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Cyclin-dependent kinase 6 (CDK6) plays a vital role in
regulating the progression of the cell cycle. More recently,
CDK6 has also been shown to have a transcriptional role in
tumor angiogenesis. Up-regulated CDK6 activity is associated
with the development of several types of cancers. While CDK6
is over-expressed in cancer cells, it has a low detectable level
in non-cancerous cells and CDK6-null mice develop normally,
suggesting a specific oncogenic role of CDK6, and that its
inhibition may represent an ideal mechanism-based and low
toxic therapeutic strategy in cancer treatment. Identification
of selective small molecule inhibitors of CDK6 is thus needed
for drug development. Herein, we review the latest
understandings of the biological regulation and oncogenic
roles of CDK6. The potential clinical relevance of CDK6
inhibition, the progress in the development of small-molecule
CDK6 inhibitors and the rational design of potential selective
CDK6 inhibitors are also discussed.

Introduction

Cyclin-dependent kinases (CDKs) are a family of serine/thre-
onine protein kinases that are involved in the cell cycle, transcrip-
tion and other biological processes such as translation,

neurogenesis and apoptosis.1 Deregulation of CDKs is directly
linked to oncogenesis. CDKs are reliant on binding a cyclin for
their activation. To date, at least 20 CDKs and 30 cyclins have
been reported.1,2 Among them, CDK1, CDK2, CDK4 and
CDK6 regulate the transition of phases in the cell cycle while
CDKs 7–11 are involved in transcription.3

CDK6 gene is located in human chromosome 7 and is trans-
lated into a kinase with 326 amino acids. Expression of this gene
is upregulated in several types of cancers. CDK6 is the catalytic
subunit of the CDK6-cyclin D complex involved in the G1 to S
cell cycle progression and negatively regulates cell differentiation.
Its activity first appears in mid-G1 phase to phosphorylate, and
thus regulate the activity of tumor suppressor protein retinoblas-
toma (Rb).3,4 Emerging evidence suggests that certain tumor cells
require CDK6 for proliferation.5 Consequently, CDK6 repre-
sents a promising target for anti-cancer therapy.

This review summarizes the latest knowledge on the function,
regulation and structure of CDK6 and the recent progress in the
development of pharmacological CDK6 inhibitors. In addition,
the potential clinical relevance of specific CDK6 inhibition and
the rational design of selective inhibitors are discussed.

Biological functions of CDK6

Phosphorylation of the retinoblastoma proteins
In 1994, Meyerson and Harlow first reported the discovery of

CDK6 which is structurally and functionally similar to CDK4.4

Since then, it has been demonstrated that CDK6 and CDK4 are
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cyclin D activated kinases that phosphorylate Rb and its related
proteins p107 and p130 in the G1 phase of the cell cycle
(Fig. 1). Both Rb and its related proteins are tumor suppressors
that interact with a family of transcription factors known as E2
promoter binding factors (E2F1-E2F8) and repress transcription
of genes that are essential for cell cycle progression.6,7 This event
involves either direct binding to the E2F transcription factors or
modification of chromatin by interacting with histone deacety-
lases, histone methyltransferases and DNA methyltransferases.8-10

The first 3 members of the E2F transcription factors, namely
E2F1-E2F3, bind to Rb whereas E2F4 and E2F5 bind to any of
the 3 proteins. This binding occurs at the C terminus transactiva-
tion domain of E2F1-E2F3 which is needed for the activation of
gene expression and consequently prevents this site from recruit-
ing transcription factor II D (TFIID) and transcription cofactors
such as cyclic adenosine monophosphate (cAMP) response ele-
ment-binding protein (CREB)-binding protein (p300/CBP),
general control of amino acid synthesis protein 5 (GCN5), trans-
activation transformation domain associated protein (TRAPP),
Tat-interactive protein (Tip60) and activator of thyroid and reti-
noid receptor/amplified in breast 1 (ACTR/AIB1). Rb is also
capable of preventing the DNA binding activity of E2F1. Indeed,
the E2F transcriptional factors E2F1-E2F6 require dimerization
partner proteins (DP1-DP4) for their binding to DNA.11

An initial partial phosphorylation of the Rb proteins by
CDK4/6 followed by a complete phosphorylation by CDK2-
cyclin E complex leads to structural changes in the pocket
domain of Rb and its related proteins, thus releasing and
activating E2Fs.6,7 E2Fs subsequently activate transcription of
genes necessary for DNA replication (S-phase entry) and cell
cycle progression.6-11 Nevertheless, this sequential phosphory-
lation model has been challenged as Kozar et al. demon-
strated that CDK2-cyclin E complex is capable of
phosphorylating Rb in the absence of D-type cyclins to
induce E2F transcription factors.12

