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Abstract

 Purpose—Phase-contrast magnetic resonance imaging (PC-MRI) is a noninvasive tool to 

assess cardiovascular disease by quantifying blood flow; however, low data acquisition efficiency 

limits the spatial and temporal resolutions, real-time application, and extensions to 4D flow 

imaging in clinical settings. We propose a new data processing approach called Reconstructing 

Velocity Encoded MRI with Approximate message passing aLgorithms (ReVEAL) that 

accelerates the acquisition by exploiting data structure unique to PC-MRI.

 Theory and Methods—ReVEAL models physical correlations across space, time, and 

velocity encodings. The proposed Bayesian approach exploits the relationships in both magnitude 

and phase among velocity encodings. A fast iterative recovery algorithm is introduced based on 

message passing. For validation, prospectively undersampled data are processed from a pulsatile 

flow phantom and five healthy volunteers.

 Results—ReVEAL is in good agreement, quantified by peak velocity and stroke volume (SV), 

with reference data for acceleration rates R ≤ 10. For SV, Pearson r ≥ 0.996 for phantom imaging 

(n = 24) and r ≥ 0.956 for prospectively accelerated in vivo imaging (n = 10) for R ≤ 10.

 Conclusion—ReVEAL enables accurate quantification of blood flow from highly 

undersampled data. The technique is extensible to 4D flow imaging, where higher acceleration 

may be possible due to additional redundancy.
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 Introduction

Phase-contrast magnetic resonance imaging (PC-MRI) is a noninvasive technique capable of 

quantifying hemodynamics in the heart and great vessels (1). Because spin moving through a 

spatially varying magnetic field accumulates phase compared to static spin, velocity 

information in PC-MRI is encoded into the phase of the complex-valued image. This 

information is then retrieved by measuring the phase differences between images collected 

under different values of the velocity-encoding gradients. Cardiovascular applications of PC-

MRI include quantification of cardiac function (2), evaluation of stenosis (3, 4), assessment 

of congenital heart disease (5), and evaluation of aortic atherosclerosis (6).

Clinical application of PC-MRI to 4D flow imaging and to real-time through-plane velocity 

imaging has been precluded by long scan times and low acquisition efficiency (7). Several 

methodological improvements have been proposed to reduce acquisition time of flow 

imaging via PC-MRI: parallel MRI (pMRI) (8), fast sampling strategies (9, 10, 11, 12), and 

iterative image recovery inspired by compressive sensing (CS) concepts (13, 14). For 2D 

PC-MRI, Kim et al. (15) proposed k-t SPARSE-SENSE and reported a six-fold acceleration 

for liver imaging with electrocardiogram triggering; k-t SPARSE-SENSE combines 

randomized Cartesian sampling, pMRI, and sparsity via temporal principal components 

analysis (PCA). More recently, Giese et al. individually processed principal components 

from multiple spatial compartments in the image series to capture the spatially varying 

dynamic behavior (16). Kwak et al. (17) recovered five-fold accelerated 2D PC-MRI by 

enforcing total variation (TV) minimization of both encoded and compensated images as 

well as exploiting the sparsity of the complex difference image. Most 2D PC-MRI 

reconstruction methods can be extended for 4D flow where even higher acceleration is 

possible due to additional redundancy. Knobloch et al. (18) proposed a method that utilizes 

both temporal PCA and the complex difference of velocity-encoded and velocity-

compensated images to report an eight-fold acceleration for 4D flow. Despite these proposed 

processing methods, the challenge remains to achieve 4D flow imaging in clinically relevant 

acquisition times.

In this work, we propose a novel technique for accelerated PC-MRI. The technique is based 

on Bayesian inference yet admits fast computation via an approximate message passing 

algorithm (19). The Bayesian formulation allows us to model and exploit the statistical 

relationships across space, time, and encodings in order to achieve reproducible estimation 

of flow from highly undersampled data. Six characteristics distinguish the approach from 

prior art.

1. Data are jointly processed across all coils, frames, and encodings.

2. We employ overcomplete (non-decimated) wavelets for transform-based 

compression jointly across both space and time.

3. An optimized sampling strategy provides a distinct variable density 

sampling pattern for each encoding; the sampling also facilitates 

estimation of coil sensitivity maps.
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4. We employ a mixture density model to capture the strong redundancy 

between the background and velocity-encoded images; the approach 

captures not only the similarity in magnitudes between background and 

velocity-encoded images but also the phase similarity in velocity-free 

regions. From the mixture density, the algorithm implicitly learns a 

probabilistic segmentation of image frames into velocity-containing and 

velocity-free regions.

