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Abstract In this second section of a two-part mini-re-
view article, we introduce 101 further nematicidal and
non-nematicidal secondary metabolites biosynthesized
b y n ema t o p h a g o u s b a s i d i omy c e t e s o r n o n -
nematophagous ascomycetes and basidiomycetes. Sev-
eral of these compounds have promising nematicidal
activity and deserve further and more detailed analy-
sis. Thermolides A and B, omphalotins, ophiobolins,
bursaphelocides A and B, illinitone A, pseudohalonectrins A
and B, dichomitin B, and caryopsomycins A–C are ex-
cellent candidates or lead compounds for the develop-
ment of biocontrol strategies for phytopathogenic
nematodes. Paraherquamides, clonostachydiol, and
nafuredins offer promising leads for the development
of formulations against the intestinal nematodes of
ruminants.
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Introduction

Metabolites from nematophagous basidiomycetes

General remarks

The chemical ecology of nematophagous fungi is still far from
understood. Little has been done to screen for metabolites in
nematophagous fungi, or nematicidal metabolites in other fun-
gi, since the pioneering studies by Stadler and colleagues pub-
lished in the 1990s (Stadler et al. 1993a, b, 1994a, b, c, d). In
the first part of this review, we discussed 83 primary and
secondary metabolites from nematophagous ascomycetes
(Degenkolb and Vilcinskas, in press). In this second install-
ment, we consider nematicidal metaboli tes from
nematophagous basidiomycetes and from those fungi that
are currently regarded as non-nematophagous species. The
numbering system for the compounds introduced here begins
at 84 to provide continuity with the first part of the review.

Given that species parasitizing nematodes or their eggs are
found in all major fungal phyla including Chytridiomycota,
Ascomycota, Basidiomycota, and also the Zoopagomycotina
and Mucormycotina,1 multiple and independent evolution of
nematophagy was hypothesized (Barron 1977). The scenario
of nematode-fungus associations may be far more complex
than previously thought. This was recently exemplified by
Morris and Hajek (2014) who reported on the parasitic nem-
atode Deladenus siricidicola (Tylenchida: Neotylenchidae),
which is used for biocontrol of the invasive pine-killing
woodwasp Sirex noctilio (Hymenoptera: Siricidae). In its my-
cophagous phase, D. siricidicola feeds exclusively on the

1 Incertae sedis, formerly belonging to the traditional Zygomycota.
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growing hyphal tips of its basidiomycete host Amylostereum
areolatum (Russulales: Amylostereaceae). The presence of
woodwasp larvae triggers the nematode to change its life
style—it invades the wasp larvae and sterilizes most of them.
Notably, the white-rot fungus, which has so far been thought
to serve as food source for Deladenus sp., was also shown to
(1) invade the vulva of adult female mycophagous nematodes
and (2) to kill and invade nematode eggs. Eggs were parasit-
ized by the hyphal tips of the fungus whereas cystidia seemed
to colonize the vulva of adults. It remains to be clarified if a
toxin is also involved in the infection process,

Authors are aware of the fact that missing evidence does
not necessarily imply a non-nematophagous life style of a
fungus. However, for reasons of convenience and consistency
with literature, we prefer to retain the terminus Bnon-
nematophagous^ for those associations without evidence for
nematophagy.

Metabolites from the genus Pleurotus

The small but monophyletic family Pleurotaceae comprises
nematophagous white-rot fungi (Thorn et al. 2000; Kirk et al.
2008). Members of the genus Pleurotus, such as the oyster
mushroom Pleurotus ostreatus, have been shown to secrete
tiny toxin-containing droplets, which effectively paralyze a
nematode without killing it within 30 s of contact. The prey
is subsequently penetrated by the fungal trophic hyphae and
digested within 24 h (Thorn and Barron 1984; Barron and
Thorn 1987).