Interestingly, genetic analysis has also
revealed that many cell types can prolif-
erate in the absence of CDK4/6 or D
cyclins. Yet, these studies have also pin-
pointed specific CDK requirements by
specialized type of cells. For example,
CDK6 has been shown to play specific
roles in the hematopoietic system; eryth-
ropoiesis and T-cell functions were
altered in CDK6 knockout mice and
this was not compensated by another
CDK. CDK6 has also been found to be
essential for b cell proliferation in pan-
creas.12-14 However, CDK6 overexpres-
sion has also been shown to reduce
skin tumorigenesis and cell growth in
fibroblasts.15,16

Phosphorylation of transcription factors
CDK4/6 cyclin D complexes phos-

phorylate transcription factors, such as
forkhead box M1 (FOXM1), mothers against decapentaplegic
homolog 2/3 (SMAD2/3), eyes absent homolog 2 (EYA2) and
methylosome protein 50 (MEP50) (cofactor) to alter their func-
tions. FOXM1 is needed for both S and M phases of the cell
cycle. Multisite phosphorylation by CDK4/6-cyclin D complexes
has been shown to both stabilize and activate FOXM1.17 Simi-
larly, phosphorylation of SMAD2 and SMAD3 results in the
elimination of the activation function of a SMAD2/3/4 trimer
such as the expression of p15 and p21.18 CDK6, but not CDK4,
binds to EYA2 protein to reduce its half-life. EYA2 is important
in transcriptional regulation during organogenesis.19 CDK6 has
also been shown to phosphorylate nuclear factor kappa-B (NF-
kB) linking cancers to inflammation. NF-kB induces the expres-
sion of pro-inflammatory genes.20,21

Modulation of cell differentiation
Despite the high level of homology between CDK4 and

CDK6, there is an increasing list of distinct functions reported
for CDK6. Among them is the ability of CDK6 to modulate
differentiation in specific cell types including murine erythroid
leukemia, primary mouse astrocytes, osteoblasts and osteoclasts,
thymocytes, neurons, cardiomyocytes and hematopoietic
cells.22-31 In hematopoietic cells, for example, down-regulation
of CDK6 allows terminal differentiation due to the release of
runt-related transcription factor 1 (Runx1), a transcriptional fac-
tor required for the opening of chromatin of important hemato-
poietic regulator genes.27

Location of CDK6
CDK6 has been shown to reside in the cytoplasm of many cell

types. However, in T cells despite the presence of CDK6/cyclin
D complex in both the cytoplasm and nucleus, only the nuclear
fraction exhibits kinase activity. Kohrt et al. argue that the simul-
taneous distribution of CDK6 in both the nucleus and cytoplasm
is important for this protein to coordinate its roles in cell division

Figure 1. Schematic representation of the function and regulation of CDK6. CDK6 phosphorylates the
retinoblastoma (Rb) and its related proteins (Rb) in the G1 phase of the cell cycle, derepressing E2F.
E2F then activates the transcription of genes that encode proteins necessary for DNA replication (S-
phase entry). Activation of CDK6 requires binding to D-type cyclins and phosphorylation by CAK
(CDK7/cyclin H/MAT1). INK4s deactivate CDK6 and Cip/Kip proteins, acting as negative modulators of
the CDK6-cyclin D complex.
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and differentiation.32 It has also been located on ruffling edge of
fibroblasts, promoting their spreading.33

Clinical relevance
Aberrance of the CDK4/6 cyclin D-INK4-pRb-E2F pathway

is common in >80% of human cancers.34 Cyclins D1 and D3
have been shown to be amplified in breast cancer and lymphoid
malignancies, respectively.35-37 CDK6 is overexpressed in lym-
phoma, leukemia, glioma, glioblastoma, medulloblastoma, and
cancers of squamous cells, salivary gland, bladder, pancreas and
prostate.38-50 In human prostate cancer cells, CDK6 has also
been shown to bind androgen receptor and stimulate its activity
in a kinase activity independent manner.46 Blockage of CDK6
expression by microRNAs (miRNAs) has been shown to inhibit
the proliferation of gliomas, medulloblastoma, prostate, bladder,
gastric, hepatocellular, and lung cancer cells, indicating the sig-
nificant role of CDK6 in the initiation and progression of these
cancers.51-58 These observations, coupled with the fact that mice
lacking D-type cyclins and/or CDK4/6 are viable, make targeting
components of the CDK4/6 cyclin D-INK4-pRb-E2F pathway a
highly attractive anti-cancer strategy.12,14

