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HIGHLIGHTS

« First time B. bassiana and M. anisopliae
introduced as endophytes in cassava
roots.

 Beauveria bassiana and M. anisopliae
colonized cassava roots for up to
7 weeks.

« Colonization of cassava roots by M.
anisopliae remained relatively
constant over time.

« Colonization of cassava roots by B.
bassiana declined over time.

« Colonization levels were higher in the
proximal end than in the distal end of
the cassava root.
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ABSTRACT

We investigated the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae to determine
if endophytic colonization could be achieved in cassava. An inoculation method based on drenching the
soil around cassava stem cuttings using conidial suspensions resulted in endophytic colonization of cas-
sava roots by both entomopathogens, though neither was found in the leaves or stems of the treated cas-
sava plants. Both fungal entomopathogens were detected more often in the proximal end of the root than
in the distal end. Colonization levels of B. bassiana were higher when plants were sampled at 7-9 days
post-inoculation (84%) compared to 47-49 days post-inoculation (40%). In contrast, the colonization
levels of M. anisopliae remained constant from 7-9 days post-inoculation (80%) to 47-49 days post-
inoculation (80%), which suggests M. anisopliae is better able to persist in the soil, or as an endophyte
in cassava roots over time. Differences in colonization success and plant growth were found among
the fungal entomopathogen treatments.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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Cassava (Manihot esculenta Crantz; Malpighiales: Euphor-
biaceae)is the third most important food crop in the tropics afterrice
and maize, and is a staple food for at least 700 million people in
Africa, Latin America, Asia and the Pacific Islands (Fauquet and
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Tohme, 2004). Cassava tolerates nutrient-poor soils and drought and
is an important crop for food security and generation of income in
developing countries, where it is grown mostly by smallholder farm-
ers (Bellotti et al., 2012; Cock, 2011). The main agricultural product
is the edible root, which is high in carbohydrates, but the leaves may
also be eaten as a source of protein (Gleadow et al., 2009). Various
parts of cassava are also used to feed livestock, and in some countries
cassava starch is an important product for the paper, textiles and
food processing industries (Nassar and Ortiz, 2007). Cassava is
attacked by at least 200 species of arthropod pests known to cause
root yield losses, including whiteflies, mealybugs, mites, hornworm,
thrips and burrower bugs (Bellotti et al., 2012).

Integrated pest management (IPM) of arthropod pests in cas-
sava includes cultural practices, host plant resistance and biologi-
cal control (Bellotti et al., 2005, 2012). Cultural practices include
varietal mixtures, intercropping, and the treatment of stem cut-
tings to ensure pest-free planting material (Bellotti et al., 2012).
Host plant resistance offers an economic and environmentally
sound approach but many traditional farmers use varietal mixtures
in cultural practice, and it can be difficult to implement host plant
resistance across multiple cassava varieties (Bellotti et al., 2012;
Bellotti and Arias, 2001). Chemical pesticides can be effective for
controlling many arthropod pests but are prohibitively expensive
for traditional smallholder farmers, can have adverse effects on
human health and the environment, and are often incompatible
with IPM schemes because they can disrupt control by natural ene-
mies (Bellotti et al., 2005; Holguin and Bellotti, 2004). Biological
control using natural enemies of arthropod pests, such as preda-
tors, parasitoids and fungal entomopathogens provides an impor-
tant component in IPM schemes for cassava because of its
compatibility with other strategies (Bellotti et al., 2012).

Fungal entomopathogens, including Beauveria bassiana s.l
(Balsamo-Crivelli) Vuillemin and Metarhizium anisopliae (Metch-
nikoff) Sorokin (Ascomycota: Hypocreales), have been tested as bio-
logical control agents in laboratory and greenhouse trials against
many cassava pests (Alean et al., 2004; Amnuaykanjanasin et al.,
2013; Barreto et al., 2004; Jaramillo and Borgemeister, 2006;
Jaramillo et al., 2005). However, when fungi are sprayed onto plants,
pests can be difficult to target because of their location on the under-
side of leaves, such as the whitefly Aleurotrachelus socialis Bondar
(Hemiptera: Alelyrodidae) or because they are subterranean, such
as the burrower bug Cyrtomenus bergi Froeschner (Hemiptera: Cyd-
nidae). The efficacy of fungal entomopathogens is also limited by
abiotic factors (e.g., UV radiation, temperature, low humidity) that
reduce viability of fungal conidia (Vega et al., 2012). An alternative
application method is to inoculate plants with fungal ento-
mopathogens that become established as endophytes, thereby pos-
sibly providing the plant with protection against pests from within,
lowering the volume of inoculum required, and protecting the fun-
gus against abiotic factors.

