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Equal distribution of the genetic mate-
rial during cell division relies on effi-

cient congression of chromosomes to the
metaphase plate. Prior to their alignment,
the Dynein motor recruited to kinetochores
transports a fraction of laterally-attached
chromosomes along microtubules toward
the spindle poles. By doing that, Dynein
not only contributes to chromosome move-
ments, but also prevents premature stabili-
zation of end-on kinetochore-microtubule
attachments. This is achieved by 2 parallel
mechanisms: 1)Dynein-mediated poleward
movement of chromosomes counteracts
opposite polar-ejection forces (PEFs) on
chromosome arms by the microtubule
plus-end-directed motors chromokinesins.
Otherwise, they could stabilize erroneous
syntelic kinetochore-microtubule attach-
ments and lead to the random ejection of
chromosomes away from the spindle poles;
and 2) By transporting chromosomes to the
spindle poles, Dynein brings the former to
the zone of highest Aurora A kinase activity,
further destabilizing kinetochore-microtu-
bule attachments. Thus, Dynein plays an
important role in keeping chromosome seg-
regation error-free by preventing premature
stabilization of kinetochore-microtubule
attachments near the spindle poles.

Introduction

In order to maintain genome integrity
chromosomes must be accurately distrib-
uted during mitosis. This is achieved after
chromosome bi-orientation, in which sis-
ter kinetochores become attached to
microtubules from opposite poles of the
mitotic spindle and chromosomes align at

the metaphase plate prior to sister chro-
matid separation in anaphase. Chromo-
some movement toward the spindle
equator is initiated immediately after
nuclear envelope breakdown (NEB) in
prometaphase and is known as chromo-
some congression.1,2 Chromosome move-
ments during congression are driven by 2
main mechanisms: microtubule polymeri-
zation/depolymerization-based motion3

and motor-dependent transport along
microtubules.4-6 The latter is mainly
achieved through the coordinated activi-
ties of cytoplasmic Dynein, CENP-E and
chromokinesins.5

Cytoplasmic Dynein (from here on
referred as Dynein) is a large protein
complex (1.6 MDa) consisting of several
subunits: 2 heavy chains containing
ATPase motor domains, 2 intermediate
chains, 2 light intermediate chains and 3
different types of light chains.7 Dynein
interacts with many different proteins
that regulate its activity and localization,
enabling Dynein to perform its various
cellular tasks.8 Dynactin, another large
multi-protein complex (1 MDa) is
involved in most Dynein functions, both
by targeting it to specific locations and
by increasing its processivity.9 Lis1,
NudE and NudEL are important for
Dynein function at kinetochores, nuclear
and spindle positioning, as well as organ-
elle and mRNA transport.8 Bicaudal D
also plays a role in Dynein-mediated
organelle transport and, together with
NudE and NudEL, targets Dynein to the
nuclear envelope where it contributes to
the separation of spindle poles in early
mitosis.10 The Rod, ZW10 and Zwilch
(RZZ) complex and Spindly target
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Dynein specifically to kinetochores, cou-
pling its function to kinetochore-microtu-
bule attachments and the spindle
assembly checkpoint.11 Thus, a number
of different binding partners, together
with a diverse distribution of specific sub-
units12 and their phospho-regulation,13

allow a single motor protein - Dynein -
to be involved in numerous independent
cellular functions, including chromosome
congression.14-16

Another kinetochore-localized motor
protein involved in chromosome move-
ments is the kinesin-7 CENP-E. Although
it localizes at the kinetochore fibrous
corona,17,18 just like Dynein,19 CENP-E
works in opposite direction, having the
ability to move chromosomes toward the
plus-ends of microtubules. By doing this,
CENP-E directly supports the alignment
of chromosomes to the metaphase
plate.20-23

In an elegant, laser microsurgery-based
study, it was shown that polar ejection
forces (PEFs) on chromosome arms (also
known as “polar winds”) actively contrib-
ute to chromosome movement away from
the pole.24 Additional studies revealed
that these forces are mainly generated by
the microtubule plus-end-directed motor
proteins chromokinesins.25-32

