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SUMMARY

Loss of maternal UBE3A causes Angelman syndrome (AS), a neurodevelopmental disorder 

associated with severe epilepsy. We previously implicated GABAergic deficits onto layer (L) 2/3 

pyramidal neurons in the pathogenesis of neocortical hyperexcitability, and perhaps epilepsy, in 

AS model mice. Here we investigate consequences of selective Ube3a loss from either GABAergic 

or glutamatergic neurons, focusing on the development of hyperexcitability within L2/3 neocortex 

and in broader circuit and behavioral contexts. We find that GABAergic Ube3a loss causes AS-like 
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increases in neocortical EEG delta power, enhances seizure susceptibility, and leads to presynaptic 

accumulation of clathrin-coated vesicles (CCVs) – all without decreasing GABAergic inhibition 

onto L2/3 pyramidal neurons. Conversely, glutamatergic Ube3a loss fails to yield EEG 

abnormalities, seizures, or associated CCV phenotypes, despite impairing tonic inhibition onto 

L2/3 pyramidal neurons. These results substantiate GABAergic Ube3a loss as the principal cause 

of circuit hyperexcitability in AS mice, lending insight into ictogenic mechanisms in AS.

INTRODUCTION

Angelman syndrome (AS) is a debilitating neurodevelopmental disorder defined by severe 

developmental delay, movement disorders, profound speech impairment, and highly 

penetrant electroencephalographic (EEG) abnormalities and seizures (Williams et al., 2006; 

Thibert et al., 2013). The frequency, severity, and intractability of the seizures exact a heavy 

toll on the quality of life of individuals with AS and their caregivers (Thibert et al., 2013). 

Loss of function of the maternal UBE3A allele causes AS (Kishino et al., 1997; Matsuura et 

al., 1997; Sutcliffe et al., 1997). UBE3A encodes an E3 ubiquitin ligase, which catalyzes the 

transfer of ubiquitin to substrate proteins, thereby targeting them for proteasomal 

degradation or otherwise altering their localization or function (Rotin and Kumar, 2009; 

Mabb and Ehlers, 2010; Mabb et al., 2011). Because mutations that selectively inhibit 

UBE3A ligase activity are sufficient to cause AS, improper ubiquitin substrate regulation 

likely contributes to the pathogenesis of the disorder (Cooper et al., 2004). Unlike other 

cells, neurons express UBE3A exclusively from the maternal allele due to evolutionary 

conserved, cell type-specific epigenetic mechanisms that silence the paternal UBE3A allele 

(Rougeulle et al., 1997; Yamasaki et al., 2003; Judson et al., 2014). Accordingly, neurons are 

especially vulnerable to loss of maternal UBE3A.

Previously, we utilized a maternal Ube3a null (Ube3am−/p+) mouse model of AS (Jiang et 

al., 1998) to explore the neural basis of hyperexcitability phenotypes in the disorder. We 

discovered that severe reduction of inhibitory GABAergic input to layer (L) 2/3 pyramidal 

neurons outweighs corresponding losses of excitatory glutamatergic input, possibly 

contributing to neocortical hyperexcitability. Recovery of inhibitory synaptic transmission 

following high-frequency stimulation is severely compromised and is associated with 

accumulations of clathrin-coated vesicles (CCVs) at GABAergic presynaptic terminals onto 

L2/3 pyramidal neurons (Wallace et al., 2012). Maternal Ube3a deficiency may thus disrupt 

presynaptic vesicle cycling in GABAergic neurons, possibly through the dysregulation of 

UBE3A substrates that directly or indirectly compromise clathrin-mediated endocytosis. 

Conversely, it is possible that loss of maternal Ube3a expression in glutamatergic neurons 

compromises the postsynaptic effects of GABA on L2/3 pyramidal neurons, thereby 

contributing to hyperexcitability within the microcircuit and throughout the brain. In support 

of this latter possibility, modulation of expression or activity levels of ARC or the calcium/

calmodulin-dependent kinase type II-α subunit (CaMKII-α) - both of which are 

preferentially expressed by glutamatergic forebrain neurons - has been shown to rescue 

circuit hyperexcitability and seizures in Ube3am−/p+ mice (van Woerden et al., 2007; 

Mandel-Brehm et al., 2015). Thus, an immediate goal is to determine whether maternal 

Ube3a loss restricted to either GABAergic or glutamatergic neurons is sufficient to impair 
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GABAergic inhibition onto L2/3 pyramidal neurons, thereby leading to broader circuit-level 

and behavioral manifestations of hyperexcitability.

Here we utilize novel conditional Ube3a mouse models to identify the neurons and neural 

circuits underlying the pathogenesis of circuit hyperexcitability in AS. We focus on selective 

Ube3a loss from GABAergic or glutamatergic neurons, which are largely responsible for 

orchestrating the balance between excitation and inhibition in cerebral circuits. Our results 

provide compelling evidence that GABAergic, but not glutamatergic, Ube3a loss is 

responsible for mediating the EEG abnormalities and seizures that affect individuals with 

AS.

RESULTS

GABAergic Ube3a Loss Does Not Impair GABAergic Neurotransmission onto L2/3 
Pyramidal Neurons

To enable genetic dissection of neuron type-specific contributions to circuit hyperexcitability 

in AS, we generated a novel mouse with maternal inheritance of a floxed Ube3a allele 

(Ube3aFLOX/p+) (Figure S1). We first crossed Ube3aFLOX/p+ mice to a Gad2-Cre line in 

which Cre is expressed by almost all inhibitory GABAergic neurons throughout the brain 

(Taniguchi et al., 2011). We immunohistochemically confirmed loss of UBE3A expression 

by GABAergic interneurons in adult Ube3aFLOX/p+::Gad2-Cre mice, including parvalbumin-

expressing subtypes in primary visual cortex (V1) (Figure 1A2). The density of these 

interneuron subtypes in V1 was normal (Figure S2A), indicating that GABAergic Ube3a 
loss does not grossly disrupt GABAergic neuronal architecture in the neocortex. Moreover, 

GABAergic Ube3a loss in Ube3aFLOX/p+::Gad2-Cre mice proved to be selective, as UBE3A 

co-staining with the L2–4 glutamatergic neuron marker, Cux1 (Nieto et al., 2004), was intact 

(Figure 1A1 and 1A2).

We then sought to determine if GABAergic neuron-specific loss of maternal Ube3a is 

sufficient to alter synaptic drive onto L2/3 pyramidal neurons, testing Ube3aFLOX/p+::Gad2-
Cre mice for the same spectrum of synaptic defects that we had previously observed in V1 

of AS model mice (Ube3am−/p+) (Wallace et al., 2012). As expected, we found no difference 

in mEPSC amplitude or frequency onto L2/3 pyramidal neurons in Ube3aFLOX/p+::Gad2-Cre 
compared to Control mice (Figure S2B). We also observed normal mIPSC amplitude and 

frequency in Ube3aFLOX/p+::Gad2-Cre mice (Figure 1C), indicating that spontaneous 

GABAergic synaptic transmission remains intact following GABAergic neuron-specific loss 

of maternal Ube3a. This was unexpected, in view of previous evidence that decreased 

mIPSC frequency is a core GABAergic synaptic defect onto L2/3 pyramidal neurons in 

Ube3am−/p+ mice (Table 1; Wallace et al., 2012).