The first nematicidal compound isolated from the genus
Pleurotuswas (E)-2-decenedioic acid (84).P. ostreatusNRRL
3526 (= ATCC 90520) was grown for 30 days at room tem-
perature (21–23 °C) on autoclaved, damp wheat straw. There-
after, an aqueous extract of the colonized substrate was fil-
tered, and the filtrate was freeze-dried. After reconstitution
of the lyophilizate in water, the organic fraction of the extract
was further purified, finally by HPLC of the acetone-soluble
fraction. The nematicidal principle, compound 84, which elut-
ed as a single peak, was characterized by MS and NMR. An
aqueous solution of pure 84 at a concentration of 300 μg/ml
caused the immobilization of 95 % of a test population of the
nematode Panagrellus redivivus within 1 h. Notably, this ef-
fect could not be reversed by rinsing the treated nematodes
with deionized water. Organic extracts of a static straw culture
have not been prepared and investigated for possible nemati-
cidal activity (Kwok et al. 1992).

Six further nematicidal compounds (1, 85–89) were isolat-
ed from an 11-day fermentation of the pale oyster Pleurotus
pulmonarius. All of the compounds were found in the myce-
lial extracts, whereas the culture broth only contained com-
pounds 86–89. Compound 85 was (S)-(9Z,11E)-13-hydroxy-
9,11-octadecadienoic acid (also known as S-coriolic acid), and
this along with compound 1 (linoleic acid) exhibited the most

potent nematicidal activity. The median lethal concentrations
(LC50) against Caenorhabditis elegans were less pronounced
for p-anisaldehyde (86), p-anisyl alcohol (87), 1-(4-
methoxyphenyl)-1,2-propanediol (88), and 2-hydroxy (4’-
methoxy)-propiophenone (89). However, these four com-
pounds were produced in comparatively large amounts, so
they certainly contribute to the nematicidal repertoire of the
producer (Stadler et al. 1994a). The direct application of nem-
aticidal Pleurotus spp. to the soil (Thorn and Barron 1984;
Barron and Thorn 1987) should therefore be considered as a
potentially cost-effective approach for the biocontrol of
phytoparasitic nematodes (Palizi et al. 2009).

Three nematicidal compounds were isolated using
bioassay-guided fractionation from a 10-day submerged cul-
ture of Pleurotus eryngii var. ferulae L14, a subspecies asso-
ciated with Ferlua communis subsp. communis, the giant fen-
nel (Mang and Figliuolo 2010). Cheimonophyllon E (90), a
colorless amorphous solid, was obtained from an ethyl acetate
extract of the culture filtrate. A yellowish amorphous solid,
5α,8α-epidioxyergosta-6,22-dien-3-β-ol (91), and a colorless
amorphous solid, 5-hydroxymethyl-furancarbaldehyde (92),
were detected in the mycelium acetone extract. The LC50

values of compounds 90–92 against the pine wood nematode
(Bursaphelenchus xylophilus) were 70.8, 174.6, and 54.7 mg/
l, respectively, after 72 h. The LC50 values against P. redivivus
were 125.6, 128.1, and 82.8 mg/l, respectively, after the same
exposure (Li et al. 2007).

Metabolites from the genera Coprinus and Coprinellus

The nematophagous fungus Coprinus comatus (Agaricales,
Coprinaceae), commonly known as the Shaggy Inkcap or
Lawyer’s Wig, forms spiny balls that enhance its nematicidal
activity by mechanically damaging the nematode cuticle, ulti-
mately leading to the loss of pseudocoelomic fluid (Luo et al.
2004, 2007). Agar cultures of C. comatus C-1 yielded a mix-
ture of nematicidal secondary metabolites after cultivation on
potato-dextrose agar at 25 °C for 15 days. Seven compounds
were obtained from organic extracts, namely 5-methylfuran-3-
carboxylic acid (93), 5-hydroxy-3,5-dimethylfuran-2 (5H)-
one (94), 5-hydroxy-3-(hydroxymethyl)-5-methylfuran-2
(5H)-one (95), 4,6-dihydroxyisobenzofuran-1,3-dione (96),
4 ,6-d ihydroxybenzofuran-3 (2H ) -one (97 ) , 4 ,6-
dimethoxyisobenzofuran-1 (3H)-one (98) and 3-formyl-2,5-
dihydroxybenzyl acetate (99). Compounds 93 and 94
displayed the most potent nematicidal activity against
Meloidogyne incognita and Panagrellus redivivus, with
LD50 and LD90 values of 100 and 200 μg/ml, respectively,
for both compounds (Luo et al. 2007).