During the coordinated action of all
these motor activities that mediate chro-
mosome congression it is crucial to pre-
vent and/or correct potential erroneous
kinetochore-microtubule attachments.
Syntelic attachments occur when both sis-
ter kinetochores become attached by
microtubules originated from a single
pole, while merotelic attachments arise
when a single kinetochore becomes
attached to both spindle poles. The best-
studied error correction system is based on
the action of the centromere-localized
kinase Aurora B, which destabilizes kinet-
ochore-microtubule attachments through
phosphorylation of microtubule depoly-
merases (such as the kinesin-13 proteins
MCAK and Kif2B)33-35 and Ndc80, a
protein required for the stabilization of
end-on kinetochore-microtubule attach-
ments.36-38 Once chromosomes become
bi-oriented and tension is applied between
sister kinetochores, Ndc80 moves away
from Aurora B, resulting in kinetochore-
microtubule attachment stabilization.39,40

Here we elaborate on recent studies that
demonstrated a role of Dynein,5 chromoki-
nesins5,41 and Aurora A kinase5,41,42 in the
prevention and correction of erroneous
kinetochore-microtubule attachments dur-
ing chromosome congression.

Congression of Peripheral
Chromosomes Depends on Motor

Proteins

Chromosomes can congress to the
metaphase plate either using polymeriza-
tion/depolymerization of kinetochore
microtubules or motor protein-mediated
transport along microtubules. However,
it remained unclear why some chromo-
somes prefer one pathway over the other.
Chromosomes that depend on motor pro-
teins first move to the spindle pole and
only after initiate alignment to the spindle
equator. This initial poleward movement
depends on the microtubule minus-end-
directed motor Dynein at unattached
kinetochores,14-16,43,44 whereas the subse-
quent motion toward the equator depends
on the microtubule plus-end-directed
motor proteins CENP-E at kineto-
chores20 and chromokinesins on chromo-
some arms.25,27,28 We sought to
investigate whether the dependence on
motor proteins for chromosome congres-
sion correlates with chromosome posi-
tioning at NEB. To address this, we
generated a stable U2OS cell line express-
ing GFP-CENP-A and mCherry-a-tubu-
lin, which allowed us to track kinetochore
positions relative to the mitotic spindle
using high-resolution live-cell imaging.
Then we inhibited CENP-E, which
resulted in Dynein-mediated accumula-
tion of few chromosomes (»15%) near
spindle poles. By backtracking these polar
chromosomes to their original positions
at NEB, we found that they initially occu-
pied a peripheral region outside the inter-
polar spindle ellipsoid, and were always
significantly closer to one of the poles.5 In
contrast, chromosomes that were already
positioned in the interpolar region at
NEB were easily accessible by microtu-
bules from both spindle poles and became
bi-oriented soon after NEB. Importantly,
these chromosomes completed alignment
in the absence of all 3 motor activities.5

Thus, we concluded thatonly peripheral
chromosomes that cannot bi-orient soon
after NEB require motor proteins to
congress.

Dynein Prevents Premature
Kinetochore-Microtubule

Attachments by Counteracting
Polar Ejection Forces

Dynein-dependent poleward transport
of peripheral chromosomes plays an
important role in preventing premature
and potentially erroneous stabilization of
end-on kinetochore-microtubule attach-
ments.5 Dynein achieves this by counter-
acting PEFs generated mainly by the
microtubule plus-end directed motor pro-
teins chromokinesins.25-32 Co-depletion
of CENP-E and Dynein in live U2OS
cells stably expressing H2B-GFP and
mCherry-a-tubulin to simultaneously
visualize chromosomes and microtubules,
respectively, led to the ejection of polar
chromosomes from spindle poles and sta-
bilization of their kinetochore-microtu-
bule attachments.5 This was opposite
from the behavior of chromosomes that
remained locked at the poles and lacked
stable end-on kinetochore-microtubule
attachments in CENP-E inhibited cells, in
which Dynein function was left
intact.5,45,46 Importantly, chromosome
ejection and attachment stabilization in
the absence of Dynein were both repressed
after simultaneous depletion of the 2
human chromokinesins (Kid and Kif4A),5

in line with a recently reported role of
PEFs in the stabilization of syntelic attach-
ments in Drosophila S2 cells.47

