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For historical reasons, most proteomics workflows focus
on MS/MS identification but consider quantification as the
end point of a comparative study. The stochastic data-de-
pendent MS/MS acquisition (DDA) gives low reproducibil-
ity of peptide identifications from one run to another,
which inevitably results in problems with missing values
when quantifying the same peptide across a series of
label-free experiments. However, the signal from the mo-
lecular ion is almost always present among the MS1 spec-
tra. Contrary to what is frequently claimed, missing values
do not have to be an intrinsic problem of DDA approaches
that perform quantification at the MS1 level. The challenge
is to perform sound peptide identity propagation across
multiple high-resolution LC-MS/MS experiments, from
runs with MS/MS-based identifications to runs where
such information is absent. Here, we present a new ana-
lytical workflow DeMix-Q (https://github.com/userbz/De-
Mix-Q), which performs such propagation that recovers
missing values reliably by using a novel scoring scheme
for quality control. Compared with traditional workflows
for DDA as well as previous DIA studies, DeMix-Q
achieves deeper proteome coverage, fewer missing val-
ues, and lower quantification variance on a benchmark
dataset. This quantification-centered workflow also
enables flexible and robust proteome characterization
based on covariation of peptide abundances. Molecular
& Cellular Proteomics 15: 10.1074/mcp.O115.055475,
1467–1478, 2016.

Label-free quantification (LFQ) is one of the most efficient
approaches for quantifying proteome differences between
multiple states of a biological system. LFQ aims to repro-
ducibly identify and quantify peptides through multiple liq-
uid-chromatography-coupled tandem mass spectrometry
(LC-MS/MS) experiments. In the popular data-dependent
acquisition (DDA) approach named Top-N DDA, the appear-

ance of a peptide-like signal in a “survey” mass spectrum
triggers a tandem mass spectrometry (MS/MS) event, target-
ing the (N) most-abundant precursor ions. Previous studies
have shown that, due to the limited speed of a mass spec-
trometer, the majority of peptide ions detected in MS1 are not
targeted in MS/MS, especially when a nonfractionated com-
plex sample is analyzed (1, 2). This low sampling efficiency
(�50%), combined with the stochastic nature of precursor
selection and a limited efficiency of MS/MS identification
(�70%) (3), frequently causes the absence of MS/MS identi-
fication for an individual peptide in some LC-MS/MS experi-
ments (“runs”) within a larger dataset, even when replicate
measurements are made (4). This deficiency is known as the
missing value problem in LFQ. The problem significantly limits
the size of the DDA-acquired proteomics dataset across
which reliable quantification can be made for each protein
(5, 6).

One of the causes of the missing value problem is the
traditional focus on the process of identifying a peptide as
opposed to its quantification. For historical reasons, peptide
sequence identification has been considered the focal point
and the most important step in the whole proteomics proce-
dure, while quantification came as almost an afterthought (7,
8). This dominant proteomics paradigm can be characterized
as the identification-centered approach, also known as a
spectrum-centric approach (9). Only gradually the missing
value problem has been identified as one of the biggest
drawbacks of the DDA approach (4, 5). To address the repro-
ducibility issue in MS/MS identification, several alternative
data acquisition strategies had been suggested, including
targeted (10) and semi-targeted (11, 12) approaches. How-
ever, none of the improved DDA strategies has solved the
missing value problem anywhere close to the data-indepen-
dent acquisition (DIA) (13, 14). The latter approach, however,
typically provides somewhat lower depth and breadth of the
proteome coverage than the DDA methods.

In our opinion, the DDA-associated missing value problem
is caused by the sequential execution of two independent
processes: peptide identification by MS/MS and its quantifi-
cation by MS1. At first glance, performing MS1-based quan-
tification simultaneously with MS/MS identification should
provide an obvious solution to the missing value problem.
Since MS1 spectra contain many more peptide ions than are
selected for MS/MS in DDA (or identified in DIA), the peptide’s
mass information is practically always present when an iden-
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tification is available (15). This information comes in several
domains: accurate position on the m/z scale of the monoiso-
topic and other isotopic mass peaks and the position and the
abundance profile on the retention time scale of the extracted
ion trace for the above peaks, as well as the charge-state
distribution of the analyte ions. Using this information, one
can, at least in principle, identify the peptide ion even when
MS/MS data are of low quality (16) or entirely missing (17).