Fungal endophytes are commonly defined as fungi that live for
all or part of their life cycle asymptomatically inside healthy plant
tissues without causing disease (Petrini, 1991; Wilson, 1995; Hyde
and Soytong, 2008). Colonization by fungal endophytes may be
systemic (Gurulingappa et al, 2010; Quesada-Moraga et al,
2006), localized in plant parts (Wearn et al.,, 2012; Yan et al,
2015) or partitioned within plant parts (Behie et al., 2015;
Zambell and White, 2014). Fungal endophytes fulfill a variety of
roles comprising symbiotic and ecological functions (Rodriguez
et al., 2009) that may benefit plants including improved plant
growth, protection against plant pathogens (Ownley et al., 2008)
and reduction of herbivory (Akello and Sikora, 2012). B. bassiana
has been found naturally as an endophyte in several plant species
and has been artificially introduced into many others (Vega, 2008).
Artificial introduction of B. bassiana as an endophyte has been suc-
cessful in maize (Bing and Lewis, 1991), cacao (Posada and Vega,

2005), date palm (Goémez-Vidal et al., 2006), coffee (Posada and
Vega, 2006), banana (Akello et al, 2008), radiata pine
(Brownbridge et al., 2012), fava beans (Akello and Sikora, 2012),
opium poppy (Quesada-Moraga et al, 2014), cotton
(Gurulingappa et al.,, 2010; Lopez and Sword, 2015; Ownley
et al., 2008), the common bean (Parsa et al., 2013), and tomato
(Ownley et al., 2008). Metarhizium species are less well known as
endophytes but have been successfully introduced into tomato
(Garcia et al., 2011), fava bean (Akello and Sikora, 2012), oilseed
rape (Batta, 2013), and haricot bean (Behie et al.,, 2015; Sasan
and Bidochka, 2012). Two unidentified Metarhizium species and
M. anisopliae have been found naturally as endophytes in roots of
wall barley (Hordeum murinum L.) (Murphy et al., 2015).

As part of a study investigating the potential use of B. bassiana
and M. anisopliae to control whiteflies (A. socialis) in cassava, we
conducted greenhouse experiments to determine (1) if B. bassiana
and M. anisopliae can be established as systemic or localized endo-
phytes in cassava after soil inoculation, and (2) if inoculation with
these entomopathogens affects plant growth.

2. Material and methods
2.1. Cassava plants

Cassava plants (CMC-40 variety) grown at the International
Center for Tropical Agriculture (CIAT, Cali, Colombia) were used
as a source of stem cuttings for all experiments. Stems of approx-
imately 1 m length and 25 mm diameter were harvested from 9 to
10 month-old cassava plants the day before inoculations. On the
day of inoculation, the 1 m stems were cut into smaller “cuttings”
of approximately 200 mm in length, each with 7-9 buds. The cut-
tings were planted in steam-sterilized loam soil (approximately
20% clay, 50% sand and 30% silt) in disinfected pots (height
140 mm, lower diameter 105 mm, upper diameter 148 mm with
approximately 1.5 kg of soil per pot) and maintained in a green-
house with daily average (mean+SEM) temperature of
27.5°C+0.1°C and relative humidity of 66% + 0.3%. Each plant
was fertilized with 50 mL of NPK 15:15:15 (4 g/L) 13 days after
the cuttings were planted in the pots. The plants were watered
as needed during experiments.