Organic extracts of Coprinus (now Coprinellus)
xanthothrix (Agaricales, Psathyrellaceae) 4916 agar cultures
yielded three further nematicidal metabolites: xanthonone
(100), 7,8,11-drimanetriol (101) and 2-(1H-pyrrol-1-yl)-
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ethanol (102). The LD50 values of compounds 100 and 102
were 250 and 125 μg/ml, respectively, against both M.
incognita and P. redivivus, whereas compound 101 was prac-
tically inactive (Liu et al. 2008).

Metabolites from the genus Nematoctonus

Nematoctonus robustus, the anamorph of Hohenbuehelia
grisea2 (Agaricales, Pleurotaceae), is able to trap nematodes
conidia, which form sticky knobs upon germination (Dowe
1987). N. robustus CBS 945.69 was grown in a fermenter at
24 °C for 11 days until the antimicrobial activities of the ex-
tracts did not increase any further. The bioactive principle
consisted of dihydropleurotinic acid (103) and pleurotin
(104), two 1,4-naphthoquinone antibiotics, and leucopleurotin
(105), a precursor thereof. Biosynthesis of pleurotin involves a
farnesylhydroquinone intermediate which is further cyclized,
rearranged, and oxidized (Gill and Steglich 1987). Compounds
103–105 displayed weak antifungal activities and medium-to-
weak activities against bacteria and yeasts. None of the three
quinones was nematicidal for C. elegans (Stadler et al. 1994b);
however, effects toward other nematode species have not been
reported so far. Notably, pleurotin was shown to act as an in-
hibitor of the thioredoxin–thioreductase system (Welsh et al.
2003). Subsequently, different species of pleurotin-producing
basidiomycetes were investigated, and a fermentation protocol
was developed to obtain this anticancer lead metabolite in
concentrations>300 mg/l (Shipley et al. 2006). A total synthe-
sis of 104 and 105 was also reported (Hart and Hunag 1988).

Nematicidal metabolites from nematophagous basidiomy-
cetes as well as compounds 103–105 are illustrated in Fig. 1.

Metabolites from non-nematophagous ascomycetes

Nematicidal metabolites from Lachnum papyraceum

The wood-inhabiting fungus L. papyraceum (Helotiales,
Hyaloscyphaceae) A 48–88 is probably the most thoroughly
investigated producer of nematicidal secondary metabolites.
Five nematicidal substances were isolated from an 18-day fer-
mentation culture filtrate, all displaying cytotoxic, antimicrobi-
al, and nematicidal activities against C. elegans but not M.
incognita (Stadler et al. 1993a; Anke et al. 1995). Three were
identified as the previously known compounds (+)-mycorrhizin
A (106), (+)-chloromycorrhizin A (107) and (1E)-
dechloromycorrhizin A (108), but two novel compounds were
isolated as colorless substances, the crystalline lachnumon

(109) and the oily lachnumol A (110), both of which contained
a rare chlorinated 5,6-epoxide. Both compounds are therefore
highly sensitive to oxygen and acid, and even aqueous or meth-
anolic solutions were highly unstable. Under these conditions,
the epoxy group opens to form a reactive cation, leading to
further, rapid decomposition (Stadler et al. 1993b). Because
chlorine substitution in compounds of terrestrial origin is com-
paratively rare, the influence of a bromide supplement on the
secondary metabolism of strain A 48–88 was investigated. The
addition of 5 mMCaCl2 and 50 mMCaBr2 to the uninoculated
fermentation medium led to unexpected changes in the metab-
olite profile. Notably, chloromycorrhizin A (107), (1E)-
dechloromycorrhizin A (108), and lachnumon (109) were not
detected anymore, and only traces of mycorrhizin (106) and
lachnumol (110) were present. However, six novel metabolites
bearing a dihydroisocoumarin (isochroman-1-one) skeleton
were identified: 6,8-dihydroxy-3-methylisochroman-1-one (6-
hydroxymellein, 111), 4-chloro-6-hydroxymellein (112), 4-
bromo-6-hydroxymellein (113), 6-methoxymellein (114), 4-
chloro-6-methoxymellein (115), and 4-chloro-6,7-
dihyroxymellein (116). All six compounds were only weakly
nematicidal (Stadler et al. 1995a, b). The addition of CaBr2
following the detection of (1E)-dechloromycorrhizin A (108)
after 10 days of fermentation resulted in further diversification
of the secondarymetabolite profile. Brominated analogs named
mycorrhizin B1 (117), mycorrhizin B2 (118), lachnumon B1
(119), and lachnumon B2 (120) were identified, and their ac-
tivity was found to be slightly lower than their chlorinated
counterparts (Stadler et al. 1995c, d). In addition to a stereoiso-
mer of compound 108, four non-halogenated compounds were
isolated, namely (1Z)-dechloromycorrhizin A (121) and the
three novel mycorrhizin-related analogs papyracons A, B, and
C (122–124) which showedmutagenic activity in the Ames test
(Stadler et al. 1995c, e). Further minor compounds were isolat-
ed with weak nematicidal activity against C. elegans (Shan et
al. 1996): papyracon D (125), 6-O-methylpapyracon B (126),
6-O-methylpapyracon C (127), lachnumfuran A (128),
lachnumlactone A (129), and chloromycorrhizinol A (130).
This detailed analysis of the Bnematicidal fraction^ of L.
papyraceum A 48–88 also revealed the susceptibility of C.
elegans to a broad range of metabolites. Bioassay-guided
screening for nematicidal compounds should therefore be car-
ried out using economically important phytoparasitic nema-
todes (Anke et al. 1995). The impressive arsenal of nematicidal
metabolites from the non-nematophagous ascomycete L.
papyraceum is summarized in Fig. 2.