5. Approximate message passing provides a fast computational framework to 

enable minimum mean squared error (MMSE) estimation while jointly 

processing the large corpus of spatiotemporal data.

6. An expectation-maximization procedure within the empirical Bayes 

framework provides automatic parameter tuning.

Together, these six characteristics yield a principled estimation approach that enables 

accelerated PCMRI. We coin our technique ReVEAL for Reconstructing Velocity 

EncodedMRI with Approximate Message passing aLgorithms. For time-resolved, planar 

imaging with one velocity encoded direction (through-plane), we demonstrate prospectively 

undersampled acquisition achieving an acceleration factor of 10 using both phantom and in 

vivo data. We conjecture that the technique will yield higher acceleration with the increased 

number of correlated encodings present in 4D flow imaging.

 Theory

 Parallel MRI signal model

We first describe the received signal model for 2D dynamic MRI with multiple receiver 

coils. The measured data  from the ith coil at time index, or frame, t is

[1]

where Dt is a k-space sample selection operator at time t, F is the 2D Fourier operator, and 

 is a diagonal matrix which represents the ith coil sensitivity map. Here, xt ∈ CN is a 

vectorization of the two-dimensional image to be recovered,  is the subsampled 

Fourier measurements, and  is additive noise.

We can rewrite [1] in block notation for C coils as follows.

[2]
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The 2D signal model given in [2] can be viewed as a single time instance in a dynamic 

image sequence. The signal model for the dynamic sequence of P frames is given by

[3]

where At represents the measurement matrix at time t with possibly time-dependent 

downsampling and coil sensitivities Dt and , respectively. We compactly write [3] as y = 

Ax + ϕ.

For the k-space sampling pattern described by Dt, t = 1, …, P, we employ variable density 

incoherent sampling patterns as reported in (20). The design results in sampling patterns that 

differ across frames as well as across the velocity encodings. The sampling design optimizes 

a constrained energy potential to produce a pseudo-random pattern that promotes 

incoherence of the operator A, limits eddy currents, and provides a fully sampled k-space 

when time-averaged across all frames. The last of these constraints facilitates estimation of 

coil sensitivities without calibration data. A representative VISTA sampling pattern for PC-

MRI is given in Fig. 1. In Fig. 1(a-b), two independent VISTA sampling patterns are plotted 

for encoded and compensated measurements. The interleaved acquisition strategy for PC-

MRI data is given in Fig. 1(c), where the sampling patterns are incoherent across encodings.

 Bayesian representation of data dependencies

In phase-contrast imaging, velocity is encoded into the phase of the complex-valued MR 

images (21). Due to off-resonance effects and magnetic field inhomogeneities, the MR 

images have phase, referred to here as background phase, which does not contain velocity 

information. To compensate for background phase, two measurements are made. The first, 

denoted by yb, is the velocity-compensated measurement. The corresponding image xb = 

mejθ
b only contains the background phase, θb; the multiplication and exponentiation are to 

be interpreted pixel-wise. The second, denoted by yυ, is the velocity-encoded measurement. 

The corresponding image xυ = mej(θb+θυ) contains both the background phase, θb, and the 

velocity-encoded phase, θυ. The relationship between the two images is assumed to be

[4]

The signals xb and xυ are measured under the model in [3], which we denote as

[5]
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[6]

where ϕb and ϕυ are additive measurement noise. The measurement matrices, Ab and Aυ, 

may differ, thereby allowing for different sampling patterns for each of the two 

measurements.

To capture the physical behavior suggested in [4], we model xb, xυ, and θυ as random 

variables. The key object of interest, the phase difference θυ, explicitly appears in the model 

as a parameter to be inferred from the noisy data. In addition, we introduce a “hidden” 

Bernoulli random variable, denoted as υ, to indicate the inferred locations in xυ that contain 

non-zero velocity. By application of Bayes’ theorem and the chain rule for conditional 

probability densities, the posterior distribution on these unknown variables, given the 

observed noisy measurements, can be written

[7]

Here, ∝ denotes proportionality; the double subscripts ybm and xbn denote the mth 

measurement sample and nth image pixel, respectively, for the background encoding. 

Further, N and M denote the total number of pixels and measurements, respectively. Three 

independence assumptions are invoked. The model in [7] assumes that θυ and xb are 

independent, i.e. p(θυ∣xb) = p(θυ). Likewise, we assume υ to be independent of both θυ and 

xb, i.e. p(υ∣xb, θυ) = p(υ). A third independence assumption, p(θυ∣υ) = p(θυ) is chosen for 

convenience, similar to indicator variable modeling adopted in other applications (22, 23, 

24). These independence assumptions are a conservative choice to bypass potential 

regularizing structure in favor of modeling and computational simplicity; more prominent 

signal structure is exploited in the remaining factors discussed below.