In practice, during the last decade, features including
monoisotopic m/z and retention time have been used for
peptide identification, a strategy referred to as accurate mass
and time tags (18–20). The accurate mass and time tag per-
forms the feat of “peptide identity propagation” (PIP) from the
LC-MS/MS runs with valid MS/MS information to those runs
where such information is lacking. Today, one or another
variant of the accurate mass and time tag-based PIP is em-
ployed in many MS1-based LFQ algorithms for analyzing DDA
data (6, 21). MS feature matching (22, 23) and targeted ex-
traction of ion chromatograms (XIC) (24, 25) represent exam-
ples of such variants. Although these algorithms are not free
from certain generic drawbacks (26), they allow large-scale
comparison of DDA-analyzed complex proteomes (23, 27,
28).

However, conventional PIP approaches only alleviate, but
do not fully solve, the missing value problem. Given large
enough sample cohorts and a set of analyzed peptides, we
will encounter missing values. One might consider DIA as an
alternative, but the process of signal extraction from DIA data
is not fundamentally different from PIP. Therefore, while DIA
reduces the occurrence of missing values, it is not completely
absent in such data (29). It is, however, much more pro-
nounced with DDA, regardless of which PIP procedure is
used. On the other hand, DDA tends to identify more peptides
and give deeper proteome coverage from the same sample
than DIA, which is easy to understand, given the burden of
peptide identification in DIA from severely convoluted data (2).
When the size of comparative proteomics datasets becomes
larger, the impact of the missing values becomes progres-
sively worse. Resorting to imputations (i.e. qualified guesses)
(30) cannot be considered satisfactory unless no other ap-
proaches are available.

Is all information stored in survey (MS1) mass spectra fully
recovered by conventional PIP algorithms? It appears that
some information domains have not yet been fully used, es-
pecially the peptide abundances. This fact reflects today’s
dominance of the identification-centered approach to pro-
teomics. It has become a natural part of every modern pro-
teomics study to report the false discovery rate (FDR) of its
lists of identifications, but the discussion of coefficient of
variation (CV)1 or even the FDR in peptide quantification—

essential features of any quantification workflow—is still con-
spicuously missing in many current studies. An unfortunate
consequence of such a miss is that sometimes MS/MS-in-
ferred peptides with vastly deviating abundances in run-to-
run or sample-to-sample comparisons are attributed to the
same protein. These deviating peptides with questionable
identities can drastically worsen the variances of protein
abundances in the whole dataset and thus reduce the statis-
tical power of the experiment (31).

In contrast, in a quantification-centered approach, peptide
abundance is the central factor to be investigated (9, 15,
32–34). When peptide abundance is considered together with
other parameters, such as RT difference and mass error, for
the overall assessment of peptide reliability, deviating abun-
dance behavior may result in exclusion of a given peptide
from consideration (35). An expected abundance behavior
should, on the other hand, strengthen the certainty of peptide
identity. In other words, using only “well-behaved” peptides
should enhance the quality of protein quantification by im-
proving certainty in peptide identification and reducing the
abundance variance, i.e. CV. The challenge is in inclusion in
the quantitative assessment of the “goodness of behavior” of
peptide abundances into the overall PIP scoring scheme. In
this study, we will meet this challenge by introducing a new
quantification-centered label-free workflow, DeMix-Q. It rep-
resents a LFQ-extension of the previously developed DeMix
identification workflow designed for maximizing proteome
coverage by identifying co-fragmented peptides (2). But in
principle, DeMix-Q does not require DeMix for peptide iden-
tification and is compatible with any other peptide identifica-
tion methods. Besides reducing quantification variations, De-
Mix-Q aims to significantly alleviate, if not eliminate, the
missing value problem in comparative studies of many com-
plex proteomes, while preserving the DDA advantage of
higher proteome coverage. This is achieved by introducing a
hybrid PIP method with a scoring function for quality control,
which takes into account deviations from RT and m/z, as well
as peptide abundance. For testing the new workflow, we
selected the iPRG-2015 dataset (36) as an easily accessible,
well-characterized and high-quality reference.

EXPERIMENTAL PROCEDURES

Preprocessing and MS/MS Identification—Raw LC-MS/MS data
and the protein database were downloaded from the FTP server
(ftp://iprg_study:ABRF329@ftp.peptideatlas.org/) of iPRG-2015 study
(36). In the study, three replicates of four samples with the same
amount (200 ng) of yeast digest were spiked with different concen-
trations of six exogenous marker proteins (Supplemental Table 1). The
mixtures were digested by trypsin and analyzed by LC-MS/MS using
an Orbitrap Q-Exactive mass spectrometer selecting the MS/MS
precursors in the Top-10 DDA mode. Our DeMix workflow deconvo-

1 The abbreviations used are: CV, coefficient of variation; DDA,
data-dependent acquisition; DIA, data-independent acquisition; EIC/
XIC, extracted ion chromatography; FDR, false discovery rate; LC-