Bulgarialactones from Bulgaria inquinans A 40–94

The black bulgar (Bulgaria inquinans), a saprotrophic asco-
mycete (Phacidiales, Phacidiaceae), grows on the bark of
decaying deciduous trees and logs, preferably on oak. An
organic extract of fruiting bodies yielded three azaphilones,

2 Hohenbuehelia spp. capture nematodes by hourglass-shaped sticky
traps (Dowe 1987). The anamorph-teleomorph combination
Nematoctonus/Hohenbuehelia forms a monophyletic, yet diverse clade
within the Pleurotaceae (Koziak et al. 2007).
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named bulgarialactones A, B, and C (131–133), but only com-
pound 132 could be isolated in sufficient quantities for further
analysis. The mycelia of an 11-day submerged culture of
strain A 40–94 yielded compounds 131–133 as dark red oils,
whereas organic extracts of the culture filtrate yielded only
compound 132 in preparative amounts. The LD50 values of
compounds 131 and 132 against C. elegans were 5 and 10–
25 μg/ml, respectively, whereas compound (133) could not be
tested due to its instability and low yield (Stadler et al. 1995f).

Thermolides from Talaromyces thermophilus3 YM 3–4

Submerged cultures of the thermophilc fungus Talaromyces
thermophilusYM3–4 were grown for 21 days at 45 °C, yield-
ing six colorless oils, named thermolides A–F (134–139).
These provided the first evidence for a hybrid polyketide syn-
thase non-ribosomal peptide synthetase (PKS-NRPS) of fun-
gal origin (Niu et al. 2014).4 All thermolides feature an un-
usual 13-membered lactam-bearingmacrolactone ring system.

Thermolides A (134) and B (135) exhibited strong nematici-
dal activities with LC50 values against M. incognita,
Bursaphelenchus xylophilus5 and P. redivivus as high as those
of the avermectin standard, ranging from 0.5 to 1.0 μg/ml.
Thus, thermolides A and B but also the less bioactive
thermolides C (136) and D (137)6 may serve as lead candi-
dates for the development of new biological nematicides (Guo
et al. 2012).

Paraherquamides from Penicillium charlesii ATCC 20841

Seven oxindole alkaloids, paraherquamides A–G (141–
147), were isolated from 7- or 14-day static cultures of
Penicillium charlesii ATCC 20841 grown at 25 °C. The
major compound paraherquamide A (141) was also the
most active one, with an LD50 value of 2.5 μg/ml
against C. elegans (141). The LD50 values of the other
compounds ranged from 6 μg/ml (145) to 160 μg/ml
(144). Broad-spectrum activity was observed against
the three pathogenic nematodes Haemonchus contortus,
Trichostrongylus colubriformis, and T. sigmodontis, each
of them located in a distinct part of the gastrointestinal
tract of the gerbil, Meriones unguiculatus (Ostlind et al.
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Fig. 1 Nematicidal metabolites from nematophagous basidiomycetes. See comments on compounds 103–105 within the text

3 The fungus has recently been reclassified as Thermomyces dupontii.
Penicillium dupontii and Talaromyces thermophilus are used synony-
mously. Both thermolide-producing species mentioned here belong to
the Trichocomaceae, according to their ITS sequences (Houbraken et
al. 2014).
4 A related compound, thermolide G (140), has recently been isolated
from Thermomyces lanuginosus (strains G5 and ATCC 200065), but no
information about its nematicidal activity is available (Niu et al. 2014).