Motivated by the idealized relationship in [4], we adopt a mixture density to capture the 

redundancy between a velocity-encoded pixel, xυn, and the corresponding velocity-

compensated (background) pixel, xbn. The conditional distribution is given by

[8]

The notation CN (x; μ, σ2) denotes a circularly symmetric complex-valued Gaussian density 

on x with mean μ and variance σ2. The distribution is conditioned on the hidden indicator 

variable, υn, which serves as probabilistic segmentation of the image into velocity-

containing and velocity-free regions, with υn = 1 denoting velocity at pixel n. The first term 

of [8], (1 – υn)CN (xυn; xbn, σ2), represents the relationship between xυ and xb for zero-
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velocity regions. This term models xυn as a Gaussian perturbed version of xbn. The variance, 

σ2, serves to model physical departures of noiseless images from the idealized assumption in 

[4]; in contrast, the effects of measurement noise are modeled by the likelihood function 

given below. The conditional distribution of xυn given both xbn and υn = 0 is depicted in Fig. 

2(a), where the black arrow denotes the complex-value xbn. The second term of [8], υnCN 
(xυn; xbnejθυn, σ2), describes the relationship for regions that contain velocity-encoded 

phase. The non-Gaussian conditional distribution of xυn given xbn and υn = 1 (i.e., velocity-

containing pixels) is depicted in Fig. 2(b), where the phase is non-informative and the 

magnitude is Rician centered at |xbn|. The functional form of this conditional distribution is 

(25, 26),

[9]

where I0(x) denotes a zeroth-ordered Bessel function of the first kind.

Four more modeling choices remain in [7]. First, we assume the k-space measurements yb 

and yυ are corrupted by additive, circularly symmetric complex Gaussian noise. This choice 

yields the likelihood models

[10]

[11]

where ω2 is the noise variance, and the mean, [Ax]n, is the nth element of the matrix vector 

product Ax. Second, for the prior on the phase, p (θυn), we adopt the non-informative prior 

of equal probability on the interval [0, 2π). Third, we define the hidden variable υ ∈ {0, 1}N 

as a Bernoulli indicator with p (υn = 1) = γ. Thus, γ is the prior probability that any pixel 

contains non-zero velocity, and 1 − γ is the prior probability that a pixel contains no velocity.

Finally, we address the prior p(xb). We experimentally observe that a three-dimensional non-

decimated wavelet transform, Ψ, applied to xb and xυ across both space and time results in 

multiple sparse representations. Rather than postulate a prior density to model this behavior, 

we instead make the convenient and effective choice of augmenting the likelihood, as in 

(27). To this end, we form M̃ -by-N matrices Ãb and Ãυ, appending Ψ as additional rows to 

the matrices Ab and Aυ; then, we adopt a zero-mean Laplace likelihood for p([Ψxb]m∣xb) and 

p([Ψ xυ]m∣xυ). The Laplace density for a complex-valued random variable x and scaling 

parameter λ is

[12]
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The Laplace prior in [12] can be related to the ℓ1 norm by the maximum a posteriori (MAP) 

estimate. The MAP solution maximizes the posterior distribution. To see the relation, 

maximize the log posterior under Gaussian likelihood and Laplace prior given as

[13]

[14]

[15]

However, in this work, we seek to approximate the minimum mean squared error (MMSE) 

estimate, given by the mean of the posterior distribution, via sum-product message passing. 

The cost function for MMSE minimization, within an approximate message passing 

algorithm, is described by the Bethe Free Energy (28, 29).

 Approximate message passing

The data model in [7] can be visualized as a factor graph. Factors and random variables are 

represented by nodes in the graph, with squares denoting factors and circles denoting 

variables. Edges on the graph represent the dependence of a given factor on a variable. The 

factor graph of the posterior distribution for the proposed model is given in Fig. 3. By 

expressing the posterior probability distribution of [7] as a factor graph, we can apply the 

sum-product algorithm to compute approximate marginal posterior distributions of xb, xυ, 

θυ, and υ through the use of message passing techniques (30). From the marginal posterior 

distribution of a variable, the mean value provides the MMSE estimate. As depicted in Fig. 

3, messages are passed along edges in the graph and convey nodes’ “beliefs” about the states 

of their neighboring variable nodes. The interested reader is referred to (31) and (32) for an 

introduction to sum-product message passing. Importantly, on the dense, loopy portion of 

the graph, the message passing computation can be greatly simplified by adopting 

generalized approximate message passing (GAMP) (33), which invokes the central limit 

theorem and Taylor series approximations to dramatically reduce computational complexity. 