2.2. Fungal inoculum

The fungal inoculum was prepared following protocols modi-
fied from Parsa et al. (2013). Ten isolates/strains were used in
the experiments, including five B. bassiana and five M. anisopliae.
For B. bassiana, two isolates (CIAT 359 and CIAT 405) were obtained
from the fungal entomopathogens collection at CIAT and three
strains were obtained from commercially available products in
Colombia, known as Beauveriplant® WP (Sanoplant, Palmira,
Colombia), Bovetrépico® WP (Soluciones Microbianas del Tr6pico
Ltda., Chinchind, Colombia) and Micosis® WP (Bio-Proteccién,
Chinchind, Colombia). For M. anisopliae, three isolates (CIAT 001,
CIAT 014A and CIAT 053) were obtained from the CIAT collection
and two strains were obtained from commercially available prod-
ucts known as Metarhiplant® WP (Sanoplant, Palmira, Colombia)
and BioMa® (Bio-Proteccién, Chinchina, Colombia). Cultures of B.
bassiana and M. anisopliae were grown on 75% potato dextrose agar
(PDA) and oatmeal agar (Difco™, Becton, Dickinson and Company,
Sparks, MD) respectively, in 100 x 15 mm Petri dishes and incu-
bated at 25 + 2 °C with a photoperiod of 12:12 h. The cultures were
allowed to grow for 14-18 days, after which conidia were har-
vested by scraping the surface of the agar with a sterile spatula,
and rinsing the surface of the agar with sterile distilled water con-
taining 0.1% Triton X-100. The suspensions were then filtered to
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remove mycelium and agar debris. Conidial concentrations were
determined using an improved Neubauer haemocytometer and
the suspensions were adjusted to 1 x 10 conidiamL™! in sterile
distilled water containing 0.1% Triton X-100 to make up the
required volume of inoculum for each isolate. For all experiments,
conidial viability of each isolate was evaluated by taking a 100 pL
sample of each inoculum, spreading it on PDA, incubating, and
assessing germination 24 h later. The percentage germination of
conidia was determined from 100 randomly selected conidia under
a light microscope. Conidia were deemed to have germinated if
hyphae were visible or the germ tube was at least twice the length
of the conidia. The average of three replicate counts was calculated
for each isolate.

2.3. Screening experiments

2.3.1. Inoculation

Two screening experiments were conducted in a greenhouse to
evaluate the ability of the ten isolates/strains to endophytically col-
onize cassava plants; one with the five B. bassiana isolates/strains
and one with the five M. anisopliae isolates/strains. Each treatment
consisted of 12 cassava plants, which were grown and prepared
for inoculation according to the methods outlined above at 2.1. Each
cassava plant root area was drenched with 100 mL of inoculum,
applied to the soil surface around the base of the plant 14-15 days
after the cassava cuttings were planted in the pots. At this time,
the buds on the cutting of the cassava plants had already produced
roots and shoots. Control plant pots were inoculated with 100 mL
of sterile distilled water containing 0.1% Triton X-100. The plants
were arranged in the greenhouse in a randomized block design with
12 blocks, each block containing six plants (five treatment plants
and one control). A root drench was chosen as the best inoculation
method after concluding a pilot study comparing root drench to
immersion of cuttings. The immersion method involved the immer-
sion of 200 mm long cassava stem cuttings in fungal inoculum for up
to 2 h prior to planting the cuttings. However, this method resulted
in only one root subsequently being colonized by B. bassiana and no
roots colonized by M. anisopliae (unpubl. data).

2.3.2. Endophyte evaluation

Due to the large number of plant samples that needed to be
surface-sterilized and plated onto Petri dishes, processing for the
endophyte evaluation required three consecutive days; therefore,
six of the 12 blocks were evaluated for endophytic colonization by
the fungal entomopathogens 7-9 days post-inoculation and the
remaining six blocks were evaluated 47-49 days post-inoculation.
For the first evaluation, the two longest bud roots were removed
from each plant and gently washed under running tap water for
approximately 30s to remove soil particles. From each of these
roots, two 60 mm pieces were taken from both the proximal and dis-
tal ends of each root (i.e., there were four 60 mm pieces of root for
each plant). The root pieces were pre-washed in 0.05% Triton X-
100 for three minutes and then surface-sterilized by immersing in
0.5% NaOCl (diluted in 0.05% Triton X-100) for three minutes, etha-
nol (70%) for one minute and then rinsing three times in sterile dis-
tilled water for 15 s each rinse. The bulk surface-sterilization system
described by Greenfield et al. (2015) was used in all surface-
sterilizations. To confirm that surface-sterilization was effective,
eightroot pieces were randomly selected from each block (with each
block containing 24 root pieces in total) to make imprints on 75%
PDA (in 100 mm x 15 mm Petri dishes) by gently pressing the root
piece onto the surface of the agar (Schulz et al., 1998). Each root
piece was then dissected into three 8 mm length sections (discard-
ing the ends) and placed onto individual 60 mm x 15 mm Petri
dishes containing PDA (75%) supplemented with antibiotics (0.1 g
penicillin, 0.2 g streptomycin and 0.05 g tetracycline/L). All Petri