CDK6 and hematological malignancies
Acute myeloid leukemia (AML) is a malignant transformation

of hematopoietic cells characterized by an increase in the number
of myeloid cells in the marrow and an arrest in their maturation.
Chromosomal translocations of band q23 of chromosome 11 of
the mixed lineage leukemia (MLL) gene are common in AML
and are associated with poor prognosis.59,60 No effective treat-
ment is currently available for patients affected by the disease.
The discovery of new therapeutic agents against the disease is
vital. Recently, Placke et al. proposed CDK6 as a novel therapeu-
tic target in MLL-rearranged AML. Using a functional genetic
approach based on RNA interference (RNAi), it was shown that
MLL-AML cells are exceptionally reliant on CDK6, but not
CDK4, and that the growth inhibition induced by CDK6 deple-
tion is mediated through enhanced myeloid differentiation.
Given that expression of a CDK6K43M mutant with disrupted
kinase function or CDK4 failed to show similar effect, it was sug-
gested that the observed induction of differentiation is dependent
on the reduced kinase activity of CDK6, but not on the activity
of CDK4.61 Similarly, another study has provided evidence for
the validity of targeting CDK6 in an aggressive MLL fusion-
driven acute lymphoblastic leukemia (MLL-ALL). It was found
that CDK6 messenger RNA (mRNA) was over-activated in
infant patients with MLL rearranged ALL, and that targeting
CDK6 specifically using small interfering RNAs (siRNAs)
reduced MLL fusion mRNA expression. A separate knock-down
experiment confirmed that CDK6, but not CDK4, was required
for the proliferation of MLL-ALL cells.62 Taken together, these
findings suggest that CDK6 is a major oncogenic target of MLL-
AML and MLL-ALL, and that CDK6 inhibitors are highly likely
to find an application in treating patients with the disease.

Another study highlighted a function of CDK6 as a transcrip-
tional regulator that is unrelated to its kinase activity.63 Forced
CDK6 expression in p185BCR-ABL transformed pro-B cells

decreased cell proliferation accompanied by enhanced levels of
p16INK4a, the cell-cycle inhibitor and tumor suppressor, and pro-
angiogenic factor VEGF-A. CDK6 has 2 opposing functions,
i.e., the ability to inhibit or accelerate cell proliferation depend-
ing on whether p16INK4a is present or not. Malignancies of the
B- or T-lymphoid lineage frequently display loss of p16INK4a,
CDK6 thus confers a proliferative advantage to the transformed
cells in the absence of p16INK4a. Furthermore, the ability of
CDK6 to promote angiogenesis provides an additional advantage
for the growth of cells that express high levels of CDK6. As such,
inhibition of CDK6 blocks not only the cancer cell proliferation,
but also the blood vessel growth that is required to meet the
enhanced demand of tumors for blood supply. The new insight
into the transcriptional role of CDK6 provides a rationale to
develop CDK6 inhibitors, allowing the simultaneous inhibition
of cell-cycle progression and kinase-independent functions.64

In another study, CDK6-deficient mice were shown to be
resistant to the development of lymphoma.30 Similarly, CDK6
knock-out mice were also resistant to neurogenic locus notch
homolog protein 1 (NOTCH1) driven T-cell acute lymphoblas-
tic leukemia (T-ALL). Inhibition of CDK6-cyclin D3 by
PD0332991 in human leukemic cells causes apoptosis in addi-
tion to cell cycle arrest. Due to this synthetic-lethal interaction
between NOTCH1 overexpression and CDK6 inhibition, it was
proposed that inhibiting the kinase activity of CDK6 in patients
with NOTCH1-postive T-ALL is an attractive therapeutic strat-
egy.65-67 Furthermore, several studies on patients suffering from
lymphomas have revealed chromosomal translocations and the
consequent over-expression of CDK6 is a driving force for the
disease.68,69 Taken together, these findings strongly support
CDK6 as a specific therapeutic target in human lymphoid
malignancies.

CDK6 and colorectal carcinoma
A recent study on colorectal carcinoma, one of the leading

causes of cancer-related death in the world, has shown CDK6 to
be a key therapeutic target.70 Li et al. eliminated the expression
of CDK4 and/or CDK6 protein(s) in COLO320 cells by shRNA
and showed that CDK6 rather than CDK4 was important for the
phosphorylation of Rb protein. Knock-down of CDK6 signifi-
cantly repressed the growth of COLO320 cells suggesting the
potential therapeutic benefit of CDK6 inhibitors against colorec-
tal carcinoma.