We employ the GAMP toolbox1 for message passing on this portion of the graph. We note 

that message evaluation requires a first order computation involving the matrix A, the 

conjugate transpose, AH, and the wavelet transforms Ψ and ΨH; therefore, fast transforms or 

parallel hardware for the implementation of A, AH, Ψ, and ΨH enable computation in 

seconds, not hours.

1Open source software is available at http://gampmatlab.wikia.com.
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 Methods

 Retrospectively accelerated in vivo cardiac data acquisition

A healthy volunteer was imaged on a 1.5 T (Avanto, Siemens Healthcare, Erlangen, 

Germany) scanner using an 18-channel coil array. The imaging plane was perpendicular to 

the ascending aorta and captured crosssections from both ascending and descending aorta. 

Fully sampled data were acquired and retrospectively downsampled to obtain acceleration 

factors R = 2, 4, 6, 8, 10, 12, 14, and 16 using VISTA. The data were collected using a 

gradient-echo pulse sequence, with TE = 3.21 ms, TR = 5.63 ms. This in vivo dataset was 

collected in a single breath-hold using segmented acquisition with prospective EKG 

triggering. The VENC was set at 180 cm/s and the segment size (k-space lines/segment) was 

set at 3, resulting in a temporal resolution of 33.8 ms and acquisition time of 36 heartbeats. 

The matrix size and field of view were 192 × 108 and 360 × 248 mm2, respectively.

 Prospectively accelerated flow phantom data acquisition

For experimental validation, we used a CardioFlow 5000 MR flow pump (Shelley Medical 

Imaging Technologies, Toronto, Ontario, Canada). This programmable pump generates 

periodic, reproducible flow profiles and is capable of generating a volumetric flow rate of 

300 ml/s. The phantom included a water bottle and flexible pipe. The pipe was bent into a u-

shape such that two sections of the pipe were aligned in parallel beneath the bottle. The 

imaging plane was perpendicular to the parallel pipe sections such that in-flow and return-

flow to the pump were measured simultaneously. For flow quantification, the two cross-

sections of the pipe in each image sequence were treated as separate measurements. We note 

that the volume passing through each cross section must be the same, but their velocity-time 

profile may differ. CardioFlow 5000 MR comes with two pre-programmed physiological 

waveforms: one waveform that mimics femoral flow and the other that mimics carotid flow. 

To generate additional data, these two waveforms were modified by changing the vertical 

scaling, horizontal scaling, and duty cycle. In total, twelve different waveforms were 

generated for n = 24 unique measurements per acceleration factor. Data were collected on 

the 1.5 T Siemens scanner with a 32-channel coil array. The prospectively downsampled 

data were collected using VISTA for seven different acceleration rates, i.e., R = 1, 2, 4, 5, 8, 

10, and 16.

All data were collected using a gradient-echo pulse sequence, with TE = 2.94 ms, TR = 4.92 

ms, and VENC = 150 cm/s. The datasets were collected using prospectively triggered 

segmented acquisition, with pseudo-EKG trigger signal generated by the flow pump. The 

segment size was set at 4, resulting in a temporal resolution of 39.4 ms that was fixed across 

all datasets. The matrix size and field of view were 160 × 160 and 300 × 300 mm2, 

respectively. The acquisition time was 40/R pseudo-heartbeats.

 Prospectively accelerated in vivo cardiac data acquisition

Five healthy volunteers were imaged on the 1.5 T Siemens scanner using an 18-channel coil 

array. Two imaging planes were selected above the left atrium, one perpendicular to the 

ascending aorta and one perpendicular to the descending aorta. The prospectively 

downsampled data were collected using VISTA sampling for six different acceleration rates, 
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i.e., R = 2, 4, 5, 8, 10, and 16. As a comparative reference, two additional datasets were 

collected with uniform rate-2 undersampling and fully sampled central k-space for a net 

acceleration of R = 1.74. Each dataset was collected in a separate breath-hold. The reference 

datasets were collected before and after the six VISTA accelerated acquisitions and were 

reconstructed using GRAPPA (34). The flow information from the GRAPPA-reconstructed 

images was extracted by following the procedure reported by Bernstein et al. (35). Together, 

these five volunteers, and two cross-sections of aorta, generated ten independent 

measurements for flow quantification, i.e., n = 10.