We were even more surprised to find that GABAergic Ube3a loss yields neither of two core 

deficits in electrically-evoked inhibition observed in Ube3am−/p+ mice: decreased evoked 

inhibitory postsynaptic current (eIPSC) amplitude or blunted recovery of GABAergic 

synaptic responses following high-frequency stimulation (Table 1). By stimulating (150 µm 

inferior to the recorded neuron) at a range of intensities, we revealed that eIPSC response 

amplitudes in Ube3aFLOX/p+::Gad2-Cre mice are equivalent to Control (Figure 1D), 
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indicating that the strength of GABAergic inputs onto L2/3 pyramidal neurons develops 

normally following GABAergic Ube3a loss. To test the recovery of GABAergic synaptic 

transmission following high-frequency stimulation, we applied a train of 800 stimuli at 30 

Hz to deplete reserves of GABAergic vesicles, followed immediately by 0.33 Hz stimulation 

to allow for recovery (Figure 1E1). We recorded eIPSC amplitudes from L2/3 pyramidal 

neurons during both phases of this experiment, to gauge rates of GABAergic synaptic 

depletion and recovery. Depletion of eIPSC amplitude in Ube3aFLOX/p+::Gad2-Cre mice was 

equivalent to Control (Figure 1E2), as was recovery (Figure 1E3). Although eIPSC paired-

pulse ratio in Ube3aFLOX/p+::Gad2-Cre mice was subtly decreased when stimulating with a 

100 ms inter-stimulus interval (ISI), eIPSC paired-pulse with 33 ms ISI was normal (Figure 

S2C). Thus, short-term plasticity at this synapse is largely intact following GABAergic 

Ube3a loss, particularly in response to the stimulation frequency we used to deplete 

GABAergic synapses (Figure 1E2).

Importantly, nervous system-wide deletion of Ube3aFLOX/p+ (Ube3aFLOX/p+::Nestin-Cre) 

produced a loss of Ube3a expression that was indistinguishable from Ube3a loss in 

Ube3am−/p+ mice (Figure S3); moreover, Ube3aFLOX/p+::Nestin-Cre mice closely 

phenocopied L2/3 GABAergic synaptic defects in Ube3am−/p+ mice (Table 1 and Figure S4). 

Ube3aFLOX thus appears to be a viable conditional null allele, supporting the lack of 

phenotypic penetrance in Ube3aFLOX/p+::Gad2-Cre mice as a genuine finding, rather than an 

artifact of residual Ube3a function following Gad2-Cre-mediated deletion. Collectively, 

these observations indicate that GABAergic Ube3a loss does not severely impair 

GABAergic synaptic drive onto L2/3 pyramidal neurons as results from Ube3a loss in all 

neurons (Table 1).

Glutamatergic Ube3a Loss Impairs Electrically Evoked and Tonic GABAergic Inhibition 
onto L2/3 Pyramidal Neurons

To model glutamatergic Ube3a loss in a manner truly reciprocal to GABAergic Ube3a loss 

in Ube3aFLOX/p+::Gad2-Cre mice, we crossed conditional Ube3a reinstatement mice 

(Ube3aSTOP/p+) to the same Gad2-Cre line. Ube3aSTOP/p+ mice constitute a conditional AS 

model in which expression of the maternal Ube3a allele is interrupted by targeted insertion 

of a floxed STOP cassette. Cre-mediated excision of the STOP cassette fully reinstates 

neuronal UBE3A expression in Ube3aSTOP/p+ mice (Silva-Santos et al., 2015). Hence, when 

we crossed Ube3aSTOP/p+ mice to Gad2-Cre mice (Ube3aSTOP/p+::Gad2-Cre), we observed 

UBE3A reinstatement that was specific to GABAergic interneurons in the neocortex, leaving 

neighboring Cux1-expressing glutamatergic neurons devoid of UBE3A expression in L2/3 

neocortex (Figure 2A). Thus, Ube3aSTOP/p+::Gad2-Cre mice are an appropriate model of 

glutamatergic Ube3a loss.

To evaluate whether glutamatergic Ube3a loss in Ube3aSTOP/p+::Gad2-Cre mice could 

impair GABAergic synaptic drive onto L2/3 pyramidal neurons, we first needed to 

determine the extent to which Ube3aSTOP/p+ mice recapitulated key GABAergic synaptic 

defects. We found that Ube3aSTOP/p+ mice closely phenocopied Ube3am−/p+ and 

Ube3aFLOX/p+::Nestin-Cre mice with respect to reduced eIPSC amplitude (Figure 2C) and 

blunted recovery from inhibitory synaptic depletion (Figure 2D). However, Ube3aSTOP/p+ 
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mice failed to exhibit mIPSC amplitude or frequency deficits despite our experimentation 

with near-physiological as well as increased intracellular chloride levels (Figure S5B and 

S5C). It is possible that Ube3aSTOP allele readthrough provided enough Ube3a expression, 

albeit very low (Silva-Santos et al., 2015), to selectively mitigate penetrance of the mIPSC 

deficit. Regardless of the underlying reason for this result, we were limited to evaluating 

only eIPSC amplitude and GABAergic synaptic recovery in Ube3aSTOP/p+::Gad2-Cre mice.

Ube3aSTOP/p+::Gad2-Cre mice proved to be statistically indistinguishable from 

Ube3aSTOP/p+ (but also Control) mice on measures of eIPSC amplitude (Figure 2C), 

providing a clue that glutamatergic Ube3a loss diminishes L2/3 pyramidal neuron responses 

to evoked GABAergic neurotransmission. Similar to Ube3aSTOP/p+ and Control mice, 

Ube3aSTOP/p+::Gad2-Cre mice showed no impairment on measures of mEPSCs, eIPSC 

paired-pulse ratios, or inhibitory synaptic depletion dynamics (Figure S5A, S5D, S5E1, and 

S5E2). In contrast, the blunted recovery from GABAergic synaptic depletion that we 

observed in Ube3aSTOP/p+ mice was completely absent in Ube3aSTOP/p+::Gad2-Cre mice 

(Figure 2D). This result demonstrates that glutamatergic Ube3a loss, just like GABAergic 

Ube3a loss (Figure 1E), fails to impair GABAergic synaptic recovery from high-frequency 

stimulation.

Selective manipulations of glutamatergic Ube3a expression in the neocortex should affect 

the penetrance of eIPSC amplitude deficits, assuming these deficits are secondary to an 

intrinsic loss of UBE3A function within L2/3 pyramidal neurons. We tested this assumption 

with several approaches. First, we crossed Ube3aSTOP/p+ mice to a NEX-Cre line 

(Ube3aSTOP/p+::NEX-Cre) in which Ube3a is selectively reinstated in glutamatergic neurons 

of the dorsal pallium, including Cux1-positive neurons of L2/3 neocortex (Figure 3A3). 

eIPSC amplitudes in Ube3aSTOP/p+::NEX-Cre mice were similar to Control (Figure 3B and 

3C), supporting that this deficit in Ube3aSTOP/p+ mice is driven by glutamatergic, not 

GABAergic, Ube3a loss in L2/3 neocortex, in agreement with our findings from 

Ube3aFLOX/p+::Gad2-Cre mice (Figure 1D). To further demonstrate the neuron type-

specificity of this phenotype, we probed Ube3aFLOX/p+::NEX-Cre mice (Figure 3A4), 

observing that neocortical glutamatergic Ube3a deletion was sufficient to yield the eIPSC 

deficit (Figure 3D and 3E). Finally, to test the cell autonomy of the effect, we 

intracerebroventricularly delivered low titers of Cre-expressing adeno-associated virus 

(AAV-Cre) to neonatal Ube3aFLOX/p+ and Ube3am+/p+ control littermates (Figure S6A1). 