To dissect the functions of motor pro-
teins at distinct chromosomal loci, as
well as their respective contribution to
chromosome movements, we used laser
microsurgery to physically separate the
chromosome arms from the kinetochore-
containing chromosome body.5 To specifi-
cally investigate polar chromosomes we
inhibited CENP-E prior to laser microsur-
gery, which locked a group of chromo-
somes at the spindle poles. After laser
microsurgery, acentric (i.e. without kineto-
chore) chromosomal fragments moved in
random directions (not only toward the
spindle equator, but also toward the cell
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cortex) in a chromokinesin-dependent
manner, while kinetochore-containing
fragments remained stationary at the
poles.5 Thus, kinetochore-mediated forces
are dominant over PEFs acting on the
arms of polar chromosomes.

Previous electron microscopy studies
have shown that polar chromosomes in
CENP-E inhibited cells lacked stable
end-on kinetochore-microtubule attach-
ments.45,46 As so, we reasoned that
Dynein must accumulate on these unat-
tached kinetochores and prevent chromo-
kinesins to move chromosomes away from
the spindle poles after CENP-E inhibition.
To directly test this, we used high-resolu-
tion live-cell imaging of HeLa cells stably
expressing GFP-labeled Dynein Heavy
Chain (DHC).48 While DHC-GFP was
stripped off the kinetochores during chro-
mosome congression in control cells, polar
kinetochores from CENP-E-inhibited cells
were highly enriched of DHC-GFP
(Fig. 1 and Video S1). Overall, these data
leads to the conclusion that Dynein-medi-
ated poleward force is dominant over
chromokinesin-generated PEFs, thereby
preventing premature and erroneous
stabilization of kinetochore-microtubule
attachments and random ejection of chro-
mosomes from spindle poles.

Dynein Prevents Premature
Kinetochore-Microtubule
Attachments by Bringing

Peripheral Chromosomes Closer
to Aurora A Kinase at the Spindle

Poles

To further examine the stability of
kinetochore-microtubule attachments of
polar chromosomes in CENP-E-inhibited
cells lacking Dynein activity, we per-
formed immunofluorescence analysis with
antibodies against Mad1.5 Mad1 is a spin-
dle assembly checkpoint protein that is
removed from kinetochores upon end-on
attachment to microtubules, and therefore
can be used as an attachment sensor. Con-
trary to CENP-E-inhibited cells in which
Dynein activity remains present, kineto-
chores from chromosomes that were
ejected from spindle poles in the absence
of Dynein and CENP-E inhibition
showed reduced Mad1 levels, confirming
the premature stabilization of kinetochore-
microtubule attachments. As expected, a
similar effect was observed in CENP-E-
inhibited cells after co-inhibition of
Aurora B kinase, which we used as a posi-
tive control. Surprisingly, Mad1 levels
were also reduced on polar chromosomes
after inhibition of Aurora A kinase,

indicating a role of Aurora A in the spatial
regulation of kinetochore-microtubule
attachments near the spindle poles.
Indeed, Aurora A had been previously
implicated in the stabilization of kineto-
chore-microtubule attachments,49,50 which
might be explained by the fact that Aurora
A shares 70% identity of its catalytical
domain with Aurora B51 and that both
kinases recognize almost identical consen-
sus target motifs.52 Thus, Aurora A and
Aurora B might have overlapping func-
tions in the correction of kinetochore-
microtubule attachments that are spatially
regulated by their different localization
(Aurora A being placed at the centrosomes
and Aurora B at the centromeres), which
is defined by their different binding part-
ners.51 Additionally, Aurora A might play
other important roles in chromosome con-
gression by regulating proteins directly
involved in this process.53,54