dishes were incubated at 25 + 2 °C in darkness and were inspected
for 30 days for the presence of B. bassiana or M. anisopliae. Other fun-
gal endophytes were also recorded and assigned morphotype codes.
The proportion of root parts colonized was calculated for each plant
as the number of root sections exhibiting fungal growth divided by
the total number of root sections plated. The imprints were also
incubated and monitored for at least 14 days for presence of fungi
and if any fungi were found on an imprint, the corresponding block
was discarded from the dataset.

At the 47-49 days post-inoculation evaluation, leaves and
stems were evaluated as well as the roots for the presence of fungal
endophytes. The roots were sampled in the same manner as
described above. For the leaves, the second or third leaf (fully
emerged) from the top (a young leaf) and the third leaf from the
base of the plant (an old leaf) were removed from the plant. For
each of these leaves, the longest lobule of the leaf was cut and
trimmed to a length of 60 mm from where the leaf attaches to
the petiole to the distal end of the leaf. A stem was removed from
the plant and two pieces were cut from this stem; one from the top
of the plant (a young stem) and one from the base of the plant
where it arises from the cutting (an old stem). These stem pieces
were trimmed to a length of 60 mm. Surface-sterilization pro-
ceeded as above, however the timings for leaves and stems were
different from the timings used for the roots. For both leaves and
stems, sterilization timings were one minute in 0.5% NaOCI, 30 s
in ethanol (70%) followed by three rinses in sterile distilled water
(15 s each). Imprints of leaves and stems were made as described
above for roots. Leaves were dissected and six square sections
(8 mm?) were cut from the lobule along the mid vein. Stems were
dissected into approximately 8-10 mm lengths (discarding the
ends). The leaf and stem sections were placed onto PDA (75%) with
antibiotics (as above). Petri dishes were incubated and inspected
for 30 days for the presence of B. bassiana or M. anisopliae. Other
fungal endophytes were also recorded and assigned morphotype
codes. The proportion of root, leaf and stem parts colonized was
calculated as the number of sections exhibiting fungal outgrowth
divided by the total number of sections plated.

2.4. Additional colonization experiments

Additional experiments were conducted with four of the best
performing isolates/strains from the screening experiments (two
B. bassiana and two M. anisopliae), which were selected based on
the highest levels of colonization in cassava roots and the percent-
age of total cassava plants successfully colonized. Twelve blocks of
cassava plants were inoculated in the same manner as described
above for the screening experiments. Six blocks, each with five
plants (the four treatment plants and one control) were evaluated
for endophytic colonization by the fungi 7-9 days post-inoculation
and six blocks were evaluated for endophytic colonization 47-
49 days post-inoculation. The methodology for evaluating endo-
phytic colonization was identical to that described above for the
screening experiments including surface-sterilization, except for
the manner in which the imprints were made after surface-
sterilization. In these experiments, to confirm the effectiveness of
our surface-sterilization technique, root, leaf and stem imprints
were made on PDA for every individual piece of root, leaf and stem.
If any fungi grew on an imprint, that individual piece of root, leaf or
stem was removed from the dataset (instead of the entire block
being removed).

