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ABSTRACT Zymoseptoria tritici is a host-specific, necrotrophic pathogen of wheat. Infection by Z. tritici is
characterized by its extended latent period, which typically lasts 2 wks, and is followed by extensive host
cell death, and rapid proliferation of fungal biomass. This work characterizes the level of genomic variation
in 13 isolates, for which we have measured virulence on 11 wheat cultivars with differential resistance genes.
Between the reference isolate, IPO323, and the 13 Australian isolates we identified over 800,000 single
nucleotide polymorphisms, of which �10% had an effect on the coding regions of the genome. Further-
more, we identified over 1700 probable presence/absence polymorphisms in genes across the Australian
isolates using de novo assembly. Finally, we developed a gene tree sorting method that quickly identifies
groups of isolates within a single gene alignment whose sequence haplotypes correspond with virulence
scores on a single wheat cultivar. Using this method, we have identified , 100 candidate effector genes
whose gene sequence correlates with virulence toward a wheat cultivar carrying a major resistance gene.
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Zymoseptoria tritici is a fungal wheat pathogen responsible for the most
serious disease of wheat in the United Kingdom, and other parts of
Northern Europe (te Beest et al. 2013; Dean et al. 2012; Fones and Gurr
2015). The disease is characterized by a long latent period, typically lasting
8–11 d before the first appearance of visible necrotic lesions (Sánchez-
Vallet et al. 2015). While historically considered a “hemibiotroph,” there
is gathering evidence from metabolomics, microarray, and RNA se-
quencing studies that Z. tritici does not feed from living host cells, as
per a biotroph, at any stage during its lifecycle (Keon et al. 2007, 2005;
Rudd et al. 2015). In light of this evidence, it has been proposed that
Z. tritici be reclassified as a “latent necrotroph” (Sánchez-Vallet et al.
2015). Z. tritici penetrates its host through open stomata and grows

sparsely in the intercellular space for the duration of the latent period.
This early growth is followed by rapid host cell death, and proliferation of
hyphae throughout the host tissue (Kema et al. 1996). Asexual sporula-
tion occurs almost exclusively in the substomatal cavities (Cohen and
Eyal 1993; Kema et al. 1996). The close and prolonged relationship with
the plant during early infection suggests that Z. tritici possesses a sophis-
ticated, and strictly regulated, set of proteins or metabolites that are
responsible for restricting its growth in the host, suppressing plant
recognition/immunity, and ultimately inducing host-cell death.
These proteins or metabolites are commonly referred to as effectors
(de Wit et al. 2009; Stergiopoulos and de Wit 2009).

Identification of pathogen effectors (and their corresponding host
targets) is essential for understanding how these parasites are able to
successfully coopt plants into productive food sources. This is especially
true in agricultural ecosystems, where host genetic uniformity provides
ample opportunity for specialists to emerge (Stukenbrock and Bataillon
2012; Stukenbrock and McDonald 2008). Often, it is the effector genes
that are responsible for host- or cultivar-driven specificity (deWit et al.
2009; Stergiopoulos and de Wit 2009). Many described effectors inter-
act with specific resistance or susceptibility genes in their hosts. These
specific interactions are referred to as “gene-for-gene” relationships
(Dodds and Rathjen 2010). Despite large differences in pathogen life-
styles and host range, several common characteristics are shared between
these genes. Generally, proteinaceous fungal effectors are considered to
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be small (, 300 aa), secreted, cysteine-rich (. 3%, after signal peptide
cleavage), and induced during in planta infection (de Wit et al. 2009;
Hogenhout et al. 2009). These characteristics are broadly used to prior-
itize effector gene candidates for functional studies, though recent work
has shown that these characteristics do not encompass all known effec-
tors (Sperschneider et al. 2015).

In filamentous fungi, effector genes are also commonly found in
association with rapidly evolving segments of the genome, such
as repeat-rich regions, or on accessory chromosomes (ACs). For example,
AvrPita in Magnaporthe oryzae, SIX genes in Fusarium oxysporum, and
the PEP cluster in Nectria hematococca, are all located on ACs (Chuma
et al. 2011; Rodriguez-Carres et al. 2008; Schmidt et al. 2013).Z. tritici has
several ACs that are well described, though, unlike other fungal patho-
gens, they have never been associated with pathogenicity (Croll and
McDonald 2011; Croll et al. 2013; Stukenbrock et al. 2007; Wittenberg
et al. 2009).Otherwell-characterized necrotrophic effectors, such as ToxA
in Pyrenophora tritici-repentis, and Tox3 and Tox1 in Parastagonospora
nodorum, were successfully identified using culture filtrates that induced
necrosis when infiltrated into susceptible wheat varieties (Liu et al. 2009,
2012; Tuori et al. 1995). This approach has recently identified two necro-
sis inducing proteins, ZtNIP1 and ZtNIP2, in Z. tritici (BenM’barek et al.
2015). Heterologous expression and infiltration of these proteins into
wheat also revealed cultivar specificity, though it remains unclear if this
is due to a gene-for-gene, or a more general necrosis inducing response
(Ben M’barek et al. 2015). Several in-depth RNA-sequencing (RNA-seq)
studies withZ. tritici have identifiedmany highly expressed “effector-like”
genes or secondary metabolite clusters; however, no effector genes critical
for virulence were identified in these studies (Kellner et al. 2014; Rudd
et al. 2015).