MS/MS, liquid chromatography coupled to tandem mass spectrom-
etry; LFQ, label-free quantification; MS1, primary or survey mass
spectrometry; PIP, peptide identity propagation; TOPP, The OpenMS
Proteomics Pipeline.
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luted chimeric MS/MS spectra from the detected cofragmentation
events for maximizing peptide identifications (2). The MS-GF� (37)
search engine (v10089) was used for matching the MS/MS spectra
against the yeast database (6628 UniProt protein sequences), allow-
ing up to two missed tryptic cleavage sites. Carbamidomethylation of
Cys was set as a fixed modification, while acetylation of protein N
terminus, oxidation of Met, and deamidation of Asn/Gln were set as
variable modifications. A double-pass searching strategy was imple-
mented. From the first-pass searching (10 ppm precursor tolerance),
confident MS/MS identifications (�1% FDR) were used as software
lock-masses for mass scale recalibration and mass error estimation.
IDPicker (v3.1.643) (38) was used to merge the second-pass identi-
fications (.mzid files) at maximum 1% peptide-spectral match FDR
and with minimum two distinct peptides for protein inference. COM-
PASS (v. 1.0.4.5) (39) was used to assign peptide sequences to
protein groups using the principle of maximum parsimony.

Retention Time and Mass Scale Recalibration—Reliable peptide-
spectral matches were converted to OpenMS-compatible format and
employed for aligning multiple LC-MS/MS experiments using Ma-
pAlignerIdentification from the OpenMS proteomics pipeline (TOPP)
(40, 41). One individual run that gave the largest number of peptide
identifications was chosen as a reference. The RT scales in all other
runs were transformed to the scale of the reference run by aligning
common peptide identifications. Next, using InternalCalibration with 5
ppm mass tolerance, the mass scale in each experiment was recali-

brated to theoretical peptide masses. As a result, a new set of
mzML files containing only MS1 (full-range) spectra was generated,
in which the scales of RT and m/z for all runs were very similar. This
processed dataset was then used as the basis for all following
procedures (Fig. 1).

Feature Detection and Matching Across Runs (Feature-Based
PIP)—Here, an LC-MS feature can be defined as a peptide-like XIC
pattern assembled from a cluster of raw MS peaks (41, 42). Each
feature has information of its RT and m/z coordinates, as well as its
integrated ion-current and charge state. Recalibrated MS1 spectra
were loaded into FeatureFinderCentroided in TOPP for assembling
chromatographic feature maps (m/z tolerance 0.01 Da, min spectra 5,
feature min score 0.6). All features listed in the feature maps were de
facto quantified independently and reported with integrated ion-cur-
rent. Features were tentatively associated to peptide sequences us-
ing available MS/MS identifications. Afterward, the FeatureLinkerUn-
labeledQT pipeline in TOPP was used for grouping features by
similarity with a user-defined quality threshold. Here, we used RT
difference �180 s and mass difference � 5 ppm. This process served
as feature-based identity propagation. As a result, features that
matched across multiple experiments were linked into a single con-
sensus map (a.k.a. reference map or master map) (40). In this con-
sensus map, each consensus feature contained at least one subele-
ment (the best-matched feature from a single run), with reference
information on RT (centroid of the feature chromatographic shape),

FIG. 1. Overview of DeMix-Q data processing workflow. Processes are colored in blue for TOPP, yellow for the search engine, and green
for the postprocessing programs developed in-house. Internal processes are highly flexible and can be replaced by alternative tools or simply
be skipped. In the latter case, DeMix-Q may become a traditional feature-, XIC-, or MS/MS-based quantification workflow. Note that
MS1-based quantification procedures, including feature detection and between-run propagation, are independent of peptide identification and
can even be done in the absence of MS/MS.
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m/z, and integrated ion-current (called “intensity” in OpenMS). A fully
quantified consensus feature contains the maximum possible number
of subelements that equals to the total number of LC-MS runs;
otherwise, the consensus feature contains missing values in one or
more runs.

Recovering Missing Values by Targeted XIC (Ion-Based PIP) with
Quality Control—Ion-based PIP considers only the existence of mo-
lecular ions in a given (RT � �RT, m/z � �m/z) window, regardless of
the chromatographic peak shape, its abundance, and the isotopic
pattern. Therefore, ion-based PIP is more sensitive than the feature-
based method. However, this advantage comes at the price of lower
reliability, and thus future-based approaches are normally preferred.
Here, ion-based PIP was used only for recovering remaining missing
values after feature-based PIP (i.e. the consensus feature map). For
each consensus feature, local maxima (apexes) of the monoisotopic
peaks (M) and the 13C isotopic peaks (M � 1) were extracted in each
individual run using EICExtractor of TOPP, with a matching window of
RT � 1 min and m/z � 5 ppm around the consensus reference
location (Fig. 2A). Since both RT and m/z were recalibrated and
aligned, such a narrow matching window did not result in substantial
loss of useful data (false negatives). The geometric average of ion
intensities of the two peaks ��I1 I2� was used as an estimate of the
feature abundance in the corresponding run. This calculation served
as a quality checkpoint, which required both isotopic peaks to be
traced with nonzero intensities.