This produced a sparse mosaic of virally-transduced neocortical neurons, including 

pyramidal neurons, which we identified by expression of a Cre-dependent tdTomato 

reporter. We observed a total loss of UBE3A expression in over 80% of tdTomato-positive 

neurons in Ube3aFLOX/p+ mice by P12 (Figure S6A3 and S6A4). Conversely, almost all 

(>90%) tdTomato-positive neurons expressed UBE3A in Ube3am+/p+ littermates (Figure 

S6A2 and S6A4). We measured eIPSC amplitude in mice prepared in this manner at ~P80, 

recording from tdTomato-positive L2/3 pyramidal neurons (Ube3aFLOX/p+::AAV-Cre or 
Ube3am+/p+::AAV-Cre), as well as neighboring non-transduced L2/3 pyramidal neurons 

(Ube3aFLOX/p+ or Ube3am+/p+) in V1 (Figure S6B1). We observed reduced eIPSC amplitude 

in response to a range of stimulation intensities in Ube3aFLOX/p+::AAV-Cre neurons 

compared to Ube3am+/p+::AA V-Cre, Ube3aFLOX/p+, or Ube3am+/p+ neurons (Figure S6B2 
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and S6B3). We therefore conclude that diminished eIPSC amplitude onto L2/3 pyramidal 

neurons in AS mice is due to cell-autonomous consequences of Ube3a loss.

Intriguingly, deficits in eIPSC amplitude in Ube3aFLOX/p+::NEX-Cre mice occurred in the 

absence of changes in either mIPSC amplitude or frequency (Figure 3F), indicating that 

synaptic GABAAR function may be normal following glutamatergic Ube3a deletion in the 

dorsal forebrain. This apparent phenotypic discrepancy may be explained by deficits in 

extrasynaptic, delta subunit-containing GABAARs (δ-GABAARs), which might only be 

revealed in instances of GABA spillover to extrasynaptic regions (for example, following 

strong electrical stimulation) (Wei et al., 2003). Because δ-GABAARs are the principal 

mediators of tonic inhibition onto pyramidal neurons in the neocortex (Brickley and Mody, 

2012), we reasoned that glutamatergic Ube3a loss might selectively impair this mode of 

GABAergic transmission by L2/3 pyramidal neurons. To test this, we bath-applied a δ-

GABAAR-selective concentration of THIP (Gaboxadol) to stimulate extrasynaptic 

GABAARs, followed by a saturating concentration of the competitive GABAAR antagonist, 

Gabazine (SR95531) (Figure 3G1). We recorded corresponding changes in holding current 

in L2/3 pyramidal neurons, finding that we could stimulate significantly less THIP/

Gabazine-sensitive tonic current in Ube3aFLOX/p+::NEX-Cre mice relative to Control 
(Figure 3G2). This effect was not an artifact of decreased cell size, as capacitances between 

the two genotypes were equivalent (Control n = 30 cells, 64.06 ± 3 pF; Ube3aFLOX/p+::NEX-
Cre n = 21 cells, 68.33 ± 4.71 pF; p = 0.43). Together, these observations support that 

glutamatergic Ube3a loss cell-autonomously impairs tonic GABAergic tone onto L2/3 

pyramidal neurons.

GABAergic, but not Glutamatergic, Ube3a Loss Enhances Seizure Susceptibility

Converging lines of evidence implicate deficits in tonic inhibition in the pathogenesis of 

epilepsy. In particular, GABRD missense mutations that reduce δ-GABAAR-mediated 

currents are associated with generalized epilepsy in humans (Dibbens et al., 2004), and 

Gabrd‒/‒ mice are prone to seizures (Spigelman et al., 2002; Maguire et al., 2005). 

Therefore, we hypothesized that deficits owed to glutamatergic Ube3a loss, including 

impaired tonic δ-GABAAR-mediated inhibition onto pyramidal neurons, would correlate 

with enhanced seizure susceptibility.

Latencies to seizure following an initial exposure to the putative GABAAR antagonist, 

flurothyl, provide a reliable index of seizure threshold in naïve mice, and flurothyl seizures 

are highly penetrant regardless of genetic background (Krasowski, 2000; Kadiyala et al., 

2014). We therefore used flurothyl to test seizure susceptibility in congenic C57BL/6 

Ube3aFLOX/p+::NEX-Cre mice (Figure 4A1 and 4B). Surprisingly, we found that their 

latency to myoclonic and generalized seizure was similar to Control (Figure 4C). This 

finding indicates that decreased tonic GABAergic inhibition onto L2/3 pyramidal neurons 

does not confer vulnerability to seizures. Nor, in all likelihood, does any other physiological 

consequence of glutamatergic Ube3a loss in the dorsal telencephalon. In contrast, pan-

cerebral GABAergic Ube3a loss on a congenic C57BL/6 background yielded a dramatic 

reduction in latency to myoclonus and generalized seizure, and even enhanced lethality to 
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repeated (once daily) exposures to flurothyl, as evinced by experiments in 

Ube3aFLOX/p+::Gad2-Cre mice (Figure 4A2 and 4D).

Notably, NEX-Cre does not mediate glutamatergic Ube3a deletion in ventral neuron 

populations, nor in the majority of dentate granule neurons (Figure 4A1; Goebbels et al., 

2006). Dentate granule neurons in particular receive an abundance of tonic GABAergic 

inhibition and are critical for gating temporal lobe excitability (Coulter and Carlson, 2007; 

Hsu, 2007; Pun et al., 2012), which might explain why Ube3aFLOX/p+::NEX-Cre mice 

exhibit a normal response to flurothyl (Figure 4C). In contrast, Ube3aSTOP/p+::Gad2-Cre 
mice effectively model pan-cerebral glutamatergic Ube3a loss and thus provide a better 

model in which to fully evaluate the potential for glutamatergic Ube3a loss to enhance 

seizure susceptibility. As we maintain congenic129S2/SvPasCrl Ube3aSTOP/p+ mice, we 

turned to a sensory-evoked, audiogenic seizure induction paradigm that is suited to assessing 

seizure susceptibility on this genetic background (Figure 5A). Importantly, the audiogenic 

seizure paradigm has previously been used to demonstrate enhanced seizure susceptibility in 

AS mouse models on a 129 background, including Ube3am−/p+ and Ube3aSTOP/p+ mice 

(Jiang et al., 1998; van Woerden et al., 2007; Silva-Santos et al., 2015).

We confirmed that 129S2/SvPasCrl Ube3aSTOP/p+ mice are much more susceptible to 

audiogenic seizures than their Control littermates in terms of both frequency and severity 

(Figure 5B). Ube3aSTOP/p+::Gad2-Cre littermates, on the other hand, proved to be refractory 

to audiogenic seizure induction, similar to Control (Figure 5B). In contrast, consistent with 

our flurothyl-induced seizure results, we found that 129S2/SvPasCrl Ube3aFLOX/p+::Gad2-
Cre mice exhibit audiogenic seizures much more frequently than Control littermates and 

with a far greater likelihood of progressing from wild running to a severe, tonic-clonic 

episode (Figure 5C). Surprisingly, post-weaning lethality approached 15% in 

Ube3aFLOX/p+::Gad2-Cre mice, and was associated with observations of spontaneous 

seizures (Figure 5D), whereas we observed no evidence of postnatal lethality associated with 

spontaneous seizures in Ube3aSTOP/p+ mice. Collectively, these findings provide compelling 

evidence that GABAergic, but not glutamatergic, Ube3a loss enhances seizure susceptibility. 