Thus far, theonlygene thathasbeenshowntobeessential forvirulence
in Z. tritici isMg3LysM, which was discovered based on close homology
to another previously described effector gene Ecp6 (Marshall et al. 2011).
Three additional small secreted proteins (SSPs) that contribute quanti-
tatively to virulence were recently described by Poppe et al. (2015). These
genes were selected for functional analysis because they exhibited positive
(syn. diversifying) selection (dN/dS . 1), when compared to genomes of
nonwheat-infecting relatives Zymoseptoria pseudotritici and Zymosepto-
ria ardabillae (Poppe et al. 2015; Stukenbrock et al. 2011). Here, the
authors showed that the Z. tritici orthologs contributedmore to virulence
on wheat than the corresponding ortholog from the nonwheat-infecting
relatives. Despite the emerging consensus that this disease is highly
quantitative in nature, at least one gene-for-gene interaction with the
qualitative resistance gene Stb6 has been demonstrated genetically, and
several major resistance genes in wheat have beenmapped (Brading et al.
2002; Orton et al. 2011; Stewart and McDonald 2014).

With the advent of next generation sequencing, whole-genome
comparisons of fungal pathogens are now routine (Thynne et al.
2015). Many studies focus on comparative analysis between closely
related species with varying host ranges or pathogenic lifestyles
(Gardiner et al. 2012; Manning et al. 2013; Stukenbrock et al. 2011).
These studies provide significant insight into how pathogenic fungi are
able to occupy similar niches, i.e., host specialization (Gardiner et al.
2012). Yet, so far, intraspecific resequencing of multiple isolates has
been limited to a small number of key pathogen species (Chen et al.
2013; Persoons et al. 2014; Xue et al. 2012). Comparative genome
studies with Z. tritici are aided by the completeness of the reference
genome, Dutch isolate IPO323 (Goodwin et al. 2011). Stukenbrock
et al. (2011) sequenced two additional Z. tritici genomes from Iran,
and several genomes of closely related relatives to examine interspecific
changes that may lead to specialization on wheat. This analysis showed
accelerated evolution specifically in the Z. tritici species lineage when

compared to closely related relatives. Torriani et al. (2011) added an
additional seven Z. tritici genomes from Switzerland to examine intron
presence/absence (P/A) polymorphisms, both within and between spe-
cies. Croll et al. (2013) used these same seven Swiss isolates, plus an
additional four newly sequenced genomes, to describe the process of
extensive genome rearrangement in ACs. Each of these studies rein-
forces the perception of Z. tritici as a highly dynamic, diverse pathogen,
with the potential to rapidly evolve at the gene or genomic level within a
single sexual generation (Croll et al. 2013).

In Australia, the breaking of the Millennium drought (2001–2009)
has driven the reemergence of Z. tritici as a damaging pathogen of wheat
in the high-rainfall areas of Victoria and SouthAustralia (Hollaway 2014;
Hollaway and McLean 2014; Milgate et al. 2015, 2014). Little is known
about the current state of theAustralianZ. tritici populations, particularly
in terms of which wheat resistance genes remain effective at controlling
the disease. In this study we characterized the virulence of 13 Z. tritici
isolates, collected over 30 yr from all major wheat-producing regions
of Australia. Virulence scores were measured on a differential set of 11
wheat cultivars, many of which contain known resistance genes. Subse-
quently, we sequenced the genomes of each Z. tritici strain in order to
assess whether genetic variation, particularly within coding regions, could
be associated with observed virulence profiles.

MATERIALS AND METHODS

Growth of fungal strains and pathogenicity assays
The protocol for media and inoculum preparation was followed as
described previously (Ballantyne and Thomson 1995). Plants were
grown, inoculated and assessed as previously described in Zwart et al.
(2010) at Wagga Wagga, NSW, with the following modifications. Four
seedlings of each differential genotype were grown in a pot, and treated as
an experimental unit with two replications per experiment. The full list of
fungal isolates and cultivars used is provided in Table 1.

After all disease scores were assigned, the average score was used to
group the isolates based on their virulence profile in two independent
ways. First, by calculating the pairwise Euclidean distance between each
isolate’s virulence profile using the dist() function in R. This distance
matrix was then used to cluster isolates using hclust() with Ward’s
method, which clusters by minimizing the sums of squares between
isolates. The resulting dendrogram was plotted in R using the plot()
function. The same data were used to cluster the isolates using a K-means
method, also implemented through R. Unlike the clustering method
described above, where a dendrogram is generated to visualize any po-
tential clusters, K-means requires selection of the ideal number of clusters
a priori. K-means centers were plottedwith three and four clusters on top
of the raw virulence scores for each isolate on the cultivars Hereward
(x-axis) and Summit (y-axis). From this plot, the fit of k-means centers to
the data was visually assessed, and the grouping compared to that derived
from the distance-based method described above.