Central to the DeMix-Q approach, based on extracted m/z, RT, and
ion intensities of the two isotopic MS1 peaks (M and M�1), a scoring
scheme was established and applied to every feature in every LC-MS
run, combining five deviation factors (Fig. 2A):

- �T1, the RT difference between the consensus feature and the
apex of the monoisotopic peak (M);

- �T2, the RT difference between the two isotopic apexes (M and
M�1);

- �M1, the deviation of the monoisotopic peak (M) from its theo-
retical mass;

- �M2, the difference of mass deviations between the two isotopic
peaks (M and M�1);

- CV of extracted abundances in replicate runs.
Deviations (�T1 and �M1) between the consensus feature and the

extracted monoisotopic peak reflect between-run variances. Relative
deviations (�T2 and �M2) between the two isotopic peaks indicate
within-run inconsistencies, with an assumption that the extracted 13C
isotopic peak (M�1) should have the same deviations as the
monoisotopic peak (M). The last factor (CV) penalizes the features that
were not reliably quantified in the replicate runs. Since these five
factors have different units and intervals of changes, they were all
normalized by their own standard deviations and thus converted to
unitless quantities that can be simply combined. One overall score
function combining the five deviation factors was formulated as a
negative logarithm of pooled variances, with larger variation resulting
in a lower score:

S � � log���T1
2 � ��T2

2 � ��M1
2 � ��M2

2 � Cv̂2�

(Eq. 1)

Here, the five deviation factors were assumed having equal weights
for the reason of simplicity. However, one could imagine expansions
of this work that assign weights that are optimal by some criteria
using more rigorous statistical methods or machine-learning tech-
niques, e.g. Percolator (43).

A target-decoy method was then applied to estimate the false
discovery rate (FDR) for a given scoring cutoff. Assuming that com-
plete features grouped by the FeatureLinkerUnlabeledQT are most
statistically reliable, a reference feature set (“target”) was generated
by selecting all fully quantified features with the maximum number of

FIG. 2. Scoring the feature-quantity assignments. (A) XIC and deviation factors. For each reference feature in every individual run, the
precursor ion is traced in MS1 spectra. Within a matching window of RT �1 min and m/z �5 ppm, the ion with maximum intensity is picked.
By comparing the apex of its monoisotopic peak with the consensus reference RT and m/z, the deviation factors �T1 and �M1 are obtained.
Comparison to the apex of the monoisotopic peak with the apex of the 13C isotopic peak gives the deviation factors �T2 and �M2. The
geometric average of ion intensities I1 and I2 represents the feature quantity, which is used to calculate the CV between the replicate runs. Five
deviation factors are combined by the scoring function in Equation (1). (B) Score distribution and target-decoy comparison for FDR estimation.
Consensus features linked across all runs by OpenMS are considered to be reliable “target” features. “Decoy” features are generated by
arbitrarily shifting the target features’ RT and m/z values. Any XIC extracted for a “decoy” feature is assumed to be false. In each individual run,
the number of decoy hits does not exceed 5% of target hits, corresponding to FDR of �5%. This threshold is applied to feature-quantity
assignments in the process of missing value recovery.
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subelements. A false feature set (“decoy”) was generated from the
target set by shifting each target feature outside its original extraction
window through alteration of the retention time (�5 min) and m/z (�50
ppm), with small random noise being added. The score distribution of
the decoy features formed a null-score distribution (Fig. 2B). FDR was
then estimated as the fraction of all assignments that passed a given
score threshold: The number of decoy matches was divided by the
total number of target matches. In this study, a 5% FDR threshold
was applied for XIC-feature assignments. The features that failed to
pass the threshold were considered missing (zero-intensity).

Special treatment was then given to “gray zone” features, which
were incompletely quantified by feature-based PIP and yet most likely
present in ion-based PIP. For such features (subelements), missing
abundances were estimated from a k-nearest neighbors (KNN) re-
gression (k � 5), averaging abundances from other quantified features
having the most similar XIC patterns in the same run. After filling
missing values, the consensus map was further filtered by removing
features that failed to be quantified in at least one replicate in each
sample. Lastly, the remaining missing values were imputed as having
the lowest detectable feature abundance in order to avoid extreme
ratios (or divisions by zero) in sample-to-sample comparison. This
approach explicitly assumes that every protein is present in every
sample. Although this assumption is demonstrably untrue in case of
spike-in or knock-down, it provides useful approximation in a great
majority of proteomics studies.