Notably, seizures due to GABAergic Ube3a loss alone are more severe than those observed 

in AS mice with loss of Ube3a in both GABAergic and glutamatergic neurons (Table 1).

GABAergic, but not Glutamatergic, Ube3a Loss Mediates AS-like EEG Abnormalities

If GABAergic Ube3a loss drives seizure susceptibility in AS, then it might also underlie AS-

like EEG abnormalities, including rhythmic, high-amplitude activity in the delta and theta 

bands (Thibert et al., 2013). To investigate this possibility, we recorded resting-state local 

field potentials (LFP, analogous to intracortical EEG (Buzsaki et al., 2012)) in awake head-

fixed mice viewing a gray screen to which they were previously habituated (Figure 6A). We 

observed a strong trend toward total spectral power being increased in Ube3aFLOX/p+::Gad2-
Cre mice relative to Control (1–50 Hz power in µV2: Control = 3915 ± 485.8; 

Ube3aFLOX/p+::Gad2-Cre = 4292 ± 293.5; p = 0.07), primarily driven by enhancements in 

the delta band (Figure 6B). Increased power in other bands including theta (5–10 Hz power 

in µV2: Control = 755 ± 101.2; Ube3aFLOX/p+::Gad2-Cre = 873 ± 46.8; p = 0.3) and gamma 

(30–50 Hz power in µV2: Control = 90 ± 9.8; Ube3aFLOX/p+::Gad2-Cre = 101 ± 6; p = 0.37) 
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did not reach statistical significance. Total neocortical power was similarly elevated in 

Ube3aSTOP/p+ mice (Figure 6C), again largely through delta, with marginal power 

enhancement in other bands. However, LFP power in Ube3aSTOP/p+::Gad2-Cre mice, which 

model glutamatergic Ube3a loss, was normal (Figure 6C); total (1–50 Hz power in µV2: 

Control = 3067 ± 252.7; Ube3aSTOP/p+ = 4255 ± 529.4; Ube3aSTOP/p+::Gad2-Cre = 2755 

± 391.5; p = 0.03), theta (5–10 Hz power in µV2: Control = 733 ± 53.8; Ube3aSTOP/p+ = 879 

± 68.1; Ube3aSTOP/p+::Gad2-Cre = 647 ± 92.5; p = 0.11) and gamma (30–50 Hz power in 

µV2: Control = 105 ± 10.7; Ube3aSTOP/p+ = 127 ± 13.4; Ube3aSTOP/p+::Gad2-Cre = 91 

± 13.3; p = 0.16) power was equivalent between Control and Ube3aSTOP/p+::Gad2-Cre mice. 

We therefore conclude that GABAergic, but not glutamatergic, Ube3a loss yields AS-like 

enhancements in EEG delta power (Table 1).

GABAergic Ube3a Loss Phenocopies Presynaptic CCV Accumulations in AS Mice

We previously linked deficits in inhibitory synaptic recovery in Ube3am−/p+ mice to an 

aberrant accumulation of CCVs at GABAergic synapses (Wallace et al., 2012). This 

correlation suggests that maternal Ube3a loss may cause defective vesicle cycling, which 

fails to adequately restore presynaptic vesicle pools following bouts of high-frequency 

release (Cremona et al., 1999; Luthi et al., 2001; Milosevic et al., 2011). However, 

GABAergic synaptic depletion is normal in Ube3aFLOX/p+::Gad2-Cre mice (Figure 1E), 

leading us to question whether GABAergic Ube3a loss would lead to aberrant presynaptic 

CCVs. First, we verified that pan-cerebral deletion of the maternal Ube3aFLOX allele results 

in the CCV phenotype, finding that CCVs were increased at dendritic and somatic 

GABAergic synapses in Ube3aFLOX/p+::Nestin-Cre mice compared to Control (Figure S7A, 

S7B, and S7C). We also found that CCVs accumulate at glutamatergic synapses in these 

mice (Figure S7A and S7D), a departure from what we had previously observed in 

Ube3am−/p+ mice, where CCV increases at glutamatergic synapses did not reach statistical 

significance (Table 1). Next, we tested the effect of GABAergic Ube3a deletion on the CCV 

phenotype, comparing Ube3aFLOX/p+::Gad2-Cre mice with littermate Controls. 

Ube3aFLOX/p+::Gad2-Cre mice did in fact exhibit excessive CCVs at GABAergic 

presynaptic terminals that synapsed onto the dendrites (Figure 7A3) and somata (Figure 

7A4) of glutamatergic neurons in L2/3. Furthermore, we observed excessive CCVs at 

asymmetric glutamatergic synapses made onto dendritic spines in L2/3 (Figure 7A5). Other 

presynaptic measures including terminal area (Figure S8A1, S8B1, and S8C1), mitochondrial 

area (Figure S8A2, S8B2, and S8C2), and the density of synaptic vesicles (Figure S8A3, 

S8B3, and S8C3) were largely normal. Thus, GABAergic Ube3a loss phenocopies the 

presynaptic CCV abnormalities in AS mice despite leaving recovery from GABAergic 

synaptic depletion intact (Figure 1E).

Excessive CCV accumulation also proved to be a feature of both GABAergic and 

glutamatergic L2/3 synapses in Ube3aSTOP/p+ mice (Figure 7B). To determine if 

glutamatergic Ube3a loss would affect presynaptic CCVs, we compared 

Ube3aSTOP/p+::Gad2-Cre mice to both Ube3aSTOP/p+ and Control littermates. We found that 

Ube3aSTOP/p+::Gad2-Cre and Control mice were statistically equivalent on measures of 

CCV density at GABAergic and glutamatergic L2/3 synapses (Figure 7B), indicating that 

glutamatergic Ube3a loss does not contribute to this phenotype in AS mice. Presynaptic 
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measures of terminal area, mitochondrial area, and synaptic vesicle density were similar 

across the three genotypic groups (Figure S8D–F). Importantly, glutamatergic CCV 

accumulations in Ube3aSTOP/p+ mice occurred in the absence of deficits in glutamatergic 

synaptic depletion (Figure S5E), providing yet another example of phenotypic dissociation 

between presynaptic CCVs and the capacity for recovery from synaptic depletion.

DISCUSSION

This work constitutes the first investigation of neuron type-specific contributions to the 

pathogenesis of circuit hyperexcitability in AS. We show that GABAergic Ube3a deletion 

produces AS-like enhancements in EEG delta power, enhances seizure susceptibility and 

severity, and results in aberrant L2/3 presynaptic CCV accumulations. In contrast, 

glutamatergic Ube3a loss impairs the receipt of tonic GABAergic inhibition by L2/3 

pyramidal neurons, but does not lead to EEG abnormalities or confer vulnerability to 

seizures.