DNA extraction and sequencing
Fungal yeast-like spores were grown, as described above, from –80 �C
glycerol stocks. For DNA extraction, harvested spores were concen-
trated into pellets via centrifugation. These pellets were cooled to –80�
and lyophilized for 24 hr. DNA was extracted using the QIAGEN
Plant mini-prep kit (QIAGEN, VIC, Australia) following the standard
protocol. Extracted DNA was submitted to the Australian Cancer Re-
search Foundation (ACRF) Biomolecular Resource Facility (JCSMR,
Australian National University). Here, libraries were constructed using
the Illumina TruSeqDNALT Sample Prep kit v2 (part # FC-121-2001).
Samples WAI320–WAI329 were multiplexed and sequenced together at
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100 bp paired end using a v3 Illumina TruSeq SBS Kit (HS 200 cycles,
part # FC-401-3001) in a single lane on a HiSeq2000 at the ACRF.
Samples WAI55, WAI56, WAI147, andWAI332 were sequenced earlier
at theAustralianGenomeResearch Facility (Melbourne, VIC). Raw reads
were trimmed of any remaining adapters using Trimmomatic v0.27
(specific Trimmomatic options: ILLUMINACLIP: TruSeq2_PE.fa:2:30:10
LEADING:20 TRAILING:20 SLIDINGWINDOW:4:24 MINLEN:90)
(Bolger et al. 2014). All sequenced samples were checked for quality using
FastQC v0.10.1 (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). Paired reads are deposited in the NCBI short-read archive:
Bioproject ID PRJNA299857 and Biosample IDs SAMN04216882-
SAMN04216894. Isolates were assembled de novo using the SPAdes
Genome Assembler v3.5 as described previously (Bankevich et al.
2012; McDonald et al. 2015).

Mappability of the reference genome IPO323
Mappability is defined as the inherent ability of regionswithin a genome
to be correctly mapped using short-sequencing read technology. Many
areas of the genome, including coding regions, may not be reliably
mapped with short length reads. This will influence both the reliability
and accuracy of single nucleotide polymorphisms (SNPs) called in low
mappabilityregions.Wecalculatedmappabilityon the referencegenome
isolate IPO323using amodifiedversionof theprogramgmav0.1.3 (Lee and
Schatz 2012) (https://github.com/cbergman/gma-0.1.3), and excluded re-
gions of low mappability from variant call format (VCF) files after SNP
calling (defined here as a mappability score, 50). The mappability
score is influenced by the sequencing technology; therefore, for this
project, we used the settings (tech–illumina -b 50).

Sequence variation in resequenced genomes

SNP calling with the genome analysis toolkit: Trimmed paired
and unpaired reads were mapped to the reference genome IPO323
v2.0 (http://genome.jgi.doe.gov/Mycgr3/Mycgr3.home.html) using
BWAv0.7.3a-r367. Duplicate reads within the bam files were removed
with the Picard v1.87 tool Mark Duplicates, and then labeled with the
date of the sequencing run with the Genome Analysis Toolkit (GATK)
tool AddOrReplaceReadGroups. The bam files were then used as input
for the GATK variant call pipeline using the following tools, respectively,
RealignerTargetCreator, IndelRealigner and HaplotypeCaller. Final SNP

calls were filtered using VariantFiltration with the following options: -R /
LargeDataSet/Megan/GATK/Mycosphaerella_graminicola.allmasked.fa-o
Ztritici.filteredSNPS.GATK3-30–filterExpression “QD, 2.0 || FS . 50.0
|| MQ, 25.0”–filterName “haploidfilter” -mask mappability_51_0.5and-
less_3col.bed -maskName “lowmappability”. These variants were then
removed using an inverse grep bash command (grep –v “low mappabil-
ity”). The original prefiltered VCF file is available as Supporting Infor-
mation File S1. The bed file used to mask the VCF file is provided as File
S2. The filtered VCF file was then further annotated with SNPeffv3.2a
(Cingolani et al. 2012). To limit the assignment of multiple effects to
SNPs with close neighboring genes, we reduced the up and downstream
region of the genes to 500 bp using the –ud option (default 5 kb). The
genome annotation used for SNP annotation is the RNA-seq
based annotation released by Rothamsted Research on Ensembl
Fungi (http://fungi.ensembl.org/Zymoseptoria_tritici/Info/Index, gff files
available on request from Dr. Jason Rudd at Rothamsted Research, UK).
Blast2GO v3.1.2 was used to assign gene ontolotgy (GO) terms and
ProtIDs to this annotation. Signal peptide annotations were predicted
SignalP v4.1 (Emanuelsson et al. 2007).

Gene presence/absence: BLASTN searches using each de novo assem-
bly of the Australian isolates as the BLAST database, and IPO323
genomic DNA coding regions as the BLAST query were conducted
as described by McDonald et al. (2015). Briefly, results were limited
to the top BLAST hit (maximum bit score), with an e-value cut-off of
0.0001. The regions for each BLAST hit were extracted from each of the
de novo assemblies, and written to a combined FASTA file. These
FASTA files were aligned using MUSCLEv3.8.31 (Edgar 2004). Gene
presence was called if the top BLAST hit length was $ 75% of the
annotated gene in IPO323.