Two recent studies further confirmed
our observation about the role of Aurora
A in error correction near the poles in
mitosis and also in meiosis I. Ye and col-
leagues41 demonstrated the existence of an
Aurora A activity gradient centered on the
spindle poles in Drosophila S2 cells using a
Fluorescence Resonance Energy Transfer
sensor bound to microtubules that was

Figure 1. Dynein “locks” peripheral chromosomes at the spindle poles after CENP-E inhibition. High-resolution live-cell imaging (eleven 1mm-separated
z-planes; 10 sec time interval) of HeLa cells stably expressing DHC-GFP (kind gift from Iain Cheeseman, Whitehead Institute, MIT, USA). Images were taken
with an iXonEMC electron-multiplying CCD camera (Andor Technology), using a 100x 1.4 NA Plan-Apochromatic DIC objective on an inverted microscope
(TE2000U; Nikon) equipped with a CSU-X1 spinning-disc confocal head (Yokogawa Corporation of America). Note that DHC-GFP is highly expressed at
unattached kinetochores from polar chromosomes after CENP-E inhibition with 20 nM GSK92329 (MedChemexpress). Red circles indicate the position of
the spindle poles. Scale bar: 10 mm. Time: hrs:mins
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sensitive to Aurora A phosphorylation.
They also showed that Aurora A reduces
the stability of kinetochore-microtubule
attachments and that it counteracts the
attachment stabilization effect of chromo-
kinesin-generated PEFs. Finally, they con-
firmed the role of Aurora A in error
correction also in human and PtK1 cells
and defined Ser-55 of Ndc80 as an Aurora
A-specific phosphorylation site at kineto-
chores, shedding light on the molecular
mechanism of Aurora A-based error cor-
rection. Chmatal and colleagues42 investi-
gated the role of Aurora A in error
correction using oocytes from mice gener-
ated by crossing a strain containing Rob-
ertsonian chromosomes (chromosomes
created by fusion of 2 telocentric chromo-
somes at the centromeres) with a standard
laboratory strain, containing all telocentric
chromosomes. This resulted in oocytes
containing trivalents, which were placed
off the center of the spindle equator,
toward one of the spindle poles. Kineto-
chore-microtubule attachments on chro-
mosomes closer to the pole were always
less stable than the attachments on chro-
mosomes near the spindle equator, unless
Aurora A kinase was inhibited, demon-
strating its role in attachment destabiliza-
tion near the spindle poles. Moreover,
they used live-cell imaging to show that
Mad1-GFP signal accumulated on

kinetochores near the spindle pole, both
in trivalents and syntelically-attached biva-
lents that became efficiently corrected as
they approached the spindle pole. Alto-
gether, these studies in 4 different sys-
tems5,41,42 demonstrate that, in addition
to a centromeric-based error correction
mechanism mainly driven by Aurora B, an
Aurora A-regulated error correction mech-
anism exists in the vicinity of the spindle
poles to prevent the premature stabiliza-
tion of end-on kinetochore microtubule
attachments. This is likely to be important
for subsequent CENP-E-mediated con-
gression of polar chromosomes along pre-
existing spindle microtubules.20

Fighting the “polar winds” to see
the Aurora (A): an integrated

model for how Dynein prevents
incorrect kinetochore-

microtubule attachments at the
spindle poles

Here we propose an integrated mecha-
nism for how Dynein prevents the prema-
ture stabilization of (erroneous)
kinetochore-microtubule attachments
near the spindle poles (Fig. 2). This is
achieved by moving peripheral chromo-
somes toward one of the spindle poles
before congression to the spindle equator.

By transporting peripheral chromosomes
to the vicinity of the spindle poles, Dynein
counteracts the stabilizing effect of chro-
mokinesin-mediated PEFs, while bringing
these chromosomes to the zone of highest
Aurora A activity, which further prevents
stabilization of end-on kinetochore-micro-
tubule attachments.
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