Bollimunta et al. (2007) to improve the estimates of neural latency 

through several iterations of Bayesian inference.

1. We created a spike density function for each individual trial by convolving each 

spike train with a Gaussian filter (σ = 10 ms), and we averaged across all trials to 

create a template.

2. We shifted and scaled the template to find the best fit, in the least-square sense, to 

the spike density function for each individual trial. This yielded a value of Δt and G 

for each trial, and defined latency and response gain.

3. We sorted the trials according to neural latency, created five equal-size groups 

(quintiles), and averaged across the spike density functions within each quintile to 

create five templates.

4. We made five new estimates of neural latency for each trial, one using each of the 5 

templates, and defined the trial’s neural latency according to the Δt for the template 

that provided the best fit.

5. We repeated the sorting, template creation, and latency estimation procedure (steps 

4–5) to further reduce estimation errors for neural latency.

6. We shifted and scaled the original template to estimate the latencies of the average 

spike density for each of the five final quintiles.
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7. We used the average latencies of the quintiles of trials to anchor each of the 

quintiles of a Gaussian function. The standard deviation of the best fitting Gaussian 

provided an estimate of the standard deviation of the measured neural latency.

The value of σ for the Gaussian derived in step 8 allows us to estimate neuron-behavior 

correlations for latency by taking advantage of the fact that Pearson’s correlation coefficient 

is equal to the regression slope of data that has been converted to z-scores (Rodgers and 

Nicewander, 1988).

(5)

where Z(x) is the z-score of x, and Lspikes and Leye are the latencies of the neural response 

and pursuit, respectively. We can rewrite Equation (5) in way that allows us to estimate R 
from our data:

(6)

where σ(Lx) is the standard deviation of Lx. We do the analysis with trials grouped 

according to either the pursuit latency or the neural latency as the independent variable. If 

we define βn−b and βb−n as the regression slopes when neural latency or pursuit latency are 

the independent variables, then algebraic manipulation of Equation (6) leads to:

(7)

We estimated the regression coefficient twice, using neural latency and pursuit latency as the 

independent variables for grouping trials. In principal, the two estimates should be the same. 

In practice, they are close with each other, but not identical. We use their geometric average 

as an estimate of the trial-by-trial correlation between given neuron’s latency and pursuit 

latency (Rodgers and Nicewander, 1988):

(8)

We used an analogous procedure to estimate the correlation between the latencies of 

responses of 40 pairs of simultaneously recorded neurons, estimating the latency of the 

responses of each neuron, rather than of one neuron’s neural responses and pursuit.

Underlying probability of spiking

We derived a relationship that allows us to estimate the latency correlation between 

underlying spiking probability and pursuit from parameters that we can measure. Variation 

in neural latency has two components: one in the underlying probability of spiking and one 

in stochastic nature of spike timing. The latter will be independent across neurons, while the 

former may have a component that is shared across neurons. We define these two 

components of variation as:
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(9)

where Lspikes, Lprob, and Lind are the neural latencies of spike trains, the underlying 

probability of spiking, and the stochastic nature of spike timing. We define the MT-pursuit 

latency correlation we measure from spikes as:

(10)

We can simplify Equation (10) because Lind is independent from Leye:

(11)

(12)

Finally, we can rewrite the right side of Equation (12) as:

(13)

Equation (13) estimates the MT-pursuit correlation for the underlying probability of spiking 

from the values of parameters we can measure. Next steps appear at the relevant site in the 

Results.

Computer simulations

Our computer simulations created model MT neurons with realistic statistics based on our 

data. We used the time-varying mean spike density function of our population of MT 

neurons, or of individual neurons, to define the underlying probability of spiking. For 

simulations of large populations, we defined each model neuron’s mean latency by drawing 

from the distribution of latencies in our data. We also drew the standard deviation of latency 

for each neuron’s firing probability from a Gamma distribution fitted to the distribution of 

latency variation for the underlying probability of spiking in our data:

(14)

where σ(Lp) is the standard deviation of neuron p’s firing probability latency, kσ = 0.73 is 

the shape parameter of the gamma distribution, and θσ = 12.3 is the scale parameter. We then 

created 100 or 200 simulated trials for each neuron by drawing a latency from Gaussian 

distributions having the standard deviation assigned to each neuron by Equation (14) and 

shifting the underlying probability of spiking in time by that amount. We created different 
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structures of neuron-neuron correlations by varying the correlation matrix used in a 

Cholesky decomposition:

1. To create model populations that lacked neuron-neuron latency correlations, we 

used a matrix with all entries as zeros.

2. To create model populations with uniform neuron-neuron latency correlations that 

matched the mean and standard deviation in our data, we used a matrix with entries 

chosen randomly from a Gaussian distribution with a mean of 0.29 and standard 

deviation of 0.24.

3. To create model populations with structured neuron-neuron correlations that 

depended on the difference in latency between the two neurons of a pair, we 

defined entries in the matrix according to the exponential:

(15)

where ri,j is the correlation between neuron i and j, Li and Lj are the mean neural latencies of 

neurons i and j, rmax is the maximum size of the correlations, and τ is the “delta-latency” 

constant of the exponential function. Based on our data, we set rmax to be one.

At this point, we had defined the latency, amplitude, and trajectory of the underlying 

probability of firing either for 100 trials of a single model neuron, or for 200 trials of 1,000 

model neurons. We modeled the spike timing for each trial as a renewal gamma process 

whose parameters for the inter-spike interval distribution were selected to match the 

coefficient of variation (CV) of a given neuron. Then, using the underlying probability of 

spiking estimated from the given neuron as the rate function, we made spike trains by 

rescaling the time of the gamma process with a given time-dependent trajectory of the 

underlying probability of spiking (Brown et al., 2002; Koyama and Shinomoto, 2005). The 

final step in the creation of model neural responses was to measure the CV of the model 

spike trains and compute the time-varying mean spike density function exactly as we had in 

our analysis of the actual data, to verify that our model neurons reproduced the statistics of 

the actual data.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Neural circuit for smooth pursuit eye movement
Areas marked by gray shading indicate the sites where we recorded neural responses. 

