Table 3.
Model | Risk Criteria | Event +ve | Event -ve | Total | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | F-measure | ||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | High | 26 | 5 205 | 5 231 | |||||||
Low | 17 | 23 862 | 23 879 | 60.47 | 82.09 | 0.50 | 99.93 | 0.0099 | |||
Total | 43 | 29 067 | 29 110 | ||||||||
2 | High | 25 | 4 282 | 4 307 | |||||||
Low | 18 | 24 785 | 24 803 | 58.14 | 85.27 | 0.58 | 99.93 | 0.0115 | |||
Total | 43 | 29 067 | 29 110 | ||||||||
3 | High | 18 | 3 118 | 3 136 | |||||||
Low | 25 | 25 949 | 25 974 | 41.86 | 89.27 | 0.57 | 99.90 | 0.0113 | |||
Total | 43 | 29 067 | 29 110 | ||||||||
STRATIFY | High | 23 | 6 372 | 6 395 | |||||||
Low | 20 | 22 695 | 22 715 | 53.49 | 78.08 | 0.36 | 99.91 | 0.0071 | |||
Total | 43 | 29 067 | 29 110 | ||||||||
FRAX™ | High | 32 | 10 438 | 10 470 | |||||||
Low | 11 | 18 629 | 18 640 | 74.42 | 64.09 | 0.31 | 99.94 | 0.0061 | |||
Total | 43 | 29 067 | 29 110 | ||||||||
No screening | 43 | 29 067 | 29 110 | 0.15 | |||||||
B. Test dataset |
Model | Risk Criteria | Event +ve | Event -ve | Total | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | F-measure | ||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | High | 14 | 4 685 | 4 699 | |||||||
Low | 4 | 14 902 | 14 906 | 77.78 | 76.08 | 0.30 | 99.97 | 0.0059 | |||
Total | 18 | 19 587 | 19 605 | ||||||||
2 | High | 14 | 3 879 | 3 893 | |||||||
Low | 4 | 15 708 | 15 712 | 77.78 | 80.20 | 0.36 | 99.97 | 0.0072 | |||
Total | 18 | 19 587 | 19 605 | ||||||||
3 | High | 9 | 2 337 | 2 346 | |||||||
Low | 9 | 17 250 | 17 259 | 50.00 | 88.07 | 0.38 | 99.95 | 0.0076 | |||
Total | 18 | 19 587 | 19 605 | ||||||||
STRATIFY | High | 10 | 3 327 | 3 337 | |||||||
Low | 8 | 16 260 | 16 268 | 55.56 | 83.01 | 0.30 | 99.95 | 0.0060 | |||
Total | 18 | 19 587 | 19 605 | ||||||||
FRAX™ | High | 17 | 10 522 | 10 539 | |||||||
Low | 1 | 9 065 | 9 066 | 94.44 | 46.28 | 0.16 | 99.99 | 0.0032 | |||
Total | 18 | 19 587 | 19 605 | ||||||||
No screening | 18 | 19 587 | 19 605 | 0.09 |
After three models had been constructed to predict severe injuries after falls, we compared the performances of the models by applying the models to the development dataset (A) and the test dataset (B). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and F-value were calculated. Event +ve, event positive; event -ve, event negative.