Phylogenetic analyses
A phylogenetic tree was constructed using the Bayesian Markov Chain
MonteCarlo (MCMC)model implemented inBEASTv2.3.0 (Bouckaert
et al. 2014). A total of 905 gene alignments that contained all 13
resequenced isolates were selected at random, and concatenated as in-
put for Beast (Total alignment length 1,534,110 bp). Beauti v2.30 was
used to format the XML file that specifies the model parameters to be
run in BEAST (Bouckaert et al. 2014). Runs were conducted assuming
the General Time Reversible nucleotide substitutionmodel with no rate

n Table 1 Pathogenicity scores on 11 differential wheat cultivars

Isolate virulence is scored visually on a quantitative scale from 1 to 5, with 5 being highly virulent. Mean scores are colored to highlight differences in virulence across
cultivars [1 = green (minimum), 3 = yellow (midpoint), and 5 = red (maximum)]. Standard errors for each disease score are given in the following column (white). Below
each cultivar column is the postulated Septoria tritici blotch (Stb) resistance gene present in that cultivar based on previous publications (Chartrain et al. 2005; Arraiano
and Brown 2006; Goodwin 2007; Raman et al. 2009; Zwart et al. 2010; Brown et al. 2015). Columns with “unknown” indicate that the locus/loci responsible for
resistance has yet to be characterized.
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variation categories, a constant Population size, and a strict molecular
clock. After a burn-in of 100,000 steps, 10,000 posterior trees were
sampled. To assess run convergence, the BEAST log file was visualized
in Tracer v1.6.0. The estimated sample size for each parameter was
well over 100, which indicates that sampling of the posterior space
during the run was sufficient. The sampled 10,000 posterior trees were
visualized using Densi Tree v2.2.2 (Bouckaert and Heled 2014). This
procedure was repeated independently two times with a smaller set of
500 randomly selected genes, to ensure that gene selection did not affect
the final tree topology (data not shown). To verify that concatenation
did not adversely affect our tree construction, we used the whole
genome phylogenetic software andi (Haubold et al. 2015). The entire
de novo assembly FASTA files for each isolate were used as input for
this analysis. The resulting distance matrix was plotted as a tree using
R. Haplotype networks were drawn with TCS v1.21 implemented in
the software popart (http://popart.otago.ac.nz) (Clement et al. 2002).

Matching phenotype to individual gene trees
In order to quickly sort through gene trees, and search for specific
grouping of isolates based on phenotype, we created PhyBi, written in
python (https://github.com/SolomonLab/PhyBi). PhyBi creates a phy-
logenetic “binary tree” for each gene by grouping isolates based on their
sequence similarity. First, a matrix is created by parsing a Newick
formatted tree to calculate pairwise distances (created by summing
the branch lengths) between any two isolate pairs (referred to as the
“distance matrix”). By definition, the distance matrix is symmetric, and
all diagonal entries are zero (distance between an isolate and itself). If
each of these distances is below a given threshold (default 0.01 substi-
tutions per site), all isolates are grouped together and a “star” result is
recorded. This will collapse genes whose sequence is near identical
(, 1 bp substitution per 100 bp) into a single group and not consider
them further. In cases where isolates differ by more than the first
threshold, a second threshold is used to move the isolates into groups.
If any two isolates differ by less than the second threshold (default 0.02
substitutions per site), they are designated to the same group. This
reduces the number of groups, and therefore simplifies the iterative
grouping performed in the following stage. This initial grouping is
followed by an iterative step that progressively combines nearest groups
until only two groups remain. The iterative step involves two stages:
first, the smallest nonzero entry of the distance matrix is identified.
Second, the two groups corresponding to this entry are combined.
The distances in the columns, and rows of the first group, are averaged
with those of the second group (weighted according to number of
isolates in each group). The second group’s rows and columns are then
deleted from the distancematrix. The program repeats the iterative step
until there are only two groups remaining, creating a phylogenetic “bi-
tree” (a tree with one long central branch, and, at either end, a poly-
tomy). A schematic overview of the process, full description of input/
output files, and additional features not used in this manuscript are
given in File S3.

Data availability
Reference Data Accession Numbers: Bioproject ID PRJNA299857;
Biosample IDs SAMN04216882-SAMN04216894

RESULTS

Single nucleotide variation between the 13
Australian strains
Trimmed reads from each resequenced genome were aligned to the
reference genome isolate IPO323 v.2.0 using GATK as described in the

section Materials and Methods. Before quality filtering, over 1 million
SNPs were identified between the 13 strains and IPO323. Low quality
SNPs (“QD, 2.0 || FS. 50.0 || MQ, 25.0”), and SNPs occurring in
“lowmappable” (, 0.5 mappability score) regions of the genome were
flagged and excluded from further analyses. Many of these SNPs were
associated with small structural changes in the genomes, likely larger
insertions or deletion events that differ from IPO323, which are often
surrounded by a high density of SNP calls. This is also similar for areas
near annotated repeat regions, where incorrect mapping of reads to
repetitive DNA leads to a high number of SNP calls, and an increase in
read mapping coverage. Two examples of SNPs near small indels are
shown in Figure S1. Our sequencing coverage ranged from 15x to 30x
on average across the genome for most isolates (Figure S2). Due to this
limited coverage, and our short size selection (500 bp paired-ends), we
did not investigate these potential large rearrangements further.