Intensity Recalibration—Interrun (batch effects) and intrarun sys-
tematic biases (e.g. due to sample loading, column temperature, ESI
current stability, etc.) can greatly affect analytical accuracy in label-
free experiments (21, 44, 45). In order to correct fold-changes in-
duced by systematic biases, a rescaling of feature abundances was
performed, using a time-dependent median-shift approach. Chro-
matographic features from the consensus map were sorted by the
retention order, then a sliding window (step size � 50 features)
containing 500 adjacent consensus features was used to compare
the local median abundance of all features with those of the subset of
features from each individual run (one-versus-all). This yielded a set of
local median shifts for each run, based on which, a nonlinear median-
shift was estimated as a function of retention time by another k-near-
est neighbors regression (k � 15). The abundance of every feature in
every single run was normalized by correcting the predicted median
shift (Fig. 3 and Supplementary Fig.).

Detecting and Quantifying Differential Proteins—Since most protein
groups have multiple peptides quantified in all runs, quantitative
proteomic data bear similarity with gene expression microarray data,
with peptide abundances being equivalent to probe intensities. Like
microarray probes, peptide abundances quantified by LFQ are sup-
posed to reflect the concentrations of their respective proteins and
have linear responses to abundance changes. In theory, if one protein
has an abundance difference between the samples, all its constituent
peptides should show the same level of abundance difference, giving
rise to strong covariation between the abundances of all peptides.
Thus, a strong covariation of a peptide abundance with that of other
same-protein peptides means “well-behaving” of a given peptide and
higher certainty in both its identity and quantification.

In the literature, we found no LFQ algorithm that would measure
and utilize peptide covariations. However, giving the basic similarity
between proteomics and transcriptomics, tools developed for mi-
croarray analysis should also work for quantitative proteomics. In this
study, an in-house implementation of factor analysis (Zhang et al.,
manuscript in preparation) was adapted for detecting differential pro-
teins (i.e. proteins with abundances varying from sample to sample,
as opposed to background proteins with unchanged abundances).

All identified features were grouped by peptide sequence, with
summed abundances from all charge states. By applying the factor

analysis to maximize covariation signals of peptides, a signal-to-noise
ratio was obtained for a group of peptide “probes.” This parameter
was used to decide whether a peptide group (as a protein) is “inform-
ative”: Proteins with signal-to-noise ratio � 1 were considered “non-
informative” and thus excluded from differential analysis. Protein
expression values summarized from peptide abundances were la-
beled by sample identities, and their sample-to-sample abundance
changes were tested using one-way analysis of variance: Proteins
with p values lower than 0.05 were reported as differential.

Comparison to Traditional Methods—MS/MS spectral counts
(SpC) were exported from IDPicker after integrating reliable identifi-
cations. MaxQuant analysis was performed with default instrumental
parameters and database setting. The option of match-between-runs
was enabled for feature-based identity propagation, with 20 min
alignment window and 2 min matching tolerance. Peptide abun-
dances were retrieved from the resultant peptide.txt file (intensity
column), which was filtered by 1% FDR based on posterior error
probability (PEP) values (Supplemental Table 2). Skyline MS1-filter-
ing (XIC) results provided in the iPRG-2015 study materials were
processed as follows: Nonunique peptides were excluded from the
analysis, and the abundances of the first two isotopic peaks (M and
M�1) were utilized. The OpenMS results were exported right after
generating the consensus map (feature-based PIP), without filling
missing values by targeted XIC (ion-based PIP). For each method,
peptide quantification variation (CV) was calculated using peptides
that were quantified in all runs.

RESULTS

A Combined Identity Propagation Method Substantially Al-
leviates the Missing Value Problem—We compared missing
values in peptide abundances quantified in the iPRG-2015
dataset by four common analytical methods as well as De-
Mix-Q. The four common methods can be grouped into three
categories: MS/MS-based spectral counting (SpC) without
identity propagation; MS1-level LFQ with feature-based PIP
(OpenMS and MaxQuant), and with ion-based PIP (Skyline).