2.5. Plant growth and fungal treatment differences
Various plant growth measurements were obtained from the

cassava plants in both screening experiments and one of the addi-
tional (best performing isolate/strains) experiments. Aboveground
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measurements (stem length, number of stems, and chlorophyll
content) were taken 46 days post-inoculation, i.e., the day before
the plants were destroyed for the second sampling time 47-
49 days post inoculation. Stem length was measured from the
point of origin of the longest stem on the cutting to the tip of that
stem. Leaf chlorophyll content was determined with a SPAD 502
Plus Chlorophyll Meter (Minolta Co., Ltd., Osaka, Japan). The long-
est lobule of the most recent fully expanded leaf was used for
obtaining the SPAD value, which included an average of three mea-
surements along the lamina of the lobule. The root measurements
(dry root weight and root length) were taken over three days from
47 days to 49 days post-inoculation because they had to be mea-
sured after plants were removed from the pots. On the day of
destructive sampling, the roots of each plant were collected by
sieving and washed under running tap water and then dried in
an oven for 72 h at 50 °C to obtain the dry root weight for each
plant. The root weight was the entire root mass in the pot (minus
the 2 x 60 mm pieces of root taken to evaluate endophytic colo-
nization). The root length was the entire length of a root from
where the root attached to the cassava stem cutting to the distal
tip of the root (of the two longest roots).

2.6. Data analysis

The proportion of roots colonized by the various fungal treat-
ments from the two screening experiments and the additional
experiments were analyzed using logistic regression with random
effects using the R package Ime4 (Bates et al., 2015), with fungal
treatment, sampling date, root part, and other endophyte presence
as fixed effects and block nested in experiment as random effects.
The control plant data was not included in these analyses. A means
comparison, using the glht function in the R package multcomp
(Hothorn et al., 2008) was used to separate the differences in pro-
portional colonization among treatments. This method adjusts p-
values for the number of comparisons made. A similar analysis
was done using other endophyte presence as the dependent
variable.

A preliminary analysis suggested that several measured plant
growth variables might show differences among fungal treatments,
but only the proportion of plants with roots colonized were statis-
tically significant. Therefore we decided to create composite scores,
which are often helpful in this type of analysis. The composite
score can be considered a latent variable (a proxy for an unobserv-
able dependent variable) and is a weighted linear function of the
measured variables, first screened to remove those with little
information value (Table 1) based on canonical (linear) discrimi-
nant analysis (KKramer et al., 2009). This method finds the optimal
weighting for each measured variable’s contribution to the com-
posite score. For these data, two orthogonal latent variables
(LDA1 and LDA2) appeared adequate to describe differences in fun-
gal treatments.

Table 1

Linear discriminant analysis (LDA) weights (loadings) for variables including plant
growth measurements and degree of colonization by fungi. These were used to create
the composite scores used for statistical comparisons of the treatment fungi.
Variables were scaled to mean = 0, standard deviation = 1 prior to calculating weights.

Variables Weight Weight
(1st LDA) (2nd LDA)
Root (dry weight total) —-0.265 0.267
Root length 0.223 0.337
Number of roots sampled 0.323 -0.129
Leaf chlorophyll content (SPAD value) 0.029 —0.480
Stem length 0.411 0.956
Number of stems on plant -0.122 0.152
Degree of fungal colonization of roots 1.129 —0.032

We did two analyses, using each latent variable as the depen-
dent variable. A mixed model was estimated using the Imer func-
tion of the R package Ime4 (Bates et al., 2015), with fungal
treatment as a fixed effect and block nested in experiment as ran-
dom effects. We used the glht function in the R package multcomp
(Hothorn et al., 2008), based on a multivariate t distribution, to do
all pairwise comparisons (method = “Tukey") of fungal treatments
for each of the two composite scores.