Our present results demonstrate that GABAergic Ube3a loss leads to EEG abnormalities and 

seizures without producing any of the defects in GABAergic inhibition that we previously 

observed in L2/3 neocortex in AS mice, which lack Ube3a in nearly all neurons (Wallace et 

al., 2012). The immediate implication of this surprising finding is that defective GABAergic 

inhibition onto L2/3 pyramidal neurons is neither a cause nor a consequence of circuit 

hyperexcitability in AS mice. This is consistent with a recent study indicating that EEG 

abnormalities and seizures occur by P30 in AS mice (Mandel-Brehm et al., 2015), prior to 

the emergence of mIPSC and eIPSC deficits onto L2/3 pyramidal neurons (Wallace et al., 

2012).

Intriguingly, GABAergic Ube3a deletion produces atypical accumulations of CCVs in 

presynaptic terminals (Figure 7A3 and 7A4), despite failing to yield deficits in GABAergic 

synaptic recovery following high-frequency stimulation. Increased presynaptic CCVs are a 

hallmark of deficient clathrin-mediated endocytosis (Cremona et al., 1999; Luthi et al., 

2001; Milosevic et al., 2011), though they could also possibly reflect compensation for 

impairments in clathrin-independent modes of synaptic vesicle recycling (Daly et al., 2000). 

Regardless of the underlying cause, accumulations of clathrin-coated endocytic profiles in 

the synapse typically predict electrophysiological impairments in synaptic depletion and 

recovery, especially within GABAergic interneurons that display high-frequency firing 

(Cremona et al., 1999; Luthi et al., 2001; Hayashi et al., 2008). Our electrical stimulation 

parameters might not have been optimized to reveal deficiencies in synaptic vesicle 

recycling, perhaps explaining the dissociation between this phenotype and GABAergic 

presynaptic CCV accumulations. More puzzling is the fact that selective GABAergic Ube3a 
loss led to CCV accumulations at glutamatergic synapses (Figure 7A5); unless Ube3a loss in 

GABAergic neurons triggers cell-nonautonomous defects in synaptic vesicle cycling, we 

would expect CCV phenotypes to be confined to GABAergic terminals. The parsimonious 

explanation is that CCV accumulations provide a readout of circuit hyperexcitability owed to 

GABAergic Ube3a loss, signaling the recent history of high-frequency activity at both 

GABAergic and glutamatergic presynaptic terminals. It remains to be elucidated how Ube3a 
loss impairs GABAergic synaptic recovery in AS mice, but our data implicate a mechanism 
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requiring loss of Ube3a in both glutamatergic and GABAergic neurons (Figure 1E3 and 

2D3).

Implications of Defective Tonic GABAergic Inhibition in AS Mice

Here we show that glutamatergic Ube3a loss impairs the receipt of tonic GABAergic 

inhibition by L2/3 pyramidal neurons in the absence of EEG abnormalities and seizures 

(Figure 3G, Figure 5B, and Figure 6C), indicating a lack of relevance to the pathogenesis of 

hyperexcitability in AS. Considering the apparent cell-autonomous nature of this defect, it is 

reasonable to speculate that tonic GABAergic tone onto GABAergic neurons is also 

diminished in AS. However, such a deficit is equally unlikely to factor in the pathogenesis of 

hyperexcitability; GABAergic neuron-specific deletion of δ-GABAARs actually enhances 

phasic inhibition, thereby suppressing hippocampal network excitability and seizure 

susceptibility (Lee and Maguire, 2013). Nevertheless, decreases in tonic GABAergic 

neurotransmission have the potential to alter network dynamics throughout the brain 

(Brickley and Mody, 2012; Lee and Maguire, 2014), and may contribute to the manifestation 

of AS phenotypes besides epilepsy. For example, tonic inhibitory deficits onto cerebellar 

granule cells in AS mice are linked to impaired locomotion, which is amenable to rescue by 

the δ-GABAAR superagonist THIP (Gaboxadol) (Egawa et al., 2012). It has since been 

shown that cerebellar deficits consequent to the loss of tonic GABAergic inhibition onto 

cerebellar granule cells are clearly dissociable from locomotor defects (Bruinsma et al., 

2015), suggesting that any therapeutic benefit of THIP for gross motor dysfunction works 

through the enhancement of tonic GABAergic inhibition in extracerebellar circuits. Together 

with our present findings, these studies underscore the need for further preclinical 

elucidation of a complex relationship between deficits in tonic inhibition and AS-like 

phenotypes; such knowledge will be essential to inform future clinical trials of THIP 

administration in AS patients – especially with regard to the selection of appropriate clinical 

endpoints.

Insights into Circuit-Level Consequences of GABAergic Ube3a Loss

What are the physiological mechanisms by which GABAergic Ube3a loss contributes to 

circuit imbalance? We previously found that neocortical fast-spiking interneurons receive 

normal excitatory synaptic drive and display appropriate intrinsic excitability in the absence 

of Ube3a (Wallace et al., 2012), and our present studies indicate that a loss of GABAergic 

inhibition onto L2/3 pyramidal neurons is not involved in mediating circuit hyperexcitability 

(Figures 1, 4, 5, 6, and 7). These findings highlight the importance of moving beyond the 

L2/3 neocortical microcircuit to elucidate the physiological consequences of GABAergic 

Ube3a loss. While this is a vast parameter space, potentially involving numerous 

GABAergic neuron populations, our EEG findings point to a major role for the thalamic 

reticular nucleus (TRN). GABAergic TRN neurons directly regulate the oscillatory activity 

of thalamocortical circuits and, when activated, are capable of mediating selective 

enhancements of neocortical EEG power in the delta band (Zhang et al., 2009; Lewis et al., 

2015) – the same power band in which we observed the majority of EEG power 

enhancement following GABAergic Ube3a loss. Indeed, pathological synchrony of TRN 

neurons has been implicated in the generation of delta frequency spike-wave oscillations and 

atypical absence seizures (Steriade, 2005; Huguenard and McCormick, 2007), both of which 
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are commonly observed in AS (Vendrame et al., 2012; Thibert et al., 2013). High-amplitude 

theta rhythmicity (4–6 Hz) with spiking is another common background EEG abnormality in 

AS (Thibert et al., 2013). Although this theta abnormality is most prominent in occipital 

regions, it seems to disappear by adolescence (Laan et al., 1997), perhaps explaining why we 

did not record significant enhancements in theta power in adult Ube3aSTOP/p+ or 

Ube3aFLOX/p+::Gad2-Cre mice despite recording from V1 (Figure 6). Future work in AS 

models should focus on factors known to affect TRN neuron excitability and synchrony – 

including relative levels of excitatory and inhibitory synaptic drive, the integrity of gap 

junctions (Proulx et al., 2006; Lee et al., 2014), the expression of T-type calcium channels 

(Tsakiridou et al., 1995; Zhang et al., 2009), and cholinergic input (McCormick and Prince, 

1986; Sun et al., 2013). However, intracortical GABAergic mechanisms that underlie 

pathological spike-wave discharges also remain of interest, especially those that engage 

disinhibitory circuitry (Pi et al., 2013; Hall et al., 2015).

Numerous GABAergic circuits outside the thalamus and cortex could also contribute to the 

enhancements in seizure susceptibility that we observed following GABAergic Ube3a loss. 

