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Mitochondria are organelles that
orchestrate a plethora of funda-

mental cellular functions that have been
associated with various steps of tumor
progression. However, we currently lack
a mechanistic understanding of how
mitochondrial dynamics, which reflects
the organelles’ exquisite heterogeneity in
shape and spatial distribution, affects
tumorigenesis. In a recent study, we
uncovered a surprising new role of mito-
chondrial dynamics in response to PI3K
therapy. We found that re-activation of
Akt/mTOR signaling in tumor cells
exposed to small molecule PI3K antago-
nists currently in the clinic triggered the
transport of energetically active, elon-
gated mitochondria to the cortical cyto-
skeleton of tumor cells. In turn, these
repositioned mitochondria supported
increased lamellipodia dynamics, faster
turnover of focal adhesion complexes,
heightened velocity and distance of ran-
dom cell migration and increased tumor
cell invasion. In this Extra View, we dis-
cuss the mechanistic basis of this para-
doxical response to PI3K antagonists and
propose possible strategies to disable
mitochondrial adaptation.

Introduction

Phosphoinositide 3-kinases (PI3K) are
master regulators of cellular metabolism
that transduce extracellular growth factor
signals via receptor tyrosine kinases
(RTKs) or G-protein coupled receptors.
PI3K activation leads to phosphorylation
of phosphatidylinositol lipids at the
plasma membrane, which in turn recruit
and/or activate downstream effectors,
including the serine/threonine kinases

protein kinase B (PKB/Akt) and mamma-
lian target of rapamycin (mTOR). In nor-
mal cells, the phosphatase and tensin
homolog (PTEN) restrains the pathway’s
activation. Hyperactivation of the PI3K
pathway is one of the most common alter-
ations in cancer, functions as a pivotal dis-
ease driver and can involve a variety of
mechanisms, including copy number
alterations, activating mutations in PI3K/
Akt/mTOR, and deletion of PTEN.1

Together with the fact that PI3K and
downstream kinases are amenable to phar-
macological intervention, this pathway
provides one of the most attractive targets
for therapeutic intervention and personal-
ized medicine approaches in cancer.2

However, and despite high expectations,
the vast majority of small molecule PI3K
antagonists evaluated in the clinic so far
have shown significant toxicity and lim-
ited efficacy as monotherapy.3 The activity
of these agents is likely limited by the
emergence of treatment resistance mecha-
nisms, including activation of compensa-
tory signaling pathways (RTKs, ERK,
MYC, Notch/Wnt); and a paradoxical
reactivation of Akt/mTOR, the very same
pathway that these agents are designed to
inhibit.4-7

We recently demonstrated that Akt2-
directed repurposing of mitochondrial
functions provides a novel adaptive
mechanism of tumor resistance to PI3K
therapy.8 Importantly, disabling the
addiction of tumors to PI3K-induced
mitochondrial adaptation produced
potent and synergistic anti-cancer activity
in preclinical studies.8 In a follow-up
study, we have now uncovered a surpris-
ing new role of mitochondrial dynamics
in response to PI3K therapy.9 Accord-
ingly, re-activation of Akt signaling in
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tumor cells exposed to PI3K therapy trig-
gers the transport of energetically active
mitochondria to the cortical cytoskeleton
of tumor cells, where they support
increased lamellipodia dynamics, faster
turnover of focal adhesion complexes and
increased tumor cell migration and inva-
sion.9 Here we discuss the mechanistic
basis of this paradoxical response to PI3K
antagonists that engenders more aggres-
sive disease traits, and propose possible
strategies to disable adaptive mitochon-
drial rewiring for cancer therapeutics.

An Undesired Pro-Metastatic
Effect of PI3K Therapy

PI3K targeted therapy induces exten-
sive bioenergetics and transcriptional
reprogramming in tumor cells that

culminates with global changes in the
secretory profile and activation of growth
factor receptor kinases of treated tumors.8

Surprisingly, we found that PI3K inhibi-
tors (PI3Ki) up-regulated 2 main gene
networks of protection from apoptosis
and increased cell motility.9 Indeed,
tumor cells treated with various small
molecule PI3Ki currently used in clinical
trials (PX866, GDC0941, AZD6482,
BKM120) showed increased motility and
invasion (Fig. 1). At the cellular level,
PI3Ki resulted in enhanced membrane
cell dynamics and loss of directional
migration in response to chemotactic
gradients.