After filtering, the remaining 858,965 SNPs were fed into SnpEff to
assess their effect (whetherornot theyoccurred incodingregions)on the
genome. SnpEff automatically assigns each SNP into one of four major
“impact” categories depending upon the effect that the SNP has on
annotated regions of the genome. These categories are: 1) Modifier,
SNPs with little to no effect on coding regions (i.e., intergenic). 2) Low,
SNPs that occur within coding regions but do not affect the encoded
amino acid (i.e., synonymous mutations, introns). 3) Moderate, SNPs
that occur within coding regions, and slightly alter the encoded amino
acid (i.e., nonsynonymous mutations. 4) High, SNPs that dramatically
alter the encoded amino acid (i.e., missense, frame-shift mutations). As
expected, most SNPs fell into the Modifier (71.7%) category, followed
by Low effect SNPs (17.9%), Moderate (9.0%), and finally High (1.4%).
By far the most common SNP location was in intergenic regions, rep-
resenting 40.3% the total SNPs identified. This was followed by exons
(27.4%), downstream (12.2%), upstream (11.9%), introns (7.2%), and
1% in other minor categories. A summary of all single effect SNPs,
separated by impact category, for all 13 resequenced isolates is sum-
marized in Figure 1A (12,000 pleiotropic SNPS are excluded from this
summary, a complete VCF file is available in File S2). Within coding
regions, the most common variant effect was synonymous change
(which includes SNPs within introns). This type of SNP was several
orders of magnitude higher than High effect SNPs (Figure 1A).

We next considered the distribution of SNPs with different effects
between genes with a predicted secretion signal. SignalP v4.1 identified
981 genes with a predicted signal peptide. Figure 1, B–D shows a
comparison of the percentage of SNPs within secreted and nonsecreted
genes. These results show that a higher percentage of SNPs within
nonsecreted genes are classified as Low effect SNPs (i.e., synonymous
mutations) (Figure 1B). While this trend is consistent for all rese-
quenced isolates, it was significant [nonoverlapping 95% confidence
intervals (95% CIs)] for only eight of the 13 isolates. The reverse trend
was seen for the average number of Moderate effect SNPs, with every
isolate showing a slight increase inModerate mutations in genes with a
predicted secretion signal (Figure 1C). Again, eight of the 13 isolates
had nonoverlapping 95% CI, showing a slight elevation of moderate
SNPs in secreted genes. There were no significant differences between
any of the isolates between secreted and nonsecreted genes for the High
effect SNPs (Figure 1D).

Presence/absence of coding regions on core and
accessory chromosomes
To assess the presence/absence (P/A) of coding genes, each genomewas
assembled de novo to exclude any chance that a gene is called missing
due to small rearrangements from the reference. A summary of the final
de novo assembly statistics for each isolate, including total number of
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contigs, max contig length, N50 value, and total number of bases as-
sembled (excluding contigs , 500 bp), is provided in Table S1 and
Table S2. These statistics are similar to other resequencing projects
conducted with Z. tritici (Croll et al. 2013).

BLAST searches with the complete coding sequence of each anno-
tated gene were conducted, whereby a gene was called as present if 75%
of the gene lengthwas in the topBLASThit.The completedataset,which
includes a summary by chromosome, is provided in File S4. Figure 2
shows a distinct difference in the pattern of gene P/A between the 13
core chromosomes (CCs) and eight ACs. The isolates, in columns, are
ordered from left to right by year of sampling. Some ACs were com-
pletely absent in the earlier samples (e.g., Chromosome 14 in isolates
WAI332, WAI320, WAI324, WAI329, and WAI329), and appear only
in the later columns. The ACs are characterized by large segments of
sequential gene presence/absence, whereas on the CCs there were very

few instances of large sequential gene absence. DespitemanyACs being
absent, several genes on these chromosomes were still found in the de
novo assemblies. Every AC, except for Chromosome 19, was almost
completely absent in at least one isolate. While Chromosome 19 was
not completely lost in any single isolate,�50% of the coding genes were
lost in isolate WAI329.

The observation of higher rates of moderate SNPs within secreted
genes led us to question whether secreted genes were more likely to
be found with P/A polymorphisms. These results are summarized in
Table 2; genes that are absent in all Australian isolates are not poly-
morphic and were not included in this count. Due to the strong differ-
ence in gene P/A between core and accessory chromosomes, we
summarized the proportion of all or secreted genes for CC and AC
chromosomes separately (Table 2). Overall, there was little evidence of
elevated rates of gene P/A polymorphisms in secreted vs. nonsecreted

Figure 1 Summary of all single effect SNPs identified in the 13 sequenced genomes using IPO323 as a reference sequence. (A) The number of
identified SNPs, colored by their effect on the genome and separated into “Low”, “Moderate,” and “High” effect categories, dependent
upon their effect on coding regions. (B) The number of low effect SNPs found within nonsecreted and secreted genes as a percentage of all
identified SNPs. The light gray bars show that, on average, Low effect SNPs are found at a higher proportion in nonsecreted genes
vs. secreted. Black error bars show 95% confidence intervals (CI), from all genes. (C) The number of moderate effect SNPs found within
nonsecreted and secreted genes as a percentage of all identified SNPs within a gene. Higher dark gray bars show that, on average, Moderate
effect SNPs represent a higher proportion of identified SNPs in secreted genes. (D) There is no observed trend for High effect SNPs in secreted
vs. nonsecreted genes.
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genes, with the exception of Chromosomes 2 and 10. Large sectional
gene absence was far more rare on CCs in comparison to ACs (Figure 2).