This might even be expected, considering the variety of seizure types known to occur in 

individuals with AS (Galvan-Manso et al., 2005; Thibert et al., 2013). GABAergic circuits in 

the temporal lobe, hypothalamus, and striatum are all potentially of interest, but have yet to 

be formally investigated. We have also yet to explore the possibility that GABAergic Ube3a 
loss mediates AS-like phenotypes other than EEG abnormalities and seizures. Recent 

findings suggest that GABAergic Mecp2 loss precipitates the majority of Rett syndrome-like 

phenotypes in mice (Chao et al., 2010; Ito-Ishida et al., 2015). Considering the high degree 

of phenotypic overlap between AS and Rett syndrome (Jedele, 2007; Tan et al., 2014), this 

might foreshadow a similarly broad penetrance of AS-like phenotypes following 

GABAergic Ube3a loss. On the other hand, there is clearly divergence in the developmental 

mechanisms underlying AS and Rett syndrome, as indicated by studies modeling the 

temporal requirements for Ube3a and Mecp2 gene reinstatement therapy, respectively (Guy 

et al., 2007; Silva-Santos et al., 2015).

Neuron Type-Specific Strategies for the Treatment of Circuit Hyperexcitability in AS

Ube3aSTOP/p+::Gad2-Cre mice dually serve to model the effects of glutamatergic Ube3a loss 

as well as the therapeutic value of GABAergic Ube3a reinstatement. The lack of EEG 

abnormalities, seizures, and associated CCV accumulations in this line (Figures 5, 6, and 7) 

demonstrates the promise that GABAergic neuron-specific treatments hold for the treatment 

of hyperexcitability phenotypes in AS. However, this promise has its limits. Modeling of 

pan-cellular Ube3a reinstatement in Ube3aSTOP/p+ mice predicts closure of a critical period 

for the amelioration of hyperexcitability phenotypes very early during postnatal development 

(Silva-Santos et al., 2015). Furthermore, GABAergic neuron-specific therapeutic approaches 

in AS are unlikely to involve the reinstatement of UBE3A expression. The only tractable 

target for the reinstatement of UBE3A expression in individuals with AS is the paternal 

UBE3A allele. Paternal UBE3A is intact, but epigenetically silenced in cis by a long non-

coding RNA that includes a 3’ UBE3A–antisense (UBE3A–ATS) sequence (Rougeulle et 

al., 1998; Martins-Taylor et al., 2014). Thus far, successful preclinical efforts to unsilence 

paternal Ube3a have depended directly (Meng et al., 2015) or indirectly (Huang et al., 2012) 
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on the downregulation of Ube3a–ATS, which appears to be uniformly expressed by 

glutamatergic and GABAergic neurons. Therefore, signaling pathways that functionally 

intersect with UBE3A are more likely to provide neuron type-specific targets for the 

development of AS therapeutics.

As a proof of concept, genetic normalization of calcium/calmodulin-dependent kinase type 

2-α subunit (CaMKII-α) inhibitory hyperphosphorylation – a signaling deficit which 

decreases CaMKII enzymatic activity in Ube3am−/p+ mice (Weeber et al., 2003) – rescues 

seizure phenotypes (van Woerden et al., 2007). Moreover, genetic reduction of the 

immediate-early gene, Arc (Arc+/–), whose expression UBE3A may regulate either 

transcriptionally or posttranslationally through ubiquitination (Greer et al., 2010; Kuhnle et 

al., 2013), normalizes EEG and abnormal responses to audiogenic stimuli in Ube3am−/p+ 

mice (Mandel-Brehm et al., 2015). Arc expression is preferentially induced in CaMKII-a-

expressing neurons in response to convulsive seizures (Vazdarjanova et al., 2006), indicating 

that the restoration of circuit balance in Ube3am−/p+::Arc+/– mice may also be mediated by 

these cells. This poses a puzzle, however, considering our compelling evidence that 

GABAergic, but not glutamatergic, Ube3a loss drives the pathogenesis of hyperexcitability; 

in most brain regions including the cortex and hippocampus, CaMKII-a expression is 

restricted to glutamatergic neurons (Benson et al., 1992). An exception is the striatum in 

which CaMKII-α activity and Arc expression are readily induced within GABAergic spiny 

projection neurons in response to a variety of stimuli (Tan et al., 2000; Choe and Wang, 

2002; Vazdarjanova et al., 2006; Anderson et al., 2008). GABAergic spiny projection 

neurons may thus be a nexus for seizure susceptibility or seizure resistance as mediated by 

loss or reinstatement of Ube3a, respectively. Alternatively, normalization of CaMKII-a and 

ARC function may work intrinsically through glutamatergic circuits to dampen their 

excitability and restore circuit balance, countering inhibitory deficits mediated by 

GABAergic Ube3a loss.

In summary, the present data compel us to revisit, reevaluate, and refine our previous 

hypotheses regarding the pathogenesis of circuit hyperexcitability in AS. We now appreciate 

that GABAergic UBE3A loss is likely to be the principal pathogenic factor underlying 

circuit hyperexcitability in the disorder; accordingly, the restoration of GABAergic neuronal 

function represents the most direct therapeutic strategy for the prevention or reversal of EEG 

abnormalities and seizures, provided the intervention occurs sufficiently early in 

development. This conceptual advance should help to focus future studies of the molecular 

mechanisms working both upstream and downstream of UBE3A within GABAergic 

neurons, perhaps yielding novel, actionable therapeutic targets.

EXPERIMENTAL PROCEDURES

See Supplemental Experimental Procedures for experimental details relating to mouse lines, 

AAV-Cre injections, electrophysiology, flurothyl-induced seizure assays, audiogenic seizure 

assays, qRT-PCR, Western blotting, immunohistochemistry, and statistical analyses.
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Animals

We raised all mice on a 12:12 lightdark cycle with ad libitum access to food and water. We 

used both male and female littermates at equivalent genotypic ratios and in strict compliance 

with animal protocols approved by the Institutional Animal Care and Use Committees of the 

University of North Carolina at Chapel Hill.

Electrophysiology

Whole-cell voltage-clamp recordings—We placed coronal slices containing V1 (see 

Supplemental Experimental Procedures) in a submersion chamber maintained at 30° C and 

perfused at 2 mL/min with oxygenated ACSF (in mM; 124 NaCl, 3 KCl, 1.25 NaH2PO4, 26 

NaHCO3, 1 MgCl2, 2 CaCl2, and 20 dextrose). We pulled patch pipettes from thick-walled 

borosilicate glass using a P2000 laser puller (Sutter Instruments, Novato, CA). Open tip 

resistances were between 2–5 MΩ when pipettes were filled with the internal solution 

containing (in mM): 100 CsCH3SO3, 15 CsCl, 2.5 MgCl2, 5 QX-314-Cl, 5 tetra-Cs-BAPTA, 

10 HEPES, 4 Mg-ATP, 0.3 Na-GTP, and 0.025 Alexa-594, with pH adjusted to 7.25 and 

osmolarity adjusted to ~295 mOsm with sucrose.

We visually targeted L2/3 pyramidal neurons for recording using an Axio Examiner 

microscope (Zeiss, Germany) equipped with infrared differential interference contrast and 

epifluorescence optics. For successfully patched neurons, we achieved pipette seal 

resistances > 1 GΩ, minimizing pipette capacitive transients prior to breakthrough. We 

performed voltage-clamp recordings in the whole-cell configuration using a Multiclamp 

700B amplifier (Molecular Devices, Sunnyvale, CA) with 10 kHz digitization and a 2 kHz 

low-pass Bessel filter. We acquired and analyzed data using pCLAMP 10 software 

(Molecular Devices, RRID:SCR_011323). We monitored changes in series and input 

resistance throughout each experiment by giving test step of −5 mV every 30 s and 

measuring the resultant amplitude of the capacitive current. We discarded neurons if series 

resistance surpassed 25 MΩ or if series resistance or input resistance changed by >25% 

during the course of an experiment. We confirmed L2/3 pyramidal neuronal identity by 

analyzing characteristic membrane properties (Supplemental Table 1) and the presence of 

dendritic spines and prominent apical dendrites visualized with Alexa-594 dye.