Most signaling studies analyze the
activity of PI3Ki in a 24 h window, leav-
ing unaddressed the possibility that addi-
tional adaptive responses may eventually
compensate for PI3K inhibition. To

investigate this possibility, we followed up
the status of the pathway for up to 3 d. As
expected, and in agreement with the litera-
ture, a single dose of PI3Ki led to a tran-
sient inhibition of Akt. However,
reactivation of Akt1 and Akt2, but also
the mTOR pathway, followed at around
36 h after treatment.8,9 In agreement with
the well-documented control of migration
and metastasis by both Akt and
mTOR,10,11 we found that reactivation of
Akt2 or mTOR were essential for the par-
adoxical increase in tumor cell invasion
associated with PI3K therapy. At the
mechanistic level, mTOR has been shown
to regulate actin cytoskeleton dynamics
through the small GTPases Rho and
Rac,12 as well as activation of protein
kinase Ca.13 Recent studies implicated
the mTOR substrate uncoordinated like
kinase 1 (ULK1) in inhibition of tumor

cell invasion.14 Both the well-
known function of ULK1 in
autophagy,15 as well as its novel
role in preventing activation of
focal adhesion kinase (FAK), are
inhibited by mTOR phosphoryla-
tion. This constitutes a novel
mechanism by which mTOR pro-
motes tumor cell motility, via
inactivation of ULK1 and release
of FAK inhibition.14 Such mecha-
nism might be at play in adaptive
tumor responses to PI3Ki, as the
increase in tumor cell invasion
observed in these settings is associ-
ated with activation of FAK and
the related focal adhesion kinase,
Pyk2.9 In light of these results,
one could speculate that FAK
inhibitors might prevent the pro-
metastatic adaptive responses to
PI3K inhibitors. As proof of con-
cept to test this model, we
depleted tumor cells of FAK and
Pyk2, and this prevented the
increase in cell invasion after
PI3K treatment.

Moving forward, mechanistic
studies should be aimed at dissect-
ing whether mTOR inactivation
of ULK1 contributes to the
increased invasion seen in PI3Ki-
treated tumor cells. This is
relevant in light of the recent
development of a specific ULK1

Figure 1. PI3K repositions mitochondria to increase tumor cell invasion. In this schematic representation,
tumor cells are drawn based on representative cellular morphology and actual mitochondrial localization.
Mitochondria are green, cytoskeleton is blue and the nucleus is red. Top, Treatment of tumor cells with PI3K
inhibitors used in the clinic initiates a compensatory adaptive response centered on reactivation of Akt2 and
mTOR. As a result, mitochondria travel to the cortical cytoskeleton, a process that requires elongation (Mito-
fusin1) and active mitochondrial respiration (OxPhos). Bottom, Rewired cells juxtapose mitochondria to focal
adhesions (FA), where they provide a regional source of energy and accelerate focal adhesion dynamics. The
mitochondrial Hsp90 chaperones overcome metabolic stress and maintain OxPhos by folding complex II. A
mitochondrially-targeted Hsp90 inhibitor, Gamitrinib, prevents PI3Ki-induced pro-invasive responses.
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inhibitor that shows promising anti-cancer
activity.16 A second related question that
warrants further study is whether autoph-
agy-dependent or –independent functions
of ULK1 are at play in the tumor adaptive
response to PI3Ki.