5 Mis-spelled as Bursaphelenches siylopilus by Guo et al. (2012).
6 No information concerning the nematicidal activities of thermolides E
and F is available because only minute amounts have been isolated (Guo
et al. 2012).
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2006). The insecticidal activity of paraherquamides
against the milkweed bug, Oncopeltus fasciatus
(Hemiptera , Lygaeidae), has also been reported
(López-Gresa et al. 2006).

Cochlioquinone A from Bipolaris sorokiniana

B. sorokiniana (syn. Cochliobolus sativus, Pleosporaceae,
Pleosporales) is one of the most notorious plant pathogens
in warmer climates, and as the cause of southern leaf blotch,
seedling blight, crown rot, node infections, head blight and
black point on kernels; it is regarded as the economically most
important foliar pathogen of wheat (Manamgoda et al. 2014).
Static cultures in vermiculite-containing medium were incu-
bated for 14 days at 25 °C producing the yellow, crystalline p-
benzoquinone derivative cochlioquinoneA (148). This caused
the immobilization of 50 % of a C. elegans population after
16 h at a concentration of 135 μM (Schaeffer et al. 1990).
Cochlioquinone A was also obtained from B. leersiae
(Barrow and Murphy 1972), which is a pathogen of Leersia
and Setaria spp. (Poaceae, Manamgoda et al. 2014).

Nematicidal ophiobolins

Approximately 30 C25 sesterterpenoids bearing a tricyclic 5-8-
5 ring system (ophiobolins) have been isolated from fungi.
Most of the producers are members of the genus Bipolaris
(Pleosporales, Pleosporaceae), which include economically
important phytopathogens such as B. oryzae (syn.
Cochliobolus miyabeanus), the brown spot pathogen of rice
B. maydis (C. heterostrophus) that causes southern corn leaf
blight, and B. sorghicola, which causes leaf spot in sorghum.
Even so, ophiobolin K (149) was initially isolated from As-
pergillus ustus JP 118 growing in a roller jar on a solid
vermiculite-containing medium for 28 days at 25 °C. This
caused the immobilization of 50 % of a C. elegans population
after 16 h at a concentration of 10 μg/ml, whereas 6-
epiophiobolin K (150) was inactive (Singh et al. 1991).
Ophiobolins C (151) and M (152) were isolated from the
necrotrophic pathogen B. maydis grown in static culture for
14 days at 25 °C. The LD50 values of compounds 149, 151,
and 152 against C. elegans were 26, 5, and 13 μM, respec-
tively. Ophobolins were shown to non-competitively inhibit
the binding of ivermectin to membrane preparations from

R1

CH
3
O

R2

O

R3

OH

O

O

R2 R3

O

R1

O

O

R1

R2O

OH

O

OH

R2O

O

R1

R3

O

OH

O

OH

O

O

OH

O

OH

O

O

O

OH

O

O

ClO

OH Cl

OH

papyracon D (125) lachnumfuran A (128) lachnumlactone A (129) chloromycorhizinol A (130)

R1 R2 R3

109: lachnumon O Cl Cl

110: lachnumol A OH Cl Cl

119: lachnumon B1 O H Br

120: lachnumol B2 O Cl Br

R1 R2 R3

111: 6-hydroxymellein H H H

112: 4-chloro-6-hydroxymellein H H Cl

113: 4-bromo-6-hydroxymellein H H Br

114: 6-methoxymellein CH3 H Cl

115: 4-chloro-6-methoxymellein CH3 H H

116: 4-chloro-6,7-dihydroxymellein H OH Cl

R1 R2

106: mycorrhizin A H Cl

107: chloromycorrhizin A Cl Cl

108: (1E)-dechloromycorrhizin A H H

121: (1Z)-dechloromycorrhizin A H H

117: mycorrhizin B1 H Br

118: mycorrhizin B2 Cl Br

R1 R2 R3

122: papyracon A H H O

123: papyracon B H H OH, H

124: papyracon C

(stereoisomer of 123)