CDK6 and medulloblastoma
CDK6 has also been implicated in development of medullo-

blastoma, the most common malignant brain tumor in chil-
dren.48,54,71 Medulloblastoma comprises multiple and distinct
molecular entities whose clinical and genetic differences likely
require separate therapeutic strategies. Four principal sub-groups
of medulloblastoma have been identified: those with Wnt path-
way mutations, Sonic Hedgehog pathway mutations, and those
termed Groups 3 and 4. Group 4 accounts for about 40% of all
medulloblastoma cases, and metastases are common in this
group. A major feature of Group 4 tumors is significant overex-
pression of CDK6, and this kinase is an independent prognostic
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factor for poor overall survival.48,71 Interfering with the produc-
tion of CDK6 by shRNA or by inducing specific miRNA (i.e.,
miR-124) reduced proliferation and colony formation in vitro
and inhibited the growth of medulloblastoma xenograft tumors
in animals.47,54,72 More recently, PD0332991 has been shown to
arrest cells in the G1 phase, decrease proliferation and sensitize
medulloblastoma cells to ionizing radiation; the effects being
modulated by its CDK6 inhibitory mechanism. As alterations in
CDK4, cyclin D1, p15 and p16 genes are not commonly seen in
medulloblastoma,73 targeting CDK6 specifically may prove ben-
eficial in treating medulloblastoma with minimal toxicity.

Structural features and regulation
Currently, 13 X-ray crystallographic structures of CDK6

(Table 1) are available, 5 of which are complexed with viral
cyclin (Vcyclin) and are deemed to depict the active conforma-
tion. Four of these structures illustrate inhibitors bound at the
ATP active site. The crystal structures of CDK6-inhibitor com-
plexes provide insights on the binding modes and clues on reduc-
ing promiscuity. The overall structure of CDK6 demonstrates
the bilobal fold that is common to other kinases. The N-terminal
lobe contains residues 1-100 and is made of 5 strands of antipar-
allel b-sheets and the aC-helix (also known as the a1 or
PLSTIRE helix). The larger C-terminal lobe is mostly a-helical
and comprises residues 101–326. The two lobes are connected
by a region known as the hinge. The ATP binding site is located
at the lobal interface with the hinge forming one of the edges.
The C-terminal lobe portion of the ATP-binding site consists of
the highly conserved DFG-motif and the activation loop (resi-
dues 163–189). The activation loop, which is also known as T-
loop, spans from the DFG motif to the APE motif and includes
the phosphorylation site Thr177 (Fig. 2).74-76

In the monomeric CDK6, the T-loop obstructs the get to the
catalytic site and prevents the protein substrate from accessing
ATP. Furthermore, key residues involved in the catalysis, such as
Glu61, Lys43 and Asp163 are not properly positioned, thus ren-
dering CDK6 catalytically inactive.76

The activation of CDK6 requires the binding to cyclin D1,
D2 or D3.4 Due to the lack of a co-crystal structure of CDK6
bound to any of the D-type cyclins, the deduction of the mecha-

nism of partial activation of CDK6 upon binding to D-type
cyclins stems from its activation by viral cyclins which are homol-
ogous to human D cyclins. As a consequence of binding to Vcy-
clin, the aC-helix changes its positioning so that Glu61 moves
near Lys43 and Asp163 in to the binding cleft. These three resi-
dues orient the phosphate group of the ATP for nucleophilic
attack by the hydroxyl group of Ser/Thr of the substrate. In addi-
tion, the conformational change due to Vcyclin binding exposes
Thr177 for phosphorylation by CDK activating kinase (CAK,
CDK7/cyclin H/MAT1). This phosphorylation results in the
complete activation of CDK6 and stabilizes its active conforma-
tion.76 It is noteworthy that the activation of CDK4 by cyclin
does not follow this model. Strikingly, unlike CDK6, the binding
of cyclin D1 or D3 to the aC-helix (PISTVRE) of CDK4 does
not give rise to an active conformation. Moreover, phosphoryla-
tion of Thr172 in the T-loop does not result in the activation of
the enzyme bound to cyclin D1. Furthermore, there are several