Therapy-Induced Metastasis in
Pre-Clinical Models

Although perhaps unexpected for PI3K
therapy, it had already been noted that
several other anti-cancer drugs produced a
paradoxical pro-metastatic effect in pre-
clinical settings (reviewed in17). Chemo-
therapeutic drugs were among the first to
be associated with increased incidence of
pulmonary metastasis in mice. For
instance, several of the DNA-targeting
agents (cyclophosphamide, bleomycin,
doxorubicin, cytarabine, 5-azacytidine,
aphidicoline), RNA targeting drugs (acti-
nomycin D, mithramycin), and the anti-
folate compound methotrexate were all
associated with pro-metastatic effects.17

Certain molecular targeted therapies seem
to engender similar responses; for instance
antiangiogenic agents, geldanamycin-
based Hsp90 inhibitors18 and B-Raf
inhibitors19 were shown to paradoxically
increase metastatic competency. It is inter-
esting that a common feature of such dis-
parate molecular therapies is activation of
the PI3K/Akt signaling axis. Another
example is molecular therapy against Akt,
which has also been shown to exacerbate
metastasis in mice models, aided by
nuclear accumulation of b-catenin.20 Our
recent findings place PI3K inhibitors in
this class of drugs that may have unwanted
pro-metastatic effects.9

The relevance of these findings to
patient settings is still unclear, as we do
not currently have reliable mouse models
to predict a potential paradoxical effect of
sustained treatment on disease progres-
sion.17 Thus, the appearance of a more
invasive, potentially pro-metastatic pheno-
type associated with drug treatment may
not necessarily predict disease progression
in patients.17 On the other hand, as ele-
gantly illustrated in the case of B-Raf
inhibitors,19 integrating clinical data with
pre-clinical observations confirmed a clear
undesired pro-metastatic effect of these

agents in the clinic. Therefore, before
rushing these compounds to the clinic, it
may be desirable to pursue retrospective
analysis of patients treated with these
agents, and see whether treatment failure
was associated with the development new
distal metastasis.

Rewiring of Mitochondrial
Function and Mitochondrial

Dynamics in Tumor Cell Invasion

Mitochondria are organelles that
orchestrate a plethora of fundamental cel-
lular functions, including bioenergetics,
calcium homeostasis, reduction-oxidation
status balance, reactive oxygen species gen-
eration and programmed cell death.21 Not
surprisingly, mitochondria have been
implicated in multiple steps of tumor pro-
gression22 and the exquisite heterogeneity
in shape and spatial distribution of these
organelles in cancer is quickly becoming a
field of intense investigation.23 A complex,
intertwined machinery of mitochondrial
dynamics influences organelle division,
fusion and subcellular transport.24 How
these processes may couple to tumor pro-
gression has not been widely investigated.
A key feature of our observation of
increased tumor cell motility and invasion
in response to PI3K therapy, was a clear
requirement of mitochondrial elongation
and intracellular trafficking to the cell
periphery9 (Fig. 1).

This is not the first time that a link
between mitochondrial localization and
cell migration is noted. Previous reports
observed re-distribution of mitochondria
toward the leading edge of cells during
persistent migration.25 Also, a proteomics
analysis of invadopodia revealed enrich-
ment of mitochondrial proteins,26 sug-
gesting that mitochondria were present at
sites of active cell invasion. Interestingly,
alteration of mitochondrial “shaping” pro-
teins (the regulators of fusion and fission)
has been reported in breast and thyroid
tumors.27,28 In these studies, the mito-
chondrial fission factor Drp1 played a cen-
tral role in the acquisition of metastatic
competency. Mechanistically, our recent
findings connected pathways of mitochon-
drial elongation via the fusion protein
Mitofusin1 to organelle trafficking to the

cortical cytoskeleton.9 Also novel were the
findings that cortical mitochondria
become in close proximity to focal adhe-
sions (approx. 0.5–1 mm) and that such
mitochondrial proximity accelerates the
turnover of focal adhesions (Fig. 1).
Although not conclusively demonstrated,
we speculate that mitochondria may be
needed as a “regional” source of energy in
proximity of focal adhesions. A second
energy-driven consequence of mitochon-
dria accumulation at the leading edge of
the cell would be regional stabilization of
detyrosinated microtubules by ATP.29

Alternatively, mitochondria might be
needed for calcium signaling,30 or for the
production of fatty acids and eicosa-
noids,31,32 important for membrane
dynamics.