H H H, OH

126: 6-O-methylpapyracon B CH3 H OH, H

127: 6-O-methylpapyracon C CH3 H H, OH

Fig. 2 Nematicidal metabolites
from the non-nematophagous as-
comycete Lachnum papyraceum
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C. elegans, which accounts for an interaction at the ivermectin
binding site (Tsipouras et al. 1996).7 The practical application
of ophiobolins may be limited by their instability (Yun et al.
1988) and other diverse bioactivities (Au et al. 2000). For
example, some ophiobolins are strongly phytotoxic, whereas
others were harmless to plants (Yun et al. 1988; Evidente et al.
2006a, b). No structure-activity data are yet available to eval-
uate the relationship between the nematicidal and phytotoxic
activities of these compounds.

Bursaphelocides from an anamorphic fungus

A taxonomically unidentified, sterile fungus (strain D1084)
isolated from plant debris and grown in submerged culture
for 6 days at 27 °C was shown to produce the
cyclodepsipeptides bursaphelocides A and B (155, 156). Both
compounds contain 2-hydroxy-3-methylpentanoic acid, iso-
leucine, N-methylvaline, N-methylalanine and β-alanine, but
they differ in that compound 155 also contains proline, where-
as in compound 156, this residue is 4-methylproline.8 The
Bcotton ball on fungal mat method^ was used for bioassay-
guided fractionation of the culture broth. Compounds 155 and
156 caused >96 and >98 % mortality, respectively, when
added to cultures of B. xylophilus at a concentration of
100 μg/ml per ball. Insecticidal activity was observed against
Drosophila melanogaster larvae as well as weak phytotoxic
activity in an alfalfa (Medicago sativa) seed germination test
(Kawazu et al. 1993).

A δ-lactone from Trichoderma sp. YMF 1.00416

The simple δ-lactone 6-n-pentyl-2H-pyran-2-one (6-PAP)
(157) represents the characteristic odoriferous volatile
(Bcoconut flavor^) of several Trichoderma spp. (Hypocreales,
Hypocreaceae). A list of 77 isolates from 8 phylogenetically
verified PAP-producing species has recently been compiled
(Jeleń et al. 2014). Compound 157 is best known for its an-
tagonistic activity toward a number of economically important
phytopathogenic fungi (Gräfenhan 2006; Reino et al. 2008).
More recently, organic extracts of the soil-borne fungus
Trichoderma sp. YMF 1.00416 from a submerged culture
grown at 28 °C were also tested for nematicidal activity. After
48 h exposure, the LD50 values against P. redivivus, C.
elegans, and B. xylophiluswere 69, 71, and 94 μg/ml, respec-
tively (Yang et al. 2012). Other Trichoderma-derived pyrones
such as 6-(1’-pentenyl)-2H-pyran-2-one, massoialactone, δ-
decalactone, and viridepyronone should therefore be screened
for nematicidal activity too (Reino et al. 2008).

Endophytic ascomycetes producing 3-hydroxypropionic
acid

Submerged cultures of a number of endophytic fungi were
screened for potential nematicidal activity against B.
xylophilus using bioassay-guided fractionation. Five strains
with the highest activities were used for the isolation and
structural elucidation of the bioactive principles, including
Phomopsis phaseoli (Diaporthaceae, Diaporthales) and
Melanconium betulinum (Melanconidaceae, Diaporthales).
However, the only nematicidal metabolite in all five isolates
was identified as 3-hydroxypropionic acid (158). Notably,
both of the species listed above may live either as plant path-
ogens or harmless endophytes (Schwarz et al. 2004). Because
phytotoxic fungal isolates must not be used for integrated pest
management, the pure compound should instead be consid-
ered for biocontrol applications. The structures of nematicidal
metabolites from non-nematophagous ascomycetes are sum-
marized in Fig. 3.