Linking genes to virulence
A Bayesian phylogenetic tree was constructed using 905 aligned genes
concatenated into a�1.5 Mbp alignment. This analysis was performed
three times independently, selecting the genes at random to ensure that
gene selection did not dramatically alter the consensus topology from
the posterior sample (data not shown). Additionally, the whole genome
phylogenetic program andiv0.1 was used to estimate the pairwise dis-
tance between isolates based on minimum exact matches throughout
the whole genome (Haubold et al. 2015). The topology of the consensus
tree from the posterior sample, and the tree constructed with pairwise
distance estimates from andi, were identical, indicating that concate-
nation did not bias our Bayesian tree topology. The DensiTree render-
ing of the posterior sample from Beast is shown in Figure 3A, and the
andi dendrogram is provided as Figure S3.

To assess whether the phylogenetic relationship between isolates
matched the observed virulence profiles, we performedWard’s pairwise
distance and k-means clustering. The results of k-means clustering,
including the curve used to select the ideal number of groups, are

presented in Figure S4. The ideal number of clusters should be at
the steepest point of the curve, which corresponded to either three
or four clusters in our data. Both clustering methods supported the
separation of the isolates into three distinct virulence groups. The
dendrogram generated with Wards distance clustering is presented
in Figure 3B. These three virulence groups can be classified based on
their virulence profile into high, medium and low virulence, with the
high virulent isolates causing more severe symptoms on a wider
range of wheat genotypes (Table 1 and Figure 3B). The neutral
phylogeny revealed two highly supported groups of isolates, with
WAI321–WAI323, and WAI327 grouped together, distinct from
the other sister clade with the remaining nine Australian isolates.
The European isolate, IPO323, formed an outgroup from the Aus-
tralian isolates (Figure 3A). This largely matches the clusters iden-
tified by virulence grouping, with one notable exception; isolate
WAI327 grouped more closely with the “less-virulent” cluster away
from isolates WAI321–WAI323.

The separationof isolateWAI327 fromits closest relatives,WAI321–
WAI323, suggested that the genes encoding cultivar specificity may be
different between these isolates. To pursue this hypothesis, we devel-
oped PhyBi (described in Materials and Methods and File S3) to

Figure 2 Summary of the presence or absence of IPO323 genes across all chromosomes. Gene presence (dark colors) or absence (translucent) for
each re-sequenced isolate is shown for all annotated genes from the reference isolate IPO323. Each row in the figure represents one annotated
gene, while each column represents one isolate. There are 13 columns in each panel; the number at the top (in the gray bar) indicates the
chromosome. Isolates are ordered from left to right, from earliest to latest year of sampling. Isolates in the same color were sampled during the
same year. (A) The core chromosomes of Z. tritici possess most of their annotated genes with very few large deletions. (B) The accessory
chromosomes possess several large segmental gene deletions, many of which indicate that entire chromosomes are missing or significantly
altered in structure from the reference genome.
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identify individual gene trees that groupWAI321–WAI323 together
without isolate WAI327. PhyBi identified 71 genes out of 10,117
gene alignments that matched this grouping. Of these 71 genes, only
six have a signal peptide for secretion. The six secreted genes, along
with their location in the genome annotation, and other annotated
traits, are listed in Table 3. While the functionality of PhyBi was
extended to identify genes that are present or absent from a given
gene tree, these results were not summarized, as the analysis showed
several hundreds of gene presences/absences throughout the 13
genomes.

The six effector candidates were inspected manually to ensure that
intragenic recombinationdidnot interferewith thePhyBigrouping.Five
of the six genes matched a reference annotation, while one gene was
unique to the Rothamsted annotation (Table 3). Expression of genes
whose annotation matched the original genome annotation were com-
pared to two published RNA-seq studies to check for evidence of ex-
pression in planta (Table 3) (Kellner et al. 2014; Rudd et al. 2015). None
of the six genes were induced during in planta infection in either study.
Many of these genes matched several characteristics used to classify
effector genes (, 300 aa; . 3% cysteine) (Table 3). Three of the six
genes encode proteins that are , 250 aa before cleavage of the signal
peptide. ZtRRes_01714 is extremely small, and is predicted to be only
39 aa after cleavage of the signal peptide. Three of the identified pro-
teins, however, are large (.400 aa), and would be excluded from
traditional effector cutoff values based on their size. One of these large
proteins contains a CFEM domain, which has been associated with
virulence in Magnaporthe oryzae (Dean et al. 2005). Haplotype
networks were generated for each of the six genes to better visualize
the extreme variation in gene sequence between the 13 isolates and
IPO323 (Figure 4). All but one of the identified genes has at least one
nonsynonymous substitution that separates isolates WAI321–WAI323
from the other haplotypes. Haplotype networks are colored based on

each isolates grouping into low, medium, or high virulence phenotype
clusters (Figure 3B and Figure 4).

DISCUSSION
While previous population genetic studies show that the average genetic
diversity of Z. tritici in Australia is significantly lower than other pop-
ulations from around the world, this work demonstrates that, across a
wider space and time, Australian Z. tritici isolates are extremely diverse
both genetically and phenotypically (Banke and McDonald 2005;
Banke et al. 2004; Jürgens et al. 2006). This presents a strong challenge
to Australian farmers and breeders looking to avoid the impact of this
disease, as it has reemerged subsequent to the Millennium Drought.
Overall, we identified over 1700 putative gene absences between the
reference strain IPO323 and the 13 Australian genomes, and over
800,000 SNPs. For comparison, a resequencing study using 15 isolates
of the poplar rust pathogenMelampsora larici-populina, with a genome
size approximately two times that of Z. tritici, identified 611,824 single
nucleotide variants (Persoons et al. 2014, Duplessis et al. 2011; Goodwin
et al. 2011). These results highlight the extreme diversity that already
exists in Z. tritici, as well as the challenge of effector gene identification in
such a genetic background. In order to further simplify this search, we
utilized variation in virulence phenotypes on a range of differential wheat
cultivars to target secreted genes, as discussed below.