Mitochondrial Dynamics, Growth
Factors and Cellular Stress

As the PI3K pathway is activated
downstream of growth factors, it is con-
ceivable that mitochondrial relocalization
might not only be restricted to adaptation
to therapy, but also involved in physio-
logic growth signals. A growing body of
evidence is consistent with this model, as
mitochondrial shape is regulated by the
non-canonical Wnt ligand Wnt5a33; pro-
inflammatory cytokines TNFa, IL-6, and
IL-1b34; transforming growth factor-b
(TGF-b)35; erv1-like growth factor36; and
serum.37 On the other hand, the regula-
tion of mitochondrial trafficking in
response to growth factor stimulation has
not been widely studied. In this context,
we showed that stimulation of tumor cells
with chemoattractant-rich media induced
repositioning of mitochondria to the cor-
tical cytoskeleton.9 Further studies are
needed to characterize the individual
growth signals that might reprogram
mitochondrial trafficking.

A second related question that stems
from our observations is whether mito-
chondrial dynamics can be modulated by
environmental stress stimuli (e.g., hyp-
oxia, nutrient deprivation, oxidative
stress). Indeed, a connection between hyp-
oxia and mitochondrial dynamics, mostly
fission via Drp1, has been noted.38 In
addition, increased mitochondrial fission
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by hypoxia was shown to enhance breast
cancer invasion.39 Whether a conserved
mitochondrial trafficking mechanism
reminiscent of the one described in hyp-
oxic neurons40,41 is at play in actively
invasive tumor cells, awaits confirmation.

Other stress conditions of the tumor
microenvironment have been associated
with mitochondrial dynamics. For instance,
mitochondrial elongation is a common
response to nutrient deprivation (combina-
tions of serum, glucose, glutamine or other
aminoacids starvation) in cancer cells.42 It
is interesting that not all starvation stimuli
are created equal; amino acid starvation, in
particular glutamine, are among the most
potent inducers of mitochondrial fusion.
Glucose starvation, on the other hand, did
not induce changes in mitochondrial shape.
Whether mTOR repression in amino acid-
starved cells might explain mitochondrial
fusion, is presently unknown. However,
our results suggest that in nutrient-rich
conditions, tumor cell invasion is sup-
ported by mitochondrial fusion coupled to
mTOR-dependent trafficking of mito-
chondria to the leading edge of the tumor
cell.9

Disabling Mitochondrial-
Adaptive Drug Resistance

Although most tumors rewire their
metabolism toward glycolysis (the War-
burg effect),43 mitochondrial bioenerget-
ics and biosynthesis are vital for many
tumor traits.22 An emerging role of oxi-
dative phosphorylation as a cancer driver
is supported by fresh experimental evi-
dences linking mitochondrial respiration
to oncogene-dependent transforma-
tion,44 metabolic reprogramming,45 pro-
tein translation,46 tumor cell
repopulation,47 cell motility48 and
metastasis.14 Our group has been inter-
ested in these mechanisms, and we have
recently uncovered a key role of adaptive
mitochondrial reprogramming in drug
resistance8 and metastatic competency.9

Mechanistic aspects of how tumors may
regulate oxidative phosphorylation have
also come into better focus, with a key
role of protein folding quality control
maintained by mitochondria-localized
Heat Shock Protein-90 (mtHsp90)

chaperones,49 as well as organelle pro-
teases,50 in ensuring the stability and
function of respiratory protein
complexes.