Metabolites from non-nematophagous basidiomycetes

Metabolites from Cheimonophyllum candidissimum TA 8644

Six bisabolane-type sesquiterpenoids were isolated from a
culture filtrate of the xylophagous fungus Cheimonophyllum
candidissimum (Agaricales, Cyphellaceae) after 168 h of sub-
merged fermentation, namely cheimonophyllon E (90),
cheimonophyllons A–D (159–162) and cheimonophyllal
(163). The LD50 values of the compounds against C. elegans
were 10 μg/ml (compounds 159 and 162), 25 μg/ml (com-
pounds 160 and 163), 50 μg/ml (compound 161)9 and
>100 μg/ml (compound 93). Compound 159was weakly mu-
tagenic in the Ames test but no comparable data are available
for the others. No phytotoxicity was observed, but the stability
of compounds 159, 160, 162, and 163 is limited by their
reactivity (Stadler et al. 1994c, d). Asymmetric total synthesis
of (+)-cheimonophyllon E (90) and (+)-cheimonophyllal
(163) has been reported (Takao et al. 2002). An additional
minor compound, the nematicidal p-menthan-type monoter-
pene 1,2-dihydroxymintlactone (164), was subsequently ob-
tained as a colorless oil from C. candidissimum TA 8644. Its
LD50 value against C. elegans was 25 μg/ml (Stadler et al.
1995g).

Omphalotins from Omphalotus olearius TA 90170

Mycelia from submerged cultures of the jack-o’-lantern mush-
room Omphalotus olearius (Agaricales, Omphalotaceae)

7 Notably, 6-epiophiobolin C (153) and 6-epiophiobolin M (154) did not
display any nematicidal activity (Tsipouras et al. 1996).
8 The configuration of the amino acids has not yet been determined.

9 In solutions of cheimonophyllon C (161), a 1:1 mixture of the open
form (161a) and the bicyclic acetal (161b) was present (Stadler et al.
1994c).
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yielded nine nematicidal cyclic dodecapeptides that were not
present in the fruiting bodies. The main compound,
omphalotin A (165), is a colorless oil that remains stable dur-
ing isolation and storage. Remarkably, its LD50 against the
plant-parasitic M. incognita was 2 μg/ml, which is ten times
more potent than the ivermectin standard. The saprotrophic
nematode C. eleganswas 35-fold less susceptible. Compound
165 was shown to protect cucumber and lettuce cultures from
nematodes, with no evidence of additional phytotoxic,

insecticidal, or antimicrobial activities. Cytotoxic effects were
comparatively weak (Sterner et al. 1997; Mayer et al. 1997,
1999). Compound 165 contains a high proportion of methyl-
ated L-amino acids including sarcosine (methylglycine),
methylvaline, and methylisoleucine (Sterner et al. 1997;
Büchel et al. 1998). Three minor compounds, omphalotins
B, C, and D (166–168), were obtained after prolonged
fermentation. Their nematicidal activity was reported to
be similar to omphalotin A but no data were presented
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(Büchel et al. 1998). Monokaryotic strains, which have
been obtained from O. olearius TA 90170 protoplasts,
yielded five additional hydroxylated compounds,
omphalotins E–I (169–173), after 9 days of fermenta-
tion. Their nematicidal activity against M. incognita
was highly selective, with LD50 values between 0.5
and 2.0 μg/ml (Liermann et al. 2009). One future chal-
lenge is to optimize fermentation conditions to improve
the low yields of these compounds. In the meantime, a
high-yielding method for solid-phase synthesis has been
developed for compound 165 and other N-alkylated pep-
tides using racemization-free triphosgene-mediated cou-
plings (Thern et al. 2002).

Illinitone A from Limacella illinita strain 99049

Submerged cultures of the Dripping Slimecap Limacella
illinita (Agaricales, Amanitaceae) yielded, after approximate-
ly 21 days, the colorless oil illinitone A (174). The LD50 value
of this terpenoid compound against C. elegans was 25 μg/ml.
High concentrations (333 μg/ml) inhibited shoot and root
growth in the garden cress (Lepidium sativum) and foxtail
millet (Setaria italica) by 60 % (Gruhn et al. 2007). Nemati-
cidal metabolites from non-nematophagous basidiomycetes
are summarized in Fig. 4.