Extreme sequence diversity in a limited set of
isolate pathotypes
When examining the distribution of Low, Moderate, and High effect
SNPs across secreted genes, we noted a significant increase (nonover-
lapping 95% confidence intervals) in the number of moderate substi-
tutions (i.e., nonsynonymous substitutions) found in secreted vs.
nonsecreted genes. While this trend was apparent in all 13 resequenced
genomes, it was significant for only eight of the 13 isolates (Figure 1).

n Table 2 Summary of putative presence/absence (P/A) polymorphisms in secreted and nonsecreted genes by chromosome

Chromosome # Genes
# Secreted
Genes

Proportion
Secreted

#Genes in
P/A

Proportion
Genes P/A

#Secreted
Genes P/A

Proportion
Secreted PA

CC
1 1774 163 0.09 135 0.08 13 0.08
2 1069 98 0.09 124 0.12 19 0.19
3 1012 112 0.11 85 0.08 13 0.12
4 755 66 0.09 77 0.10 10 0.15
5 781 80 0.10 88 0.11 12 0.15
6 633 63 0.10 83 0.13 11 0.17
7 774 79 0.10 129 0.17 12 0.15
8 660 56 0.08 68 0.10 4 0.07
9 564 59 0.10 78 0.14 7 0.12
10 470 43 0.09 49 0.10 9 0.21
11 465 50 0.11 62 0.13 5 0.10
12 418 55 0.13 40 0.10 6 0.11
13 328 34 0.10 50 0.15 5 0.15

AC
14 158 6 0.04 135 0.85 4 0.67
15 134 4 0.03 105 0.78 4 1.00
16 134 3 0.02 97 0.72 2 0.67
17 135 2 0.02 116 0.86 1 0.50
18 110 5 0.02 23 0.21 0 0.00
19 114 0 0.04 56 0.49 0 0.00
20 117 2 0.00 106 0.91 2 1.00
21 83 1 0.02 70 0.84 1 1.00

Total CC 9703 958 0.10 1068 0.11 126 0.13
Total AC 985 23 0.02 708 0.72 14 0.61

CC, Core chromosome; AC, accessory chromosome.
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This data suggests that nonsynonymous substitution is an important
means of introducing variation in proteins that are predicted to act
outside of the fungal cell. This trend is supported by results from
Stukenbrock et al. (2011), who also found evidence of higher rates of
adaptive evolution in genes with a predicted signal peptide in an inter-
specific comparison of Z. tritici, and its close relatives Z. pseudotritici
and Z. ardabiliae. Recently, some of the genes identified by
Stukenbrock et al. (2011) were shown to be important for quantitative
virulence in seedling infections and host specificity (Poppe et al.
2015). There was no difference in the proportion of High effect SNPs
found in secreted vs. nonsecreted genes. This is an interesting obser-
vation, as it implies that, at the genomic scale, introduction of non-
sense mutations or frame-shifts is not favored as a means to introduce
variation in secreted proteins.

The observed elevation in SNP calls near putative small genome
rearrangements within or near annotated genes, suggested that calling
the presence or absence genes would be more accurate in de novo
assemblies (Figure S1). Our previous analysis showed that average read

mapping to some of ACs was very low when compared to CCs, and,
correspondingly, most of the annotated genes on AC with very low
mapping coverage were not found in de novo assemblies (Figure 2;
McDonald et al. 2015). Absence of a chromosome, however, does
not also imply loss of the gene annotated on that chromosome. For
example, up to 40 out of 110 annotated genes on AC18 are present in de
novo assemblies, though this chromosome is likely absent, or in a highly
divergent form, in these resequenced genomes compared to IPO323.
The inheritance of ACs remains a very interesting and perplexing
biological phenomenon of Z. tritici and its close relatives (Croll et al.
2013; Stukenbrock et al. 2011).

The virulence data indicates that there are distinct differences in an
individual isolate’s ability to infect a particular cultivar. This implies
that, within the species, there is further cultivar-specific specializa-
tion. Many known effectors with cultivar-specific virulence, such as
Leptosphaeria maculans AvrLm1, utilize gene deletion as a means of
evading host immunity (McDonald et al. 2013; Van de Wouw et al.
2010). In the case of AvrLm1, a simple deletion of the gene renders a