The data were collected using a gradient-echo pulse sequence, with TE = 3.10 ms and 

TR=5.17 ms. Each in vivo dataset was collected in a single breath-hold using segmented 

acquisition with prospective EKG triggering. For these data, the VENC was set at 150 cm/s 

and the segment size was set at 4, resulting in a temporal resolution of 41.3 ms and 

acquisition time of 40/R heartbeats. The matrix size and field of view were 160 × 160 and 

300 × 300 mm2, respectively.

 Image reconstruction

The ReVEAL reconstruction was computed off-line using customized Matlab software 

(Mathworks, Natick, MA) running on Red Hat Enterprise Linux with an Intel 

Core™9/2/2015 i7-2600 at 3.4 GHz CPU and 8 GB of RAM. Coil sensitivity maps, for all 

methods, were self-calibrated by averaging undersampled k-space data over all time frames 

and applying the adaptive array combination method (36). Maxwell correction was applied 

to all the datasets by incorporating the correction map into the data model given in [8].

The noise variance, ω2, was automatically estimated from the periphery of k-space for each 

acquisition, after SVD-based compression from 32 (phantom) or 18 (in vivo) coils to 12 

virtual coils (37). The prior probability of flow, γ, at each pixel and frame is learned directly 

from the data using the expectation-maximization procedure (38, 39, 40). The parameter σ2 

characterizes the variability between encodings and was set to . The relative values 

of λ across the 8 wavelet sub-bands were λ0 × {0.01, 1, 1, 2, 1.2, 2.4, 2.4, 3.6}; these relative 

values were determined by application of an automated procedure (41) to a separate in vivo 

data set and were held fixed across all acceleration rates and for both phantom and in vivo 

data. The single algorithm parameter requiring ad hoc tuning was λ0, which sets a global 

scaling of the wavelet regularization. We employed λ0 = 0.7 for all in vivo data and λ0 = 4 

for the flow phantom data. Daubechies db1 wavelets were used in the spatial dimensions and 

db3 wavelets in the temporal dimension. Codes to perform 1-4 dimensional non-decimated 

wavelet transforms are provided by the authors on GitHub2.

ReVEAL is compared with k-t SPARSE-SENSE (15) as well as ReVEAL with the mixture 

density omitted, termed “ReVEAL no mixture.” Although the ReVEAL no mixture 

reconstruction relies on overcomplete spatio-temporal wavelets, a squared-error penalty for 

data fidelity, optimized VISTA sampling patterns, and message passing computation, it does 

not assume any relationship between encodings. Comparison between ReVEAL and 

2https://github.com/arg-min-x/Non-Decimated_Wavelets
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ReVEAL no mixture is intended to highlight the benefit from the regularizing effect of the 

proposed statistical model between encodings in [8]. A code to implement k-t SPARSE-

SENSE was provided by Daniel Kim, Li Feng, and Hassan Haji-Valizadeh. We utilized the 

same VISTA sampling patterns for k-t SPARSE-SENSE as used for ReVEAL and ReVEAL 

no mixture; thus, we forfeit any potential gain for ReVEAL and ReVEAL no mixture from 

using the interleaved VISTA pattern when compared to k-t SPARSE-SENSE with the pattern 

used by Kim et al. in (15). The regularization parameter for k-t SPARSE-SENSE was set in 

concordance with (15). Reconstruction times for the prospectively downsampled in vivo 

dataset at R = 10 were approximately 6.5 minutes, 3.5 minutes, and 7 minutes, for ReVEAL, 

ReVEAL no mixture, and k-t SPARSE-SENSE, respectively.

 Data analysis

Peak velocity (PV) and stroke volume (SV) were used as quantitative measures of fidelity. 

The PV is defined as the maximum velocity across all pixels and frames within a region of 

interest (ROI). The SV is defined as the volume of blood or fluid passing through an ROI for 

one heartbeat or pump cycle. ROIs were identified for each image series by manually 

segmenting the pipes or blood vessels from the magnitude images. To capture the motion of 

the aorta during the heartbeat, each ROI was manually shifted from frame-to-frame. The size 

of the ROI was held constant across different acceleration rates and frames to limit variation 

in PV and SV due to ROI selection.

For phantom imaging and retrospectively downsampled in vivo data, the reconstructions 

corresponding to R = 1 (fully sampled) data were used as reference. Results from R = 1 were 

calculated using the adaptive array combination method (36). For the prospectively 

accelerated in vivo data, data reconstructed at R = 1.74 with GRAPPA (34) were used as 

reference. Bland-Altman plots–one for each acceleration rate–were used to display PV and 

SV. To quantify variations due to physiological changes, an additional Bland-Altman plot 

was created comparing the two R = 1.74 GRAPPA reconstructions.