Outlook and perspectives

More than 30,000 natural products have been isolated from
fungi (Bérdy 2012), but fewer than 300 nematicidal com-
pounds have been confirmed, representing just 280 producing
species distributed over 150 genera (Laatsch 2014; Li and
Zheng 2014). The screening of culture collections for
nematicide-producing fungi could therefore yield more useful
compounds than libraries of previously isolated natural prod-
ucts. The chemical structures of nematicidal metabolites are
highly diverse, ranging from simple fatty acids and other or-
ganic acids to pyrones, lactones, benzoquinones, anthraqui-
nones, furans, alkaloids, cyclodepsipeptides, peptaibiotics,
and hybrid structures such as lactam-bearing macrolactones.
It is therefore impossible to predict whether either a given
fungal species or a particular fungal metabolite is likely to
be nematicidal, and the activity against different nematode
species may also vary. It is therefore essential to screen fungi
and their metabolites against multiple economically important
nematode species (Table 1), including common phytoparasites
and nematodes that parasitize animals (e.g.,H. contortus). The
established model species C. elegans is often exquisitely sen-
sitive toward nematicides, even primary metabolites such as
fatty acids (Stadler et al. 1994a; Anke et al. 1995), although
exceptions include oligosporon (2), which is inactive against
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C. elegans but moderately active against H. contortus
(Anderson et al. 1995).

In the second part of this review, 101 substances from
nematophagous basidiomycetes and non-nematophagous fun-
gi were introduced, some of which exhibit pronounced nem-
aticidal activity.10 Thermolides A (134) and B (135) displayed
potent nematicidal activity againstM. incognita, B. xylophilus,
and P. redivivus, comparable to that of the avermectin stan-
dard, but it remains difficult to produce large amounts of these

compounds because the producers are thermophilic and can-
not grow efficiently at temperatures below 45°C, so cultiva-
tion conditions will need to be optimized. Other potent fungal
nematicides discussed herein have only been isolated in min-
ute quantities. This may reflect suboptimal fermentation con-
ditions, as observed for the omphalotins (165–173), or phys-
icochemical instability, as observed for epoxidized lachnumon
(109 , 119 , 120) and lachnumol derivatives (110),
bulgarialactones (131–133), and ophiobolins K (149), M
(151), and C (152).

Another challenge that must be addressed is that some
nematicide-producing fungi are obligate phytopathogens (e.g.,
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10 Other nematicidal metabolites reported in the literature are not consid-
ered here because concentrations of 200–1000 μg/ml are required to
achieve nematicidal effects.
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Bipolaris spp.), whereas others are facultative phytopathogens
that may also exist as endophytes. In these cases, the producers
cannot be used as biocontrol agents, and the nematicidal com-
pounds they biosynthesize must be isolated, e.g.,
cochlioquinone A (148) and 3-hydroxypropionic acid (158).
Yang et al. (2010) have even suggested that the nematicidal
mycotoxin trichodermin (184) could be isolated from
Trichoderma strains producing it, but the use of mycotoxigenic
fungi or pure mycotoxins in biocontrol had been discussed and
argued against by Degenkolb et al. (2008) and Chaverri et al.
(2015). Mycorrhizin A (106) and some of its derivatives from
L. papyraceum (107, 108, 117, 118, 121) as well as
cheimonophyllon A (159) showed at least weak mutagenic
activity in the Ames test.

Several promising examples of secondary metabolites from
non-nematophagous fungi have also been discussed. Glass-
house and field trials with phylogenetically verified
Trichoderma species producing either 6-PAP (157) (Gräfenhan
2006; Jeleń et al. 2014) or structurally related simple pyrones
(Reino et al. 2008) should be conducted because their com-
bined nematicidal and fungicidal properties are highly desirable
for agricultural applications. Thermolides A (134) and B (135),
omphalotins (165–173), ophiobolins11 (149, 151, 152),
bursaphelocides A (155) and B (156), illinitone A (174),
pseudohalonectrins A (175) and B (176), dichomitin B (177),

and caryopsomycins A–C (179–181) are excellent candidates
or lead compounds for the development of biocontrol strategies
for phytopathogenic nematodes, whereas paraherquamides
(141–147), clonostachydiol (178), and nafuredins (182/183)
offer promising leads for the development of formulations
against the intestinal nematodes of ruminants (Table 1).
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