In vivo local field potential (LFP) recordings—We backcrossed mice used for LFP 

and audiogenic seizure experiments (see Supplemental Experimental Procedures) 6–7 

generations onto the 129S2/SvPasCrl background, which is permissive for hyperexcitability 

phenotypes. For surgeries, we anesthetized adult mice (P75–118 on day 1 of recording) via 

intraperitoneal injections of ketamine (40 mg/kg) and xylazine (10 mg/kg), with 0.25% 

bupivacaine injected under the scalp for local analgesia. We then bilaterally implanted 

tungsten microelectrodes (FHC, Bowdoin, ME) in layer 4 of V1 (3.2–3.3 mm lateral to 

Lambda, 0.47 mm depth) and placed a silver wire in prefrontal cortex as a reference 

electrode. In order to enable head fixation during recordings, we attached a steel headpost to 

the skull anterior to bregma. We used dental cement to secure all elements in place and 

create a protective head cap.
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We allowed mice to recover for at least 2 days following surgery before habituating them to 

the recording apparatus over 2 consecutive days. We acquired LFP data over the next 3 

consecutive days. We head-fixed mice during all recording sessions (both habituation and 

LFP), orienting them towards a full-field gray screen for 15 minutes in a dark, quiet 

environment. We amplified LFP recordings 1000x using single-channel amplifiers (Grass 

Technologies, Warwick, RI) with 0.1 Hz low-pass and 100 Hz high-pass filtration preceding 

acquisition and digitization at 4 kHz using Spike2 software (CED Ltd., Cambridge, UK, 

RRID:SCR_000903). We analyzed spectral power using a fast Fourier transform resulting in 

bin sizes of 0.5 Hz. Prior to analysis, we manually excluded rarely occurring electrical 

artifacts corresponding to mouse movement. For each animal, we averaged power spectra 

from both hemispheres across all three days of recording.

Statistics

We performed all experiments and analyses blind to genotype. We performed all statistical 

analyses using GraphPad Prism 6 software (GraphPad Software Inc., La Jolla, CA, 

RRID:SCR_002798).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Glutamatergic Ube3a loss decreases tonic inhibition onto L2/3 pyramidal 

neurons.

• GABAergic Ube3a loss does not compromise inhibition onto L2/3 pyramidal 

neurons.

• GABAergic, not glutamatergic, Ube3a loss causes EEG abnormalities and 

seizures.

• L2/3 GABAergic defects in AS mice neither cause, nor are caused by, seizures.
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Figure 1. GABAergic Ube3a loss does not compromise synaptic inhibition onto L2/3 pyramidal 
neurons
(A) Immunostaining of parvalbumin (PV), Cux1, and UBE3A in V1 of ~P80 Control (A1) 

and Ube3aFLOX/p+::Gad2-Cre (A2) mice. Arrowheads indicate PV-positive interneurons 

lacking UBE3A (scale bar = 145 µm or 75 µm for zoom-ins). (B) Schematic for recording 

synaptic inhibition onto L2/3 pyramidal neurons in V1 of ~P80 Ube3aFLOX/p+::Gad2-Cre 
mice (green shading indicates presence of UBE3A). (C) Sample recordings (scale bar = 20 

pA, 200 ms) and quantification of mIPSC amplitude and frequency (Control n = 11 cells; 

Ube3aFLOX/p+::Gad2-Cre n = 17 cells). (D) Sample recordings of eIPSCs (D1) at stimulation 

intensities of 2, 10, 30, and 100 µA (scale bar = 1 nA, 40 ms). (D2) Quantification of 

eIPSCs. Inset depicts response amplitudes to 100 µA stimulation (Control n = 22 cells; 
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Ube3aFLOX/p+::Gad2-Cre n = 24 cells). (E) Sample recordings (E1) depicting each phase of 

an inhibitory synaptic depletion and recovery experiment (scale bars: baseline = 200 pA, 20 

ms; depletion = 200 pA, 70 ms; recovery = 200 pA, 20 ms). (E2) Average depletion phase 

showing eIPSC amplitude normalized to baseline during 800 stimuli at 30 Hz. Each point 

(80 plotted per genotype) represents 10 consecutive responses that were collapsed and 

averaged per cell. (E3) Average recovery phase showing eIPSC amplitude normalized to 

baseline during 90 stimuli at 0.33 Hz. Each point (30 plotted per genotype) represents 3 

consecutive responses that were collapsed and averaged per cell. Average depletion and 

recovery responses for each genotype were fit with a monophasic exponential (Control n = 

11 cells; Ube3aFLOX/p+::Gad2-Cre n = 9 cells). Data represent mean ± SEM.
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Figure 2. GABAergic Ube3a reinstatement in Ube3aSTOP/p+::Gad2-Cre mice models 
glutamatergic Ube3a loss and indicates an evoked IPSC amplitude deficit onto L2/3 pyramidal 
neurons
(A) Immunostaining of parvalbumin (PV), Cux1, and UBE3A in V1 of ~P80 Control (A1), 

Ube3aSTOP/p+ (A2), and Ube3aSTOP/p+::Gad2-Cre (A3) mice. Arrowheads indicate PV-

positive interneurons that co-stain for UBE3A. Arrows point to PV-negative interneurons 

that co-stain for UBE3A (scale bar = 145 µm or 75 µm for zoom-ins). (B) Schematic for 

recording synaptic inhibition onto L2/3 pyramidal neurons in V1 of ~P80 

Ube3aSTOP/p+::Gad2-Cre mice. (C) Sample recordings of eIPSCs (C1) at stimulation 

intensities of 2, 10, 30, and 100 µA (scale bar = 1 nA, 60 ms). (C2) Quantification of 

eIPSCs. Inset depicts response amplitudes to 100 µA stimulation (Control n = 38 cells; 

Ube3aSTOP/p+ n = 44 cells; Ube3aSTOP/p+::Gad2-Cre n = 40 cells). (D) Inhibitory synaptic 
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depletion and recovery in Control (n = 9 cells), Ube3aSTOP/p+ (n = 11 cells), and 

Ube3aSTOP/p+::Gad2-Cre (n = 13 cells) mice, performed as in Figure 1E. Scale bars (D1): 

baseline = 200 pA, 20 ms; depletion = 200 pA, 70 ms; recovery = 200 pA, 20 ms. Data 

represent mean ± SEM. *p≤0.05.
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Figure 3. Glutamatergic Ube3a loss selectively reduces evoked IPSC amplitude and tonic 
inhibitory tone onto L2/3 pyramidal neuron
(A) Immunostaining of parvalbumin (PV), Cux1, and UBE3A in V1 of ~P80 Control (A1), 

Ube3aSTOP/p+ (A2), Ube3aSTOP/p+::NEX-Cre (A3), and Ube3aFLOX/p+::NEX-Cre (A4) mice. 