As shown in Fig. 4, SpC that does not employ identity
propagation was greatly affected by the DDA randomness,
yielding more than 40% missing values in peptide abun-
dances. Only about one-fourth (26%) of all peptides could be
found in all 12 LC-MS runs. The steeply declining trend of
common quantifications with the dataset size makes SpC less
suitable for deep proteome profiling in large-scale experi-
ments. In contrast, OpenMS and MaxQuant that apply fea-
ture-based PIP reduced the fraction of missing values to
smaller but still nonnegligible figures: 15% and 13%, respec-
tively. The number of commonly quantified peptides in-
creased to over 60%, i.e. more than double compared with
SpC. Skyline that applies ion-based PIP without matching
chromatographic features showed a very high sensitivity, pro-
viding negligible 1.5% missing values and over 90% peptides
quantified in all runs. DeMix-Q that combines two comple-
mentary PIP approaches to achieve highly sensitive signal
extraction together with reliable feature matching gave 2.8%
missing values and quantified over 86% of peptides across all
12 runs (Fig. 4B).

Formally, Skyline (MS1 filtering) outperformed all other
methods in terms of missing values. However, as mentioned
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before, ion-based PIP does not have a quality threshold, thus
providing results with uncertain FDR. In contrast, DeMix-Q
applies quality thresholds in feature-quantity assignments,
which reflects in a somewhat higher fraction of missing val-
ues. This drawback should be outweighed by DeMix-Q supe-
riority in quantification: Uncontrolled matching in Skyline may
result in false assignment, thus introducing a large abundance
of variations. This prediction was tested on the distributions of
quantification variances discussed below.

A Quantification-Centered Workflow Provides High Cover-
age with Low Variance—DeMix-Q quantified in total 26,753
unique peptides representing 2912 proteins, with at least two
distinct constituent peptides per protein (Supplemental Table
1). Notably, we found that MS/MS-based identifications ex-
plained only one-third (44,024/129,641) of the total chromato-

graphic features that were quantified and matched across
experiments (Fig. 5). This highlights the great potential of
exploiting the hidden majority of quantified features. One way
of using these features is for correcting the systematic bias in
measured ion intensities, which is likely to be the largest
source of peptide abundance variation. In this study, we
applied a KNN regression of RT-dependent median shift to
centralize the ion intensity variations around zero-fold change
(Fig. 3 and Supplementary Fig.). As one can see from the
regression curves, system biases are mostly nonlinear func-
tions of RT. After normalization, all pairwise comparisons of
feature abundances between runs showed zero-centered dis-
tributions. By correcting the systematic bias, we obtained
significantly lower quantification variance compared with
other quantification methods. From DeMix-Q, the median CV

FIG. 3. Intensity recalibration by correcting median shift. In diagonal subfigures, nonlinear fluctuations of ion intensity in individual runs
are reflected in the RT-dependent median-shift curves. The lower-left part shows systematic errors in between-run comparisons of feature
abundances, before correction. The upper-right part shows the effect of median-shift correction, where the between-run abundance
differences (fold-changes) become approximately zero-centered along the whole RT range. Each subfigure has normalized RT (0–8000 s) as
x axis and feature abundance ratio (–2.0 to 2.0 in log2 scale) as y axis. Correction of three replicate runs of one sample is demonstrated; the
comparisons between all 12 runs are shown in Supplementary Fig.
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calculated for 23,097 fully quantified peptides in all 12 runs
was 11.6%, distinctively lower than in other methods (Fig. 6).
When using the average values from three replicate experi-
ments for each sample, the median CV of peptide abun-
dances among the four samples (background proteins) was
only 6.0%.

In contrast to that, peptides abundance quantified by Sky-
line showed higher CVs on average and a long tail of peptides
with CV 	 40% (Fig. 6). As mentioned above, direct XIC
methods do not ensure the correctness of signal extraction.

Wrongly extracted XIC would introduce large variances in
peptide quantification and lead to a long tail in the CV
distribution.

Accurate and Robust Protein Quantification—So far, we
performed the peptide-level quantification by aggregating
precursors’ ion currents. However, the estimation of protein
abundances is not as easy as aggregating peptide abun-
dances. It is widely known—although not often discussed—
that peptides originating from the same protein can give vastly
different abundances in LC-MS, varying orders of magnitude.

FIG. 4. Comparison of five quantifi-
cation approaches in terms of miss-
ing values. (A) Number of unique pep-
tides and fraction of missing values in
respective approach. (B) The fraction of
peptides quantified in all runs drops as
a function of sample size but with dif-
ferent rates for different quantification
approaches.

FIG. 5. Abundance distribution of
chromatographic features. Only around
one-third of features quantified in De-
Mix-Q were assigned to MS/MS-based
peptide identifications, which is in accord-
ance with the fact that most features were
not targeted by DDA and identified by
MS/MS but were recorded by full-range
MS. Features with higher abundances
have higher identification rate, which also
reflects the intensity-dependent bias of
MS/MS data acquisition.
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Moreover, it is less than certain that the LC-MS signal of all
peptides scales linearly and has the same slope with protein
abundance variation. As a result, it becomes problematic to
reliably estimate relative protein abundance by simply aver-
aging or aggregating abundances of the multitude of peptides
attributed to that protein. This is because the abundance
variances of a few intensive peptides may significantly affect
the result, suppressing the signals from other peptides.
Therefore, wrong identity assignment of intensive chromato-
graphic features poses higher risks for quantification than that
of less intensive ones. For this reason, an identification-cen-
tered approach has a stringent requirement of identity cor-
rectness (46), but a quantification-centered method should be
able to cope with possible misidentification using quantitative
information (35).