Together, these mechanistic observa-
tions suggest that mitochondrially-tar-
geted drugs may represent a promising
new dimension to interfere with adaptive
tumor reprogramming, and ultimately
eliminate drug-resistant cancer cells.51

This concept has been successfully pursued
with the clinical development of modula-
tors of apoptosis, a process regulated at the
outer mitochondrial membrane. Never-
theless, the concept of targeting mitochon-
drial metabolism or organelle-driven
adaptation in cancer is still underdevel-
oped. Against this backdrop, our labora-
tory designed Gamitrinib52 to target
abundant pools of Hsp90 and its structur-
ally related chaperone, TRAP-1 in mito-
chondria, selectively of tumor cells.53

There is a compelling rationale to think
that these organelle-localized chaperones
may provide promising targets for cancer
therapy. First, their activity likely
improves protein folding quality control
in mitochondria, an ideal mechanism to
buffer the risk of proteotoxic stress typical
of highly bioenergetically active (tumor)
cells.54 Second, a proteomics screen of
mitochondrial molecules that require
Hsp90 for folding identified key regulators
of virtually every organelle function,49 sug-
gesting that disabling this pathway may
irreversibly compromise global organelle
homeostasis. Third, mitochondrial Hsp90
chaperones have been shown to directly
sustain tumor cell invasion and metastasis
by dampening the activation of autophagy
and the unfolded protein response.14,55

Gamitrinib relies on a combinatorial
structure where the Hsp90 ATPase inhibi-
tory module of 17-allylaminogeldanamy-
cin (17-AAG), a first-generation Hsp90
inhibitor, is linked to the mitochondria-
targeting moiety of triphenylphospho-
nium.52 This enables fast and efficient
mitochondrial accumulation of Gamitri-
nib, with virtually no inhibition of cyto-
solic Hsp90. Conversely, none of the first
or second-generation Hsp90 antagonists
currently in the clinic had the ability to
accumulate in mitochondria.52 Function-
ally, targeting mitochondrial Hsp90s
resulted in catastrophic and irreversible

effects on mitochondrial functions,52 dis-
abled Complex II-dependent oxidative
phosphorylation,49 and induced acute
mitochondrial permeability transition and
apoptosis,56 delivering potent anticancer
activity in localized and disseminated
xenograft and genetic tumor models.57

In our studies, we found that oxidative
phosphorylation was required for mito-
chondrial trafficking to the cortical cyto-
skeleton. In respiration-deficient tumor
cells, focal adhesion complexes were
devoid of mitochondria and invasion was
impaired,9 reinforcing the rationale of tar-
geting mitochondrial Hsp90s as novel
anti-metastatic therapy. Accordingly,
Gamitrinib prevented Pi3Ki-induced
mitochondrial infiltration of the cortical
cytoskeleton (Fig. 1), interfered with
mitochondrial fusion and potently sup-
pressed tumor cell invasion.9 Consistent
with its mechanism of action of targeting
mitochondrial integrity, Gamitrinib
potently synergized with PI3K therapy in
a high-throughput drug combination
screen, converting a transient, cytostatic
effect of these agents into potent, cyto-
toxic anticancer activity in preclinical
tumor models.8

Closing Remarks

Our recent studies identified an addi-
tional adaptive mechanism deployed by
tumor cells to evade PI3K therapy. This is
characterized by mitochondrial fusion and
relocation to the cell periphery providing
a regional energy source to fuel increased
tumor cell motility and invasion. As dysre-
gulation of mitochondrial shape, number
and subcellular topography takes center
stage in tumor adaptation, reaching a bet-
ter understanding of how exactly mito-
chondrial dynamics contribute to cancer
traits has become an urgent priority.
Although proper mitochondrial dynamics
is key to mitochondrial function, its
impact on metabolic reprogramming and
tumor progression needs further investiga-
tion. Future studies aimed at defining the
molecular requirements of mitochondrial
trafficking and organelle dynamics in
response to PI3Ki are presently underway.
In particular, it will be of interest to
test whether tumor cells hijack a
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well-established mitochondrial trafficking
machinery that has been shown in neurons
and other cell types, including lympho-
cytes, to reposition mitochondria at sub-
cellular sites of high energy demands, thus
powering up mechanisms of invasion and
metastasis.

From a more translational and disease-
relevant standpoint, our results caution
against the use of single-agent PI3Ki ther-
apy, and argue that the combination of
these agents with approaches to disable
mitochondrial reprogramming, including
Gamitrinib, FAK inhibitors, Akt and
mTOR inhibitors may provide rational
and more effective anticancer regimens in
the clinic.
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