The retrospectively downsampled in vivo dataset, collected from a single volunteer, does not 

mimic a clinical acquisition process but is included because it does not suffer from 

physiological variations present in the prospectively sampled datasets. In the retrospectively 

accelerated case, the reference is know precisely up to measurement noise, and we are 

guaranteed the same velocity-time profile for each acceleration. A Bland-Altman plot was 

not constructed for the retrospectively downsampled in vivo data due to the small sample 

size. However, normalized mean squared error (NMSE) and the structural similarity index 

(SSIM) (42) for the velocity map were calculated for each acceleration rate. NMSE is 

defined as

[16]
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where xref is the noisy reference from fully sampled data and x̂r the reconstructed image 

from acceleration rate r. xref and x̂r were formed from the compensated image magnitude 

and velocity encoded phase, i.e. |xb|ejθυ.

 Results

 Retrospectively accelerated in vivo data

The retrospectively downsampled image sequences were reconstructed using ReVEAL, 

ReVEAL no mixture, and k-t SPARSE-SENSEs; results are shown in Fig. 4. The PV and SV 

were calculated inside the ascending aorta and plotted versus acceleration rate R. Results 

from R = 1 were calculated using the adaptive array combination method and are given as a 

reference. As shown in Fig. 4(a-b), quantitative fidelity of SV and PV was preserved to an 

acceleration factor of R = 12. For R ≤ 12, the PV and SV were within 6.5% and 2.5% of the 

reference, respectively. Additionally, ReVEAL showed the lowest NMSE for R ≥ 6 and 

highest velocity SSIM for R ≥ 4. Images from fully sample data and R = 12 data for 

ReVEAL, ReVEAL no mixutre, and k-t SPARSE-SENSE are given in Fig. 5. As evident in 

Fig. 5(c-d) ReVEAL greatly reduced aliasing artifacts and showed increased accuracy of 

velocities in the ascending aorta. The spatial regularization used in ReVEAL and ReVEAL 

no mixture greatly reduced background noise in the magnitude image at the cost of spatial 

blurring, as shown in Fig. 5(a-b). For R = 10, the velocity-time profiles for mean and peak 

velocities are shown in Fig. 6(a-b). See Movie S1 in the supporting material for images 

reconstructed at R = 12.

To examine the modeling choice in [8], histograms were constructed from fully sampled 

data, as shown in supporting Fig. S2. Panel (a) shows the real part of the complex difference 

between the encoded images, xυ − xb, for a zero-velocity region; a chi-square goodness-of-

fit accepts the hypothesis of a Gaussian distribution with a 5% significance level. 

Additionally, for pixels taken from a region inside the descending aortic arch, panel (b) 

shows the histogram of the ratio of the magnitudes; a chi-square goodness-of-fit accepts the 

hypothesis of a Rician distribution with a 5% significance level.

 Prospectively accelerated phantom data

The phantom data were reconstructed using ReVEAL, ReVEAL no mixture, and k-t 

SPARSE-SENSE; the fully sampled data, reconstructed with the adaptive array combination 

array combination method, were used as reference. The resulting Bland-Altman analyses 

and Pearson correlation coefficients are tabulated in Table 1. The corresponding Bland-

Altman plots are provided in the supporting material Figures S2-S4.

The variability of ReVEAL is low up to R = 10, increasing only moderately compared to R 
= 2. The fidelity of reconstruction is therefore preserved to an acceleration factor R = 10. 

Fidelity of PV and SV is, however, lost at R = 16 as seen in the negative bias and increased 

variance. In comparison, ReVEAL no mixture compares favorably to ReVEAL at low 

acceleration rates but degrades significantly beyond R = 5, and k-t SPARSE-SENSE exhibits 

large variances. Also, the Pearson correlation coefficients for ReVEAL are consistently 

higher than those of ReVEAL no mixture and k-t SPARSE-SENSE.
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 Prospectively accelerated in vivo data

The prospectively sampled in vivo data were reconstructed using ReVEAL, ReVEAL no 

mixture, and k-t SPARSE-SENSE. The GRAPPA reconstructions at R = 1.74 were used as 

reference. The resulting Bland-Altman analyses and Pearson correlation coefficients are 

tabulated in Table 2. The corresponding Bland-Altman plots are provided in the supporting 

material Figures S5-S7. To quantify physiological changes in prospectively accelerated data, 

Bland-Altman analysis between two GRAPPA acquisitions was performed. The values for 

two GRAPPA aquisitions for SV are μd = −1.28 ml, , and r = 0.99 and for PV μd 

= 0.66 cm/s, , and r = 0.81.