As an example, Fig. 7 shows the quantitative behavior of
peptides (top-10 and bottom-10, respectively) from the
spiked-in protein bovine serum albumin (sp P02769 ALBU-
_BOVIN). Although peptides were reproducibly quantified
across the runs, some peptides (mostly with low abundance)
did not reflect the known difference of protein concentrations
(11: 0.6: 10: 500). In particular, the seventh highest-abun-
dance peptide (LGEYGFQNALIVR) showed a strong deviation
from both known protein concentrations as well as behavior
of other peptides. As a rule, low-abundant peptides showed a
smaller dynamic range of abundance differences compared
with known values and more-abundant peptides. While the
exact nature of such behavior remains unclear and should be
thoroughly investigated, it was more likely due to instrumental
effects rather than inaccurate data processing.

Considering this example. It is clear that any robust protein
quantification algorithm should be able to cope with a fraction
of incorrect identifications, as well as with differences in pep-
tide signal responses to the protein abundance changes. One
approach would be to design such an algorithm based on
specifics (not thoroughly known yet) of the peptide re-
sponses in LC-MS. Another, perhaps more pragmatic, ap-

proach would be to borrow an existing tried-and-proved
algorithm from a related research area. Since transcriptom-
ics is at least a decade older than proteomics, the problem
of inconsistences of probe signals was addressed in mi-
croarray analysis workflows some time ago (47). With more
than nine peptides quantified per protein group on average
and with the benefit of solving the missing value problem for
a great majority of peptides, our data mimicked a “protein
microarray,” with peptide abundances posing as probe sig-
nal intensities.

Applying the factor analysis and analysis of variance for
selecting proteins with varying abundances between the sam-
ples, we discovered all six spiked-in proteins with high cer-
tainty. In contrast, the same procedure applied to quantifica-
tion results from three other PIP-based algorithms missed one
or more proteins (Fig. 8A and Supplemental Table 1), while
also (for Open-MS) yielding more false positives. After protein
summarization, the sample-to-sample protein ratios showed
a linear correlation with expected values up to over ninefold
abundance difference (Fig. 8B).

One could hypothesize that sensitive and reliable identity
propagation may eliminate the need for redundancy in MS/MS
identifications. We tested this hypothesis by simulating a
sparse dataset, keeping MS/MS from only one of the 12 runs
and eliminating all redundant identifications. Despite certain
reduction in the total number of quantified proteins due to
DeMix-Q quality control, all six spiked proteins were still cor-
rectly recalled (Fig. 8A). This result more than any previously
discussed one demonstrates the possibility of a paradigm
change from identification-centered to quantification-cen-
tered proteomics.

DISCUSSION

We demonstrated in this study a new quantification-centered
workflow for label-free proteomics that practically solves the
DDA-induced missing value problem that haunted shotgun pro-
teomics for years. By taking advantage of the high quality of

FIG. 6. Comparison of CV distribu-
tions. DeMix-Q provided distinctively
lower median CV than other methods,
while quantifying the largest number of
peptides across all runs. This is
achieved primarily due to the introduc-
tion of scoring and FDR filtering that
prevented large variances from false
extractions, and the RT-dependent
abundance correction that reduced
systematic variability.
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modern LC-MS/MS, we integrated two types of PIP methods
into the workflow. This enabled unbiased and reproducible
quantification across many runs even when only a single set of
MS/MS identification was available. This workflow is particularly
suitable for DDA, where quantified features compose a much
larger population than MS/MS-identified species.

The demonstration of the “redundancy of redundant
MS/MS peptide identifications” highlighted the potential of
PIP in reliable quantification. This result may herald a new
strategy in label-free shotgun proteomics, emphasizing the
acquisition of higher-quality MS1 spectra and deeper pro-
teome coverage rather than larger number of redundant
MS/MS spectra. One way of exploring this new strategy is by
segmenting the mass range for precursor selection (48); an-
other one is by applying the exclusion list aggregated from
previous runs to subsequent runs.