3. Results
3.1. Screening experiments

Conidial viability was >90% for all of the B. bassiana and M.
anisopliae isolates/strains in the screening experiments, except
for Beauveriplant® WP, which was approximately 70% at the time
of the inoculations. It is unknown why germination of Beauveri-
plant® WP conidia was lower for the screening experiment. All of
the fungal isolates/strains in both screening experiments success-
fully colonized at least some cassava plant roots. At 7-9 days
post-inoculation, 84% of all B. bassiana treated plants were colo-
nized (including 100% of plants treated with Beauveriplant® WP
and 80% treated with Bovetrépico® WP, Micosis® WP, CIAT 359
and CIAT 405), and 80% of all M. anisopliae treated plants were col-
onized (including 100% of plants treated with CIAT 014A, 75% with
Metarhiplant® WP, BioMa® and CIAT 053, and 50% with CIAT 001).
At 47-49 days post-inoculation, 40% of B. bassiana treated plants
were colonized (including 67% of plants treated with Beauveri-
plant® WP and CIAT 359, 33% treated with Bovetr6pico® WP and
CIAT 405 and 0% for Micosis), and 80% of M. anisopliae treated
plants were colonized (including 100% of plants treated with CIAT
014A, CIAT 053 and BioMa®, 80% treated with Metarhiplant® WP,
and 20% with CIAT 001). B. bassiana and M. anisopliae were not
found in the control plants or on any of the imprint plates. How-
ever, three imprint plates did have another (unidentified) fungus
and therefore those blocks of data were removed from the analysis
(one block for the B. bassiana screening and two blocks for the M.
anisopliae screening). Neither B. bassiana nor M. anisopliae were
found as endophytes in any leaf or stem samples.

Colonization levels differed significantly between some treat-
ments in each of the screening experiments, namely Beauveri-
plant® WP and Micosis® WP for the B. bassiana screening
(x?=12.97, df =4, p<0.01) (Fig. 1) and CIAT 001 and CIAT 053 in
the M. anisopliae screening (?=13.32, df=4, p<0.01) (Fig. 2).
The highest percentage root colonization was observed for plants
inoculated with the B. bassiana strain Beauveriplant® WP (Fig. 1)
and the M. anisopliae isolate CIAT 053 (Fig. 2). Colonization levels
were higher in the proximal portion of the root than in the distal
portion in both the B. bassiana screening (Fig 1; y?=42.20, df=1,
p<0.001) and the M. anisopliae screening (Fig. 2; y*=28.23,
df=1, p<0.001). In the B. bassiana screening, colonization levels
were lower at 47-49 days post-inoculation compared to 7-9 days
post-inoculation (Fig. 1; y?=16.22, df=1, p<0.001). In the M.
anisopliae screening, the level of colonization did not vary between
7 and 9 days post-inoculation and 47-49 days post-inoculation
(Fig. 2; *=0.11,df =1, p=0.743).

Colonization levels by other endophytes were higher at 47-
49 days post-inoculation than at 7-9 days post-inoculation for
both the B. bassiana screening (x?=64.32, df=1, p<0.001) and
the M. anisopliae screening (% =22.31, df=1, p<0.001). In the B.
bassiana screening, there was no difference in the level of coloniza-
tion by other endophytes between the proximal and distal por-
tions. In the M. anisopliae screening, colonization levels by other
endophytes were higher in the proximal portion than in the distal
portion of the roots (3% =51.62, df =1, p < 0.001). The presence of
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Fig. 1. Proportion of root part colonized 7-9 and 47-49 days post-inoculation with five different B. bassiana isolates/strains. Root colonization levels differed significantly
between Beauveriplant® WP and Micosis® WP and the highest percentage root colonization was observed for plants inoculated with Beauveriplant® WP. Colonization levels
were higher in the proximal portion of the root than in the distal portion of the root and were lower at 47-49 days post-inoculation compared to 7-9 days post-inoculation.
See Results section for details. The same letter underneath treatment names indicates that the means are not significantly different using Tukey’s procedure (family-wise

error rate = 0.05).
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Fig. 2. Proportion of root part colonized 7-9 and 47-49 days post-inoculation with five different M. anisopliae isolates/strains. Root colonization levels differed significantly
between CIAT 001 and CIAT 053 and the highest percentage root colonization was observed for plants inoculated with CIAT 053. Colonization levels were higher in the
proximal portion of the root than in the distal portion of the roots. The level of colonization did not vary between 7-9 days post-inoculation and 47-49 days post-inoculation.
See Results section for details. The same letter underneath treatment names indicates that the means are not significantly different using Tukey’s procedure (family-wise

error rate = 0.05).

other endophytes in cassava roots lowered the probability of iso-
lating either B. bassiana (y? = 25.92, df =1, p<0.001) or M. aniso-
pliae (x?=62.62, df =1, p < 0.001) in the screening experiments.