Table 1. Available X-ray crystallographic structures of CDK6

Description Resolution (A
�
) PDB Code

CDK6 - Vcyclin76 3.10 1JOW
CDK6 - Vcyclin - 9-cyclopentyl-N-(5-piperazin-1-ylpyridin-2-yl)pyrido[4,5]pyrrolo[1,2-d]pyrimidin-2-amine109 2.90 4TTH
CDK6 - Vcyclin - Aminopurvalanol114 2.80 2F2C
CDK6 - Vcyclin - Fisetin117 2.90 1XO2
CDK6 - Vcyclin - PD0332991114 3.00 2EUF
CDK6 - Kcyclin - p18INK4c 118 2.90 1G3N
CDK6 - {5-[4-(dimethylamino)piperidin-1-yl]-1H-imidazo[4,5-b]pyridin-2-yl}[2-(isoquinolin-4-yl)pyridin- 4-yl]methanone111 2.70 4EZ5
CDK6 - 1H-benzimidazol-2-yl(1H-pyrrol-2-yl)methanone111 2.31 4AUA
CDK6 - 4-[3-(1-methylethyl)-1H-pyrazol-4-yl]-N-(1-methylpiperidin-4-yl)pyrimidin-2-amine119 2.60 3NUP
CDK6 - 4-[5-chloro-3-(1-methylethyl)-1H-pyrazol- 4-yl]-N-(5-piperazin-1-ylpyridin-2-yl)pyrimidin-2-amine119 2.70 3NUX
CDK6 - p16INK4a 83 3.40 1BI7
CDK6 - p19INK4d 74,83 1.90 1BLX

2.80 1BI8

Figure 2. Schematic drawing of the CDK6-Vcyclin complex with inhibitor
PD0332991 (PDB ID: 2EUF). CDK6 is shown in turquoise with the aC helix
(PLSTIRE) in purple, the T-loop in orange, and the hinge region in yellow.
Cyclin is shown in gray. PD0332991 is shown bound in the ATP binding
pocket of the kinase. The figure was prepared using PyMOL1.3
(Schr€odinger Inc., 2013).
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lines of evidence showing that CDK4 might not even be phos-
phorylated by CAK.77,78

The INK4 family of CDK inhibitors (CDKIs) which include
p16INK4a, p15INK4b, p18INK4c, and p19INK4d are specific to
CDK4 and CDK6. They bind to either the monomeric CDK or
the CDK-cyclin D complex resulting in inactivation of the
enzyme.79-82 Information obtained from the crystal structures of
the complexes between CDK6-cyclin D and p16INK4a, p18INK4c,
and p19INK4d reveal that the binding of the INK4 family mem-
bers to CDK6 causes an extensive movement of the N-domain of
the kinase culminating in misalignment of the catalytic residues
and distortion of the ATP and cyclin binding sites. In addition,
the binding of INK4 proteins to CDK6 has been shown to pre-
vent the binding to the p27Kip1 inhibitor allowing its redistribu-
tion to other CDKs.74,83,84 Unlike INK4s, Cip/Kip (CDK
interacting protein/kinase inhibitory protein) family of inhibitors
(p21Cip1, p27Kip1 and p57Kip2) interact with both the cyclin and
CDK parts to deactivate the catalytic CDK6 by causing confor-
mational changes. Both sets of endogenous CDK inhibitors also
prevent the binding of CAK to CDK6. Paradoxically, the Cip/
Kip family of proteins have also been shown to be important for
the activation of CDK4 and CDK6. In addition, phosphoryla-
tion of Tyr24 residue in the glycine rich loop by inhibitory

kinases Wee1 and Myt1, which can be reversed by Cdc25 family
of phosphatases, interferes with proper ATP binding to nega-
tively regulate CDK6.85-87

Inhibiting CDK6
Discovery of highly selective pharmacological inhibitors is a

challenging task. No inhibitor targeting an individual CDK has
been reported to date. All CDK inhibitors identified so far are
either of the pan-CDK (i.e., CDK1/2/4/6/7/9), or CDK4/6
class. Given the complexity of cancer, a combined inhibition of
the multiple CDKs can be considered as an effective therapeutic
approach. However, a promiscuous multi-target activity might
pose risks due to unforeseeable side effects and toxicity. In addi-
tion, selective inhibitors are in need for targeting tumors where a
single kinase is aberrantly regulated.88,89

Currently, a few ATP-competitive CDK4/6 dual inhibitors,
i.e., Palbociclib (PD0332991), Ribociclib (LEE011) and Abema-
ciclib (LY2835219) are undergoing clinical trials. Mechanisti-
cally, these drug candidates inhibit CDK4/6, halt Rb
phosphorylation and arrest G1 cell cycle progression of cancer
cells.51,90-93 PD0332991 has also demonstrated to cause almost
identical senescence phenotypes as the endogenous CDK inhibi-
tors p16INK4a and p21Cip1 do.94

Table 2. Selective CDK4/6 inhibitors in clinical development

Compound Structure CDK inhibition (IC50, nM) Stage of Development*

PD0332991 (Pfizer)91 CDK1/B> 10,000
CDK2/A> 10,000
CDK2/E2> 10,000
CDK4/D1D 11
CDK4/D3D 9
CDK5/P25 > 10,000
CDK6/D2D 15

� Approved in combination with letrozole (Ibrance�) for the
first-line treatment of advanced breast cancer.