Abbreviations are: V1, primary visual cortex; LGN, lateral geniculate nucleus, MT, middle 

temporal visual area; MST, medial superior temporal visual area; FEF, smooth eye 

movement region of the frontal eye fields.
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Figure 2. Sensitivity of pursuit latency to neural latency and response magnitude at 4 levels of 
the pursuit circuit
A. Neural responses during step-ramp target motion. From top to bottom, the traces show 

firing rate, eye and target position, and eye and target velocity. Black, red, and gray traces 

show target motion, mean responses, and trial-by-trial variation for a single recording 

session. B, C: Average spike density functions (B) and eye speed trajectories (C) for an 

example MT neuron. The five traces show averages for 5 quintiles of trials divided according 

to pursuit latency. Colors identify the data from the same groups in the eye velocity and 

firing rate traces. D, E: Regression analysis of neural latency (D) and response amplitude (E) 

versus pursuit latency. Symbols show averages for the 5 quintiles of trials sorted by latency, 

and lines show the results of linear regression. F, G: Mean and standard deviation of pursuit 

latency’s sensitivity to neural latency (F) and response amplitude (G) in 4 recording sites: 

n=135, 40, 29, and 40 for recordings in MT, floccular complex, FTNs, and Abducens 

neurons.
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Figure 3. Neuron-behavior correlations for neural response latency or amplitude
A: Colored solid lines show the scaled and translated templates that provided the best fits to 

the dashed gray lines, which show averages of the five quintiles of responses with different 

pursuit latencies. B: Curve shows the Gaussian estimates of the distribution of latency for 

the neuron and blue symbols show the data used to derive the curve. C, D: Scatter plots one 

neuron showing z-scores of neural latency (C) and response amplitude (D) versus z-scores 

of pursuit latency. Gray and black symbols show estimates for all individual trials and 

averages for each of the 5 quintiles. Lines show the results of regression analysis. E, F: 

Population neuron-behavior correlations at each recording site for neural latency (E) and 

neural response amplitude (F). Error bars are standard deviations across neurons.
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Figure 4. Procedure for evaluating accuracy of neural latency estimates
A: schematic showing how we simulated spike trains from by the underlying probability of 

firing. The rasters show simulations of 100 trials for 3 coefficients of variation (CV). B: 

Comparison of analysis done on single trials versus on trials divided into quintiles. C, D: 

Analysis of how well the analysis procedure could separate variation in latency versus 

amplitude of the underlying probability of firing. The y-axes plot the correlation between the 

actual latency (C) or the underlying probability of firing (D) with the latency or rate 

measured from the spike trains. Error bars are standard deviations from 100 repeats.
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Figure 5. Neuron-neuron correlation for latency in area MT
A, B: Quintiles of spike density functions of the quintiles of two neurons recorded at the 

same time. C, D: Spike density functions of the same neurons, sorted according to neural 

response latency of the other neuron in the pair. In A–D, the colors and dashed gray traces 

show the scaled and translated templates and the averages of spike density. E: Distribution 

of neuron-neuron latency correlations in MT. F, G: Scatter plots showing the z-score of the 

latency of one neuron as a function of the z-score of the latency of the other neuron in the 

pair. Gray and black symbols show data for single trials and averages across the 5 quintiles. 
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Lines show the result of linear regression. The two graphs plot analysis of a single data set 

performed separately on the basis of the latency of each neuron.
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Figure 6. Effect of neuron-neuron latency correlations on the variation of behavioral latency
A: Relationship between the standard deviation of latency for simulated spikes and the 

underlying probability of spiking in a model MT neuron. B: Symbols show the relationship 

between standard deviation of latency measured from actual spike trains and for the 

underlying probability of spiking for a sample of MT neurons. Dashed line shows equality 

line. C: Distribution of MT-pursuit latency correlations. Black and gray histograms show 

values for actual spike trains and for the underlying probability of spiking. Vertical dashed 

lines show the population means. D: Relationship between the neuron-neuron latency 

correlation for simulated spikes and the underlying probability of spiking in a pair of model 

MT neurons. E: Each symbol shows neuron-neuron correlations in the underlying 

probability of spiking for a pair of neurons as a function of the latency difference between 

the two neurons. The gray and red exponential functions show potential descriptions of the 

data with different “delta-latency” constants. The marginal histogram summarizes the 

distribution of neuron-neuron latency correlations in the underlying probability of spiking. 

The red curve shows a Gaussian fit used to create model populations. F: Latency variation of 

pursuit under different assumptions about neuron-neuron latency correlations in a model 

population response. Filled diamond, neuron-neuron latency correlations were absent; gray 

symbols, structured correlations with different “delta-latency” time constants; open symbol, 

uniform neuron-neuron latency correlations with the same mean value as the data.
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Figure 7. Model that uses downstream noise to account for statistics of pursuit latency
A: Schematic diagram of a model that uses a realistic model MT population response, an 

averaging population decoder, and noisy gain downstream from decoding. B, C: Gray scale 

representation of the difference between simulated and actual MT-pursuit correlations (B) 

and latency standard deviation (C) as a function of the value of downstream gain (y-axis) 

and the value of the downstream noise SD (x-axis). Red circles show the parameters that 

provide the best prediction of the actual data for both parameters. D: Comparisons among 

models. Error bars are standard deviations obtained from running each simulation 100 times.
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