Double arrows indicate PV-positive interneurons that lack UBE3A, arrowheads indicate PV-

positive interneurons that co-stain for UBE3A but lack Cux1, and single arrows depict 

Cux1- and PV-negative interneurons that co-stain for UBE3A (scale bar = 75 µm for all 

panels). (B) Schematic for recording inhibition onto L2/3 pyramidal neurons in V1 of ~P80 
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Ube3aSTOP/p+::NEX-Cre mice. (C) Sample recordings of eIPSCs (C1) at stimulation 

intensities of 2, 10, 30, and 100 µA (scale bar = 800 pA, 20 ms). (C2) Quantification of 

eIPSCs. Inset depicts response amplitudes to 100 µA stimulation (Control n = 14 cells; 

Ube3aSTOP/p+ n= 15 cells; Ube3aSTOP/p+::NEX-Cre n = 16 cells). (D) Schematic for 

recording inhibition onto L2/3 pyramidal neurons in V1 of ~P80 Ube3aFLOX/p+::NEX-Cre 
mice. (E) Sample recordings of eIPSCs (E1) at stimulation intensities of 2, 10, 30, and 100 

µA (scale bar = 1 nA, 40 ms). (E2) Quantification of eIPSCs. Inset depicts response 

amplitudes to 80 µA stimulation (Control n = 14 cells; Ube3aFLOX/p+::NEX-Cre n = 22 

cells). (F) Sample recordings (F1, scale bar = 20 pA, 200 ms) and quantification of mIPSC 

amplitude and frequency (F2) (Control n = 15 cells; Ube3aFLOX/p+::NEX-Cre n = 11 cells). 

(G) Representative trace (G1) from experiments to measure tonic inhibitory currents onto 

L2/3 pyramidal neurons (scale bar = 150 pA, 120 s). (G2) Quantification of change in 

Iholding in response to the application of the δ-GABAAR agonist THIP (left) and the 

subsequent chase with the competitive GABAAR antagonist, Gabazine (right) (Control n = 

30 cells; Ube3aFLOX/p+::NEX-Cre n = 21 cells). Data represent mean ± SEM. *p≤0.05, 

**p≤0.01.
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Figure 4. GABAergic, but not glutamatergic Ube3a loss lowers the threshold for flurothyl-
induced seizures
(A) UBE3A staining in Ube3aFLOX/p+::NEX-Cre (A1) and Ube3aFLOX/p+::Gad2-Cre (A2) 

(scale bar = 750 µm; 400 µm for zoom-ins). Ctx, cerebral cortex; Hip, hippocampus; MGN, 

medial geniculate thalamic nucleus; SNR, substantia nigra pars reticulata. (B) Schematic of 

flurothyl-induced seizure protocol. Flurothyl administration ceases upon the occurrence of a 

generalized seizure. (C) Latency to myoclonus (C1) and generalized seizure (C2) in Control 
(n = 12) and Ube3aFLOX/p+::NEX-Cre (n = 7) mice at ~P80. (D) Latency to myoclonus (D1) 
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and generalized seizure (D2) in Control (n = 13) and Ube3aFLOX/p+::Gad2-Cre (n = 11) mice 

at ~P80. Comparative survival (D3) of Control and Ube3aFLOX/p+::Gad2-Cre mice following 

repeated once daily exposures to flurothyl. Data represent mean ± SEM. **** p≤0.0001.
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Figure 5. GABAergic, but not glutamatergic, Ube3a loss enhances audiogenic seizure 
susceptibility in AS model mice
(A) Schematic of audiogenic seizure protocol. (B) Quantification of audiogenic seizure 

susceptibility in Control (n = 26), Ube3aSTOP/p+ (n = 13), and Ube3aSTOP/p+::Gad2-Cre (n = 

13) mice at ~P80. (C) Quantification of audiogenic seizure susceptibility (Control n = 15; 

Ube3aFLOX/p+::Gad2-Cre n = 13). (D) Post-weaning (P21 – P90) lethality in Control and 

Ube3aFLOX/p+::Gad2-Cre mice. Data represent mean ± SEM. **p≤0.01; ***p≤0.001; **** 

p≤0.0001.
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Figure 6. GABAergic Ube3a loss selectively enhances LFP spectral power in the delta band
(A) Schematized configuration for local field potential (LFP) recordings in non-anesthetized 

mice. (B) Sample V1 LFP recordings (B1, scale bar = 100 µV, 1 s) and quantification of 

average spectral power (B2) from Control (n = 11) and Ube3aFLOX/p+::Gad2-Cre (n = 11) 

mice at ~P100. (B3) Quantification of the region (3–4 Hz) encompassing the largest 

genotypic difference in power within the delta band. (C) Sample V1 LFP recordings (C1, 

scale bar = 100 µV, 1 s) and quantification of average spectral power (C2) from from Control 
(n = 12), Ube3aSTOP/p+ (n = 9), and Ube3aSTOP/p+::Gad2-Cre (n = 11) mice at ~P100. (C3) 

Quantification of the region (2–3 Hz) encompassing the largest genotypic difference in 

power within the delta band. Data represent mean ± SEM. *p≤0.05.

Judson et al. Page 29

Neuron. Author manuscript; available in PMC 2017 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. GABAergic Ube3a loss underlies presynaptic CCV accumulation at both GABAergic 
and glutamatergic synapses
(A) Electron micrographs of dendritic inhibitory synapses stained for GABA in Control (A1) 

and Ube3aFLOX/p+::Gad2-Cre (A2) mice at ~P80. Green denotes GABAergic axon terminal, 

blue denotes dendrite, inset highlights clathrin-coated vesicles (CCVs) (scale bar = 200 nm). 

Average CCV densities at dendritic GABAergic synapses (A3, Control n = 89 synapses from 

3 mice; Ube3aFLOX/p+::Gad2-Cre n = 77 synapses from 3 mice), somatic GABAergic 

synapses (A4, Control n =78 synapses from 3 mice; Ube3aFLOX/p+::Gad2-Cre n = 81 
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synapses from 3 mice), and spinous glutamatergic synapses (A5, Control n = 82 synapses 

from 3 mice; Ube3aFLOX/p+::Gad2-Cre n = 80 synapses from 3 mice). (B) Electron 

micrographs of dendritic inhibitory synapses stained for GABA in Control (B1), 

Ube3aSTOP/p+ (B2), and Ube3aSTOP/p+::Gad2-Cre (B3) mice at ~P80. Green denotes 

GABAergic axon terminal, blue denotes dendrite, inset highlights clathrin-coated vesicles 

(CCVs) (scale bar = 400 nm). Average CCV densities at dendritic GABAergic synapses (B4, 

Control n = 110 synapses from 3 mice; Ube3aSTOP/p+ n = 119 synapses from 3 mice; 

Ube3aSTOP/p+::Gad2-Cre n = 115 synapses from 3 mice), somatic GABAergic synapses (B5, 

Control n = 103 synapses from 3 mice; Ube3aSTOP/p+ n = 114 synapses from 3 mice; 

Ube3aSTOP/p+::Gad2-Cre n = 110 synapses from 3 mice), and spinous glutamatergic 

synapses (B6, Control n = 108 synapses from 3 mice; Ube3aSTOP/p+ n = 113 synapses from 

3 mice; Ube3aSTOP/p+::Gad2-Cre n = 113 synapses from 3 mice). Data represent mean ± 

SEM. * p<0.05; ** p<0.01; ****p<0.0001.
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