� Phase II clinical trials in advanced or metastatic liposarcoma,
advanced non-small cell lung cancer, ovarian epithelial carci
noma, advanced gastrointestinal stromal tumors refractory to
imatinib and sunitinib, liver cancer, MLL-rearranged acute
leukemias.

� Phase I clinical trials in recurrent, progressive, or refractory
central nervous system tumors (young patients).

� Phases I, II and III clinical trials in combination with other
agents against various cancers.

LEE011 (Novartis) 90 CDK1/B> 10,000
CDK2/A> 10,000
CDK4/D1D 10
CDK5/P25 > 10,000
CDK6/D3D 39
CDK9/T1D 1,500

� Phase III clinical trials in pre-menopausal women with
advanced breast cancer.

� Phase II clinical trials in relapsed/refractory teratoma with
recent progression.

� Phase I clinical trials in recurrent glioblastoma or anaplastic
glioma, advanced solid tumors or lymphomas, malignant
rhabdoid tumors and neuroblastoma (pediatric patients).

� Phases I, II and III clinical trials in CDK4/6 pathway acti
vated solid tumors and/or hematological malignancies in
combination with other drugs.

LY2835219 (Eli Lilly)92 CDK1/BD 1,627
CDK2/E D 504
CDK4/D1D 2
CDK6/D1D 10
CDK7/H D 3,910
CDK9/T1D 57

� Phase III clinical trials in previously treated lung cancer.
� Phase II clinical trials in previously treated breast cancer that
has spread, breast cancer that has spread to the brain.

*data from http://clinicaltrials.gov, accessed on 1st April 2015.
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PD0332991 is a pyridopyrimidine derivative (Table 2) devel-
oped by Pfizer with relative high level of selectivity toward
CDK4 and CDK6. It has been shown to inhibit various types of
Rb proficient human cancer cell lines such as luminal estrogenic
receptor positive subtypes of breast cancer, ovarian cancer, renal
cancer, glioblastoma multiforme, maliginant rhabdoid tumor
and colorectal cancer. This cellular effectiveness has also been
reflected in various tumor xenograft models.95-102

Currently, in its phase III clinical trial, PD0332991 is being
tested in patients with squamous cell lung cancer and has been
granted accelerated approval for use in combination with letro-
zole for the treatment of hormone receptor positive/human epi-
dermal growth factor receptor 2 negative (HRC/HER2¡) breast
cancer in postmenopausal women for their metastatic disease
(http://www.fda.gov/). Despite the exciting therapeutic outcomes
obtained from this combination therapy and its advantage in
combating drug resistance, there should be a certain degree of

caution when considering combination regimens. Preclinical
studies have shown that the resultant G1 arrest by CDK4/6
inhibitors may antagonize cytotoxic therapies that kill cancer cells
in S-phase or mitotic phase. Franco et al. have demonstrated that
while phosphoinositide 3-kinase/mammalian target of rapamycin
(PI3K/mTOR) or mitogen-activated protein kinase kinase
(MEK) inhibitors potently cooperated with CDK4/6 inhibition
by PD0332991 in pancreatic ductal adenocarcinoma models,
PD0332991 antagonized the cytotoxic effects of polo-like kinase
1 (PLK1) inhibitors and the antimetabolite gemcitabine.
In addition, CDK4/6 inhibition has been shown to protect
triple-negative breast cancer cells from doxorubicin mediated
cytotoxicity.103,104

LEE011, a pyrolopyrimidine with structural features similar
to PD0332991 (Table 2), was shown to be active against liposar-
coma and neuroblastoma in vitro and in xenograft animal mod-
els. Twelve out of 17 human neuroblastoma cell lines were

Table 3. Selective CDK4/6 inhibitors in pre-clinical development

Compound Structure CDK inhibition (IC50, nM)

7X110 CDK1/AD 7,413
CDK1/BD 1,359
CDK2/AD 159
CDK2/E D 1,353
CDK3/E D 1,776
CDK4/D1D 4
CDK4/D3D 34
CDK5/P25 D 259
CDK5/P35 D 279
CDK6/D1D 10
CDK6/D3D 35
CDK7/H > 10,000
CDK9/KD 25
CDK9/T1D 191