Figure 3 Isolate grouping based on phylogenetic or phenotypic signal. (A) The 10,000 posterior sampled trees estimated with BEAST. Dark blue
bars and a lack of crossing over events between branches provides strong support for the topology shown (99.87% of posterior sample). The
European reference isolate forms a distinct out-group from the Australian isolates. Two major Australian clades are seen; one with isolates
WAI321–WAI323, and isolate WAI327. (B) A cladogram representing the pairwise distances of the Australian isolates based on their qualitative
virulence scores. Three distinct groups were identified, which largely match the neutral phylogeny. Isolate WAI327, however, is separated from its
closest relatives, clustering more closely with the less virulent isolates.
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plant carrying the resistance gene susceptible to attack. In this study, we
postulate that over 1700 genes exist in a presence/absence polymor-
phism in Australian Z. tritici isolates. While this number is likely an
overestimation due tomisassembly near repetitive regions or telomeres,
1301 out of 1776 putative P/A polymorphismswere found inmore than
one isolate. Due to the sheer number of potential P/A polymorphisms,
it was not possible to link a single gene absence to virulence on a
particular cultivar. Larger sequential deletions (not necessarily poly-
morphic ones) are rare on CCs, but very common on ACs (Figure 2).
Importantly, some of the larger segmental deletions, such as the cluster
on Chromosome 4 and Chromosome 11, are polymorphic, meaning
that sexual recombination can bring this gene deletion in or out of
different genetic backgrounds. The isolates selected for this study are
too spatially and chronologically diverse to examine the frequency of
these deletions in more detail; however, it is tempting to speculate how
these larger sequential deletions may change in allelic frequency over
time within a field population. Again, these results highlight the en-
demic genetic diversity of this fungus, and highlight its strong adaptive
potential.

Gene tree-phenotype matching as a novel effector
prediction method
Previous attempts to identify effector candidates based on the known
properties of effector genes described in other fungi are limited by the
large number of potential proteins that they identify (Mirzadi Gohari
et al. 2015; Morais do Amaral et al. 2012). Using information from
gene-tree alignments, we were able to directly associate gene sequence
with virulence phenotypes. This method assumes that differences at the
DNA sequence level will influence the function of the proteins they
encode and, in turn, influence the observed phenotype. The advantage
of such a strategy is that there is no bias on what the effector proteins
should “look” like, eliminating the need for arbitrary cutoffs. Using this
method, we were able to assess over 10,000 individual gene trees in ,
4 min of computational time, resulting in the identification of six
candidate genes.

PhyBi was developed after the observation that many of the indi-
vidualgenealignmentspossessedhighlydivergenthaplotypes (Figure4).
These alignments are difficult to automatically pick out of the�10,000
predicted genes, because their pairwise identity remains quite high
(large diversity between haplotypes but very little within). The haplo-
type networks shown in Figure 4, E and F nicely demonstrate some of
the extreme examples of this phenomenon. The maintenance of two
highly divergent alleles at the same locus is often an indication of
balancing selection. To test this hypothesis, structured populations
from a single field would be required to find the allelic frequency of
each haplotype. These gene alignments naturally raise the questions
why would these divergent forms of genes be maintained (if not
pseudo-genes), and why are so few intermediate haplotypes found?

While threeoutof sixcandidategenes inTable4encodesmallproteins,
none of the six genes fulfill all of the criteria of typical “effectors”. When
compared to previously published in planta RNA sequencing data, only
one out of the six genes was induced during infection (Kellner et al.
2014). This fits with the recent observation by Mirzadi Gohari et al.
(2015) that highly expressed genes do not seem to overlap with virulence
quantitative trait loci.

While there are no truly “avirulent” isolates of Z. tritici, isolate-
specific interactions with particular wheat cultivars are described
extensively in the literature (Arraiano and Brown 2006; Brading
et al. 2002; Chartrain et al. 2004). Similarly, the pathotypes de-
scribed here show distinct differences in virulence toward wheat
cultivars carrying the same postulated resistance genes (i.e., Arinan
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and Hereward, Table 1). These differences in isolate virulence also
indicate that there remain uncharacterized resistance genes/loci in
these varieties (Table 1). WAI321, WAI322, and WAI323 were se-
lected to group against all other isolates based on the phenotype
clustering that did not match the neutral tree (Figure 3). Isolate
WAI327, which is genetically similar to these three isolates, is less
virulent against four cultivars: Hereward, Tadorna, Veranopolis,
and WW2449. These four cultivars are postulated to contain the
major resistance genes Stb6 and 15, Stb4, Stb2, and 6, and Stb11 and
WW2449, respectively (reviewed in Brown et al. 2015; Goodwin
2007). Note, Stb2 and Stb11 have been mapped to the same location
on the short arm of chromosome 1B (Brown et al. 2015).

While it is tempting to speculate that the six candidate genes may be
an unknown effector virulent against Stb6 or Stb2/11, these major genes
are present in only two out of the four cultivars. Alternatively, the gene/
s responsible for virulence on these four cultivars could be a more
general virulence-associated effector. Genetic knockouts of these genes
in the isolates used in this study are currently underway to test this
hypothesis.

Concluding remarks
The lack of understanding of how Z. tritici invades its host limits our
ability to identify and pursue durable resistance strategies. This study

highlights the high levels of existing genetic diversity in Z. tritici pop-
ulations within Australia, and the challenge associated with linking
virulence to causal genes, where a million SNPs and hundreds of gene
P/A polymorphisms obscure meaningful patterns. This work seeks
to simplify this search by utilizing established computational tools
(BLAST, alignment, and phlyogenetics) to link divergent gene se-
quences with matching phenotypes. This method is not limited to
virulence data alone, and can be applied to a wide variety of phenotypes,
or even interesting genes that violate the relationships shown by neutral
genetic markers. Thismethod is particularly useful when large numbers
of individuals, required by traditional genome-wide association studies,
are difficult to obtain.
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