Skip to main content
. 2014 May 13;6(5):70–80. doi: 10.5539/gjhs.v6n5p70

Table 3.

Comparison of performances of the constructed models to predict severe injuries after falls

A.Development dataset

Model Risk Criteria Event +ve Event -ve Total Sensitivity (%) Specificity (%) PPV (%) NPV (%) F-measure
1 High 26 5 205 5 231
Low 17 23 862 23 879 60.47 82.09 0.50 99.93 0.0099
Total 43 29 067 29 110

2 High 25 4 282 4 307
Low 18 24 785 24 803 58.14 85.27 0.58 99.93 0.0115
Total 43 29 067 29 110

3 High 18 3 118 3 136
Low 25 25 949 25 974 41.86 89.27 0.57 99.90 0.0113
Total 43 29 067 29 110

STRATIFY High 23 6 372 6 395
Low 20 22 695 22 715 53.49 78.08 0.36 99.91 0.0071
Total 43 29 067 29 110

FRAX™ High 32 10 438 10 470
Low 11 18 629 18 640 74.42 64.09 0.31 99.94 0.0061
Total 43 29 067 29 110

No screening 43 29 067 29 110 0.15

B. Test dataset
Model Risk Criteria Event +ve Event -ve Total Sensitivity (%) Specificity (%) PPV (%) NPV (%) F-measure
1 High 14 4 685 4 699
Low 4 14 902 14 906 77.78 76.08 0.30 99.97 0.0059
Total 18 19 587 19 605

2 High 14 3 879 3 893
Low 4 15 708 15 712 77.78 80.20 0.36 99.97 0.0072
Total 18 19 587 19 605

3 High 9 2 337 2 346
Low 9 17 250 17 259 50.00 88.07 0.38 99.95 0.0076
Total 18 19 587 19 605

STRATIFY High 10 3 327 3 337
Low 8 16 260 16 268 55.56 83.01 0.30 99.95 0.0060
Total 18 19 587 19 605

FRAX™ High 17 10 522 10 539
Low 1 9 065 9 066 94.44 46.28 0.16 99.99 0.0032
Total 18 19 587 19 605

No screening 18 19 587 19 605 0.09

After three models had been constructed to predict severe injuries after falls, we compared the performances of the models by applying the models to the development dataset (A) and the test dataset (B). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and F-value were calculated. Event +ve, event positive; event -ve, event negative.