Compound A120 CDK1/BD 600
CDK2/AD 1,700
CDK4/D2D 9.2
CDK5/P35 D 3,000
CDK6/D2D 7.8
CDK7/H D 530
CDK9/T1D 2,500

AMG925109 CDK1/BD 1,900
CDK2/AD 375
CDK4/D1D 3
CDK6/D1D 8

PD0183812113 CDK2/AD 210
CDK2/E D 165
CDK4/D1D 8
CDK6/D2D 7
CDK6/D3D 13

Compound 6111 CDK1/B> 10,000
CDK2/A> 10,000
CDK4/D1D 15
CDK6/D3D 120
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highly sensitive to LEE011 with IC50 values ranging between
126–801 nM. LEE011 is in phase III clinical trials against post-
menopausal advanced breast cancer. It is also in phase I and II
clinical studies as standalone or in combination with other agents
against various cancers.105,106

A benzoimidazolpyrimidine derivative LY2835219 (Table 2)
seems the most potent CDK4 and CDK 6 inhibitor with an IC50

value of 2 nM and 10 nM, respectively. However, it also inhibits
CDK2 and CDK9 potently. The compound was shown to be
efficacious against pre-clinical models of colon cancer, glioblas-
toma, acute myeloid leukemia, mantle cell lymphoma and lung
cancer. It is currently in clinical trials for the treatment of stage
IV non-small cell lung cancer and HRC/HER2¡ breast
cancer.92,107,108

In addition to the above clinical experimental drug com-
pounds, a few pre-clinical CDK4/6 inhibitors, i.e., 7X, AMG925,
Compound 6, Compound A and PD0183812, have been
reported.109-113 The chemical structures and CDK inhibitory
activity of these compounds are summarized in Table 3. A close
examination of the chemical structures of PD0332991, LEE011,
LY2835219, AMG925 and Compound A reveals a general N-
NH-N sequence of the pyrimidine-amine-pyridine or pyrazine-
amine-thiazole system. This sequence is likely to play an impor-
tant role in achieving CDK4/6 inhibition. Notably, substituents
on the heterocyclic rings significantly differ among the 5 molcules,
suggesting room for further modification to optimise potency and
selectivity. Potency has been shown to be tuned by the interac-
tions with the residues at the gate of the ATP binding pocket.114

Inhibitor design strategies
The majority of small-molecule kinase inhibitors developed so

far target the ATP binding site (i.e., acting as ATP competitors),
although alternative approaches for
inhibitor design in targeting sites
other than the ATP cleft are being
proposed.115 Chemical scaffolds of
the ATP competitive inhibitors usu-
ally consist of a planar heterocyclic
system that acts as an ATP adenine
mimetic. Due to highly conserved
structure of the ATP binding
domain of most kinases, these inhib-
itors may suffer from cross-reactivity
with other kinases, resulting in poor
safety and sometimes severe side
effects.86,116 Nevertheless, many
ATP competitive inhibitors, includ-
ing PD0332991, have achieved high
specificity and are successfully devel-
oped as therapeutics.

In PD0183812 (Table 3) the
piperidine nitrogen was proposed to
be protonated at the physiological
pH. As a consequence, the positively
charged nitrogen results in an unfav-
ourable electrostatic repulsion with

Lys89 of CDK1/2. On the other hand, due to the replacement of
Lys89 by the less sterically demanding and less basic Thr102 and
Thr107 in CDK4 and CDK6, respectively, the compound
adopts a more elongated conformation which allows the favor-
able ion-pair interaction of the positively charged piperidinyl
nitrogen with Glu144.116 In CDK7 and CDK9 the position of
Lys89 is occupied by Val100 and Gly112, respectively, and hence
specificity for these kinases might be achieved with bulky and
hydrophobic substituents.85,86

Similarly, by virtue of its C5-methyl and C6-acetyl groups,
PD0332991 (Fig. 3a) has been reported to have several steric
clashes with the gatekeeper residue Phe80 of CDK2. The C6-
acetyl group in PD0332991 forms hydrogen bond with the
backbone NH of Asp163 of the DFG motif in CDK6.110 Inves-
tigation on the crystal structure of CDK6-Vcyclin in complex
with PD0332991 has revealed that selectivity for CDK6 may be
achieved by targeting the relatively less conserved hinge region
and the pocket near the Phe98 gate keeper in the back of the
ATP catalytic site. For instance, this is possible by aromatic sp2

nitrogen near the rarely conserved His100 (Phe82 in CDK2). It
was also suggested that engaging in an interaction with the
Phe98 gatekeeper enhances selectivity. For example, pyridine in
AMG 925 has been shown to form an edge to face aromatic-
aromatic contact with the gatekeeper residue Phe98.109,111