In some respects DeMix-Q is similar to a sequential window
acquisition of all theoretical fragment-ion spectra-MS proc-
essing workflow but propagates MS1 data instead of MS/MS
information. Similar ideas have been presented at the Amer-
ican Society for Mass Spectrometry 2015 conference by Shen
et al. (ThP449) and by Reiter et al. (Wednesday oral section B
am 08:30), which indicates that the time for a change is ripe.
Shen et al. also claimed solving the missing value problem by
separating the procedure of MS1-based quantification from
MS/MS identification, while Reiter et al. demonstrated a ro-
bust MS1-only approach for whole-proteome analysis in
which the peptide identities are purely inferred from a pre-
dicted accurate mass and time tag library. Regardless of the
similarities and differences between these approaches and
DeMix-Q, they all are based on the three fundamental quality

factors essential for reliable analysis: stable retention time,
high resolution, and high mass accuracy.

Contrary to common belief, proteome analysis applying DIA
(e.g. sequential window acquisition of all theoretical fragment-
ion spectra) is not free from the missing value problem. A
recent study (29) quantified 80% of the 18,600 yeast peptides
belonging to 2333 proteins (including one-hit wonders) in four
sequential window acquisition of all theoretical fragment-ion
spectra-MS replicate runs. Compared with 86% of 26,753
peptides we quantified here in 12 runs, the DIA study did not
demonstrate any advantage. In our case, DDA required less
experimental time and produced both deeper proteomics
analysis as well as fewer missing values. Theoretically speak-
ing, this is not too surprising given the lower burden on
reliable peptide identification and chromatographic feature
extraction with DDA. Compared with the typical 2 Th isolation
window in DDA, a highly multiplexed 20 Th window used in
DIA penalizes identification of low-abundant peptides that
give fewer fragment peaks (2, 9). The intrinsic advantage of
DDA has, however, not yet been fully realized in practice,
mainly because of the missing value problem. Releasing the
full power of MS1 in a quantification-centered data processing
workflow should lead to deeper and more accurate label-
free proteomics. In principle, DeMix-Q should not be limited
to DDA data and could also be adapted to solve the missing
value problem in DIA analysis, e.g. by propagating identities
of peptide fragments instead of precursors. However, due
to the increased spectral complexity and the loss of precur-
sor selectivity, identity propagation in DIA might require a
more sophisticated scoring scheme for controlling false
discoveries.

FIG. 7. Responses from peptide abundances to actual protein concentration differences. The abundances of the 10 most-abundant
peptides from a spiked-in bovine serum albumin (left) well correlated with the known protein concentrations, except for the outlier peptide
(blue). However, the least-abundant 10 peptides (right) turned out to be less responsive to the actual protein concentration changes. The
expected abundances (dark gray lines) were calculated: for sample 4 (that has the highest spike-in amount, 500 fmol)—as the average log2
peptide abundances (33.8 for top-10 and 28.5 for bottom-10 peptides); for samples 1, 2, and 3—as the corresponding log2 fold-changes
compared with sample 4 (–5.5, –9.7, and –5.64, respectively).
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Finally, we strongly believe that time has come to put quan-
tification in the center of comparative proteomics workflow.
Unlike the traditional identification-centered proteomics that is
very strict in terms of peptide identification but has a somewhat
lax attitude to peptide quantification, new protein quantification
algorithms should be able to tolerate incorrect peptide identifi-
cations because further abundance-based filtering will eliminate
wrong assignments. This may allow for the revision of certain
dogmas of identification-centered proteomics, such as 1% FDR
for peptide-spectral matches. A deeper understanding of the
error propagation in mass spectrometry experiments might al-
low for more flexible treatment of error rates (49), which could

have a significant positive effect on the depth of the quantitative
proteome analysis. More advanced quantification algorithms
that will take into account the variance and covariance of pep-
tide and protein abundance in multiple experiments urgently
need to be developed. Given the data similarity between shot-
gun proteomics and gene expression microarrays, we can learn
much from the more mature area of transcriptomics by microar-
rays. But of course, sooner or later, superior proteomics-spe-
cific algorithms will be developed.

* This research was funded by Knut and Alice Wallenberg Founda-
tion (Grant KAW 2010.0022 to RZ).

FIG. 8. Differential protein detection
and quantification. (A) Signal-to-noise
ratios of calling differential proteins by
factor analysis. DeMix-Q showed high
sensitivity and specificity for identifying
the six spiked marker proteins (signal-to-
noise ratio 	 1 and one-way analysis of
variance p value � 0.05). (*) Using nonre-
dundant MS/MS dataset, all six proteins
were identified by DeMix-Q as differen-
tial. (B) Estimation of protein abundance
ratios. Abundances of the six proteins
were pairwise compared between the
four samples (color coded). The quanti-
fication accuracy of DeMix-Q is reflected
in the good agreement between the es-
timated and expected fold-changes
ranging from 0.14 to 9.7.
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