As evident from Table 2, the variability of ReVEAL, for R ≤ 10, compares favorably to both 

ReVEAL at R = 2 and GRAPPA at R = 1.74. As was the case for phantom imaging, fidelity 

of PV and SV is lost at R = 16 as reflected in the relatively large bias and variance. In 

comparison, the performances of ReVEAL no mixture and k-t SPARSE-SENSE degrade 

rapidly beyond R = 5. For R = 10, representative velocity-time profiles for mean and peak 

velocities are shown in Fig. 6(c-d). As evident from the figure, the profiles generated from 

ReVEAL closely follow the reference, while the profiles from ReVEAL no mixture show 

excessive bias and the profiles from k-t SPARSE-SENSE show both excessive bias and 

variance. An example of images reconstructed at R = 10 using the three methods is provided 

in Fig. 7. The bottom row in Fig. 7 shows the posterior probability of the velocity indicator 

variable, υ. This posterior probability map is an estimate produced by ReVEAL of the likely 

locations of velocity (shown in white) on a per pixel basis; it is a direct consequence of the 

mixture density model used in ReVEAL. See Movie S2 in the supporting material for 

images reconstructed at R = 10.

 Discussion

The proposed ReVEAL approach for PC-MRI yields an empirical Bayes reconstruction with 

fast message passing computation that jointly processes the entire data set across space, 

time, coils, and encodings. Estimation of stroke volume and peak velocity using prospective 

in vivo acquisition at R = 10 showed variance and Pearson correlation coefficient similar to 

R = 1.74 GRAPPA (n = 10); the accelerated measurement comprised four heart-beats in a 

single breath-hold, segmented acquisition. The posterior means computed by the algorithm 

provide MMSE estimates of image magnitude and velocity-encoded phase, and posterior 

variances provide, if desired and with no additional computation, confidence labels for the 

estimated quantities produced by the nonlinear reconstruction. Further, these posterior 

probabilities enable automated tuning of algorithm parameters via expectation-

maximization, demonstrated here for selection of the prior probability of flow parameter, γ. 

The wavelet regularization in ReVEAL provides spatio-temporal regularization, while k-t 

SPARSE-SENSE, for example, captures only temporal regularization. Further, the signal 

structure present between encodings is exploited in ReVEAL using a non-Gaussian mixture 

density, which significantly reduced both bias and variance in SV and PV for R > 5. The 

mixture density implicitly results in an automated segmentation of pixels via the posterior 

probability of the velocity indicator variable, υ; the action of this velocity indicator, υ, is 

particularly visible, for example, at the brachial arteries seen in Fig. 7.
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The proposed Bayesian data model includes the independence assumption, p(θυ∣υ) = p(θυ). 

This choice to impose no additional statistical dependence is adopted for computational 

convenience; that is, potential regularization gain from additional physically-motivated 

structure is conservatively bypassed in favor of computational simplicity. Yet, additional 

structure across space, time and encodings may indeed be incorporated in the Bayesian 

model presented here and is a topic of continuing investigation. Examples include Markov 

random fields (23) and Markov trees (24). We believe that the Bayesian approach of 

ReVEAL enables both a flexible modeling framework and a fast computational engine for 

exploiting signal structure not readily captured in traditional regularized inversion methods.

The ReVEAL approach, as presented here, required one user-defined parameter, λ0, that 

scaled the wavelet regularization; and, the ratios of regularization parameters for the eight 

wavelet subbands were set using a separate in vivo scan not otherwise included in the study. 

We believe that the automated expectationmaximization procedure used here for selection of 

the prior probability of velocity, γ, could be employed for fully-automated tuning of all 

parameters.

The acceleration provided by ReVEAL may be traded for improved spatial or temporal 

resolution. For example, enhanced temporal resolution can allow flow imaging for pediatric 

and stress imaging applications where higher heart rates are encountered or for vessels, e.g. 

carotid or femoral arteries, with rapidly changing velocity-time profiles. Alternatively, the 

acceleration may enable real-time, free-breathing acquisition for 2D PC-MRI. We conjecture 

that acceleration beyond the R = 10 demonstrated here for through-plane flow imaging can 

be achieved in 4D flow imaging due to the added redundancy from the two additional 

encodings and one additional spatial dimension. The computational complexity of the 

approximate message passing algorithm scales only linearly in the number of encodings, 

receive coils, frames, and number of k-space samples per coil; therefore, we expect 

ReVEAL to remain computationally tractable for larger image series and for 4D flow 

imaging.