Docking and scoring of 7X (Table 3), which is highly structur-
ally similar to PD0332991, have identified a binding orienta-
tion different from that of PD0332991. This has been
attributed to the rigidity and higher electron withdrawing effect
of the cyano group when compared with the acetyl group. The
nitrogen of the cyano group is believed to interact with Lys43
and Ala23 of CDK6.110

Figure 3. (a) PD0332991 is shown in green and bound in the ATP binding pocket of CDK6. It forms
hydrogen bonds (shown in black dashed lines) with the conserved amino acids Val101 and Asp163.
(PDB ID: 2EUF). (b) The ATP binding site of CDK6 (PDB ID: 2EUF) aligned with CDK4 (PDB ID: 2W96). CDK6
is shown in turquoise and CDK4 is in yellow. The differences within the ATP binding site between CDK6
and CDK4 are labeled in black. The figure was prepared using PyMOL1.3 (Schr€odinger Inc., 2013).
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Even though, the above findings point out some of the struc-
tural requirements for the design and synthesis of potent and
selective potential CDK6 inhibitors, achieving selectivity for
CDK6 over CDK4 is highly challenging. Firstly, the 2 kinases
are highly structurally similar. CDK6 shares 70% amino acid
sequence identity with CDK4, while only 40% with CDK2
(Fig. 4). Secondly, due to the lack of a crystal structure of CDK4
bound to a ligand, structural elements contributing to CDK4
selectivity and potency remain to be fully understood. The avail-
able crystal structures of monomeric CDK4 are engineered and
hence there is a possibility that the wild-type CDK4 might be
different. In fact, the aforementioned molecules are relatively
more selective toward CDK4 than CDK6. Hence, the interac-
tions of these molecules with CDK6, as described above, might
also occur with CDK4. In order to get better understanding of
the differences in inhibitor binding (selectivity) between CDK4
and CDK6, it is crucial to determine the structures of CDK4-
ligand complexes.

The overlay of the ATP binding site of CDK4 on that of
CDK6 (Fig. 3b) reveals the presence of structural features in the
binding pocket which are not involved with ATP binding.
Exploiting these structural features would offer a strategy for the
development of ATP competitive and selective CDK6 inhibitors.
For instance, on the edge of the ATP binding site, Arg101 and
Glu144 of CDK4 are replaced by Thr106 and Gln149 in
CDK6. Therefore, this area in CDK6 provides a more spacious
pocket with non-charged amino acid side chains. Furthermore,
the crystal structures indicate that Lys106 in CDK4 is »0.9 A

�

further from the Val101 of the hinge – which participates in cru-
cial hinge-ligand interactions – as measured from respective Ca
atoms. This is presumably due to a few sequence changes sur-
rounding Lys106. These structural features can be exploited by
bulkier groups with different properties. For example, placing a
carboxylate group on the piperazine moiety of PD0332991 or
LEE011 might improve selectivity for CDK6 over CDK4. More-
over, the dynamic behavior of CDK4 and CDK6 remains barely
investigated, experimentally or computationally. Their dynamics
may illustrate further conformational differences that could be
exploited for improving selectivity.

Though inhibition of the catalytic activity of the CDKs with
small molecules that compete with ATP has proved to be the
most successful strategy to date, discovery of non-ATP competi-
tive compounds might provide a means to overcome the selectiv-
ity issue with fewer off-target side effects.

Conclusions

Although both CDK4 and CDK6 regulate the G1 to S phase
of the cell cycle, CDK6 has unique functions that are cell-type
specific and developmentally distinct. There are compelling rea-
sons to develop mono-specific CDK6 inhibitors which will not
only be effective against several types of cancers, including MLL-
AML, MLL-ALL, glioblastomas and medulloblastoma where
CDK6 is a major oncogenic factor, but also have a less risk
of off-targeting toxicity. To further validate CDK6 as a

Figure 4. Sequence comparison of CDK2, CDK4 and CDK6. Green and pink indicate residues conserved in all the 3 CDKs and 2 CDKs, respectively. Cyclin
binding domain, hinge region and the T-loop are boxed in a blue frame. Amino acids for inhibitory phosphorylation by Wee1 and Myt1 are shown in
blue. In the T-loop, the threonine labeled in blue is essential for phosphorylation by CAK for activation. The sequence alignment was generated using
UniProt (http://www.uniprot.org/align/).
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pharmacological target in a diversity of cancer types and to
develop effective and safe anti-cancer agents, CDK6 inhibitors
with high selectivity have to be discovered.
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