 Conclusion

We have presented ReVEAL as a novel technique for recovery of accelerated PC-MRI data; 

the approach includes Bayesian modeling of PC-MRI data, a VISTA sampling strategy, and 

fast message passing computation. Quantitative results were presented for in vivo and flow 

phantom data for 2D through plane flow measurements; further, ReVEAL is extensible to 

applications such as 4D flow, real-time 2D flow, and DENSE (43).

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A representative set of VISTA sampling patterns for ReVEAL at an acceleration rate of R = 

10 with 108 phase encode lines and 20 frames. (a) The VISTA sampling pattern for the 

compensated data. (b) The VISTA sampling pattern for the encoded measurements. (c) The 

interleaved encoded and compensated sampling patterns.
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Figure 2. 
The conditional prior distributions used by ReVEAL. (a) The conditional distribution for a 

velocity-encoded, complex-valued pixel given the corresponding velocity-compensated pixel 

for velocity-free regions. In this case, the magnitude and phase are constrained. (b) The 

conditional distribution for a velocity-encoded, complex-valued pixel given the 

corresponding compensated pixel for velocity-containing regions. Here, only the magnitude 

is constrained.
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Figure 3. 
The factor graph representation of the joint posterior of PC-MRI data for the proposed 

model. Message passing on the graph, also known as belief propagation, is a metaphor for an 

iterative algorithm. By applying the sum-product rule, the update rules for the algorithm can 

be derived. Computation on the left and right loopy portions are accelerated via GAMP. The 

center potion of the graph is updated using standard belief propagation.
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Figure 4. 
A summary of retrospectively accelerated in vivo data quality metrics. A fully sampled 

through-plane image of the ascending aorta was acquired and retrospectively accelerated for 

rates R = 2, 4, 6, 8, 10, 12, 14, and 16. ReVEAL, ReVEAL no mixture, and k-t SPARSE-

SENSE are compared to fully sampled data. (a) The stroke volume in the ascending aorta 

versus acceleration rate. (b) The peak velocity in the ascending aorta versus acceleration 

rate. (c) The normalized mean squared error (NMSE) in dB versus acceleration rate. The 

images used to calculate NMSE were obtained by forming a complex number with 

magnitude equal to the compensated image magnitude, i.e. |xb|, and phase equal to the 

velocity encoded phase, i.e. θυ. (d) The structural similarity index (SSIM) (42) for the 

velocity encoded phase image versus acceleration rate. The phase SSIM measurement was 

performed only on pixels within the top 95% of magnitude value in the reference image.
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Figure 5. 
Retrospectively accelerated in vivo data reconstructed at R = 12. ReVEAL, ReVEAL no 

mixture, and k-t SPARSE-SENSE are compared to the fully sampled data for one 

representative frame. The first column was reconstructed from fully sampled data using the 

adaptive array combination method (36). The remaining columns were reconstructed from R 
= 12 accelerated data with ReVEAL, ReVEAL no mixture, and k-t SPARSE-SENSE. (a) 

The reconstructed, normalized magnitude images. (b) The absolute difference in magnitude 

between the accelerated images and the fully sampled image. (c) The velocity maps in cm/s. 

(d) The absolute difference between the fully sampled velocity map and the velocity map 

recovered from accelerated data. The difference was taken for pixels within the top 90% of 

magnitude in the reference image to avoid large differences due to low magnitude phase 

noise.
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Figure 6. 
Representative velocity-time profiles from in vivo data. (a) The mean velocity in an ROI 

versus time in the descending aorta from retrospectively accelerated in vivo data at R = 10. 

ReVEAL, ReVEAL no mixture, and k-t SPARSE-SENSE are compared to fully sampled 

data. (b) The peak velocity in an ROI versus time in the descending aorta from 

retrospectively accelerated in vivo data. (c) The mean velocity in an ROI versus time in the 

ascending aorta from prospectively accelerated in vivo data at R = 10. ReVEAL, ReVEAL 

no mixture, and k-t SPARSE-SENSE are compared to GRAPPA at R = 1.74. (d) The peak 

velocity in an ROI versus time in the ascending aorta from prospectively accelerated in vivo 

data.
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Figure 7. 
Prospectively accelerated in vivo data reconstructed at R = 10 and GRAPPA at R = 1.74. 

ReVEAL, ReVEAL no mixture, and k-t SPARSE-SENSE are compared for one 

representative frame. (a) The normalized magnitude image. (b) The velocity (phase) map in 

cm/s. (c) The posterior probability of velocity present in a voxel, in grayscale from 0 (black) 

to 1 (white). Only ReVEAL provides this time-resolved posterior estimate of velocity 

locations.
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