3.2. Additional colonization experiments

The four isolates/strains selected from the screening experi-
ments for additional experimentation were CIAT 359 and Beauveri-
plant® WP from the B. bassiana screening and CIAT 014A and
Metarhiplant® WP from the M. anisopliae screening. Metarhiplant®
WP and CIAT 014A were chosen based on the 7-9 day post-

inoculation evaluation. Conidial viability was >90% for all of the
isolates/strains at the time of inoculation. All four isolates success-
fully colonized cassava plant roots with approximately 78% of B.
bassiana treated plants and 62% of M. anisopliae treated plants col-
onized 7-9 days post-inoculation. Approximately 35% of B. bassi-
ana treated plants and 67% of M. anisopliae treated plants were
colonized 47-49 days post-inoculation. B. bassiana and M. aniso-
pliae were not found in any control plants. Ten root imprints (from
a total of 408 imprints) had fungal growth; one contained B. bassi-
ana and one contained M. anisopliae; the rest were unidentified
fungi. The root pieces that corresponded to these 10 imprints were
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Table 2

p-values for a posteriori pairwise comparisons of composite scores. Composite scores were created using predictions from the first two dimensions of a linear discriminant
analysis using six cassava plant health measurements (root dry weight, root length, number of roots sampled, stem length, number of stems on plant, leaf chlorophyll content)
and degree of colonization of cassava roots by treatment fungi. The upper right portion of the table is for LDA1 and the lower left portion LDA2.

Treatment Beauveriplant ~ Bovetropico Micosis CIAT 359 CIAT 405 BioMa Metarhiplant CIAT 001 CIAT 014A CIAT 053 Control
Beauveriplant (Bb) 0.98 <0.01 0.97 0.66 1.00 1.00 0.21 1.00 1.00 <0.01
Bovetropico (Bb) 1.00 0.52 1.00 1.00 1.00 0.75 0.98 0.99 0.92 0.51
Micosis (Bb) 1.00 1.00 0.19 0.90 0.33 <0.01 1.00 0.02 0.01 1.00
CIAT 359 (Bb) 0.93 0.89 1.00 1.00 1.00 0.64 0.86 1.00 0.91 0.08
CIAT 405 (Bb) 1.00 1.00 1.00 0.95 1.00 0.26 1.00 0.80 0.56 0.94
BioMa (Ma) 0.01 0.14 0.04 <0.01 0.10 0.91 0.91 1.00 0.98 0.28
Metarhiplant (Ma) 1.00 1.00 1.00 0.47 1.00 0.05 0.04 1.00 1.00 <0.01
CIAT 001 (Ma) 0.16 0.60 0.29 <0.01 0.49 1.00 0.46 0.32 0.18 1.00
CIAT 014A (Ma) 0.57 0.97 0.77 0.02 0.93 0.57 0.96 0.99 1.00 <0.01
CIAT 053 (Ma) 0.63 0.94 0.74 0.07 0.89 0.89 0.93 1.00 1.00 <0.01
Control 0.98 1.00 0.99 0.17 1.00 0.06 1.00 0.54 0.98 0.97

Bb = Beauveria bassiana
Ma = Metarhizium anisopliae

removed from the dataset. B. bassiana and M. anisopliae were not
found in any leaf or stem samples at any time.

Colonization levels did not differ significantly between the four
fungal isolates/strains in this experiment. Colonization levels were
higher in the proximal portion of the root than in the distal portion
of the roots for all four B. bassiana and M. anisopliae isolates/strains
(x?=50.49, df=1, p<0.001). For the two B. bassiana isolates/
strains, colonization levels were higher at 7-9days post-
inoculation compared to 47-49 days post-inoculation (% =9.23,
df=1, p<0.01) and for the two M. anisopliae isolates/strains, the
levels of colonization were higher at 47-49 days post-inoculation
compared to 7-9days post-inoculation (y?=8.15, df=1,
p <0.01). The levels of colonization by other endophytes did not
differ significantly between the two evaluation days (i.e., 7-9 and
47-49 days post-inoculation). The presence of other endophytes
lowered the probability of isolating both B. bassiana and M. aniso-
pliae (x?=34.74, df =1, p < 0.001).

3.3. Plant growth and fungal treatment differences

We interpreted the first latent variable (1st LDA; Table 1) as col-
onization success. The largest contributor to it is the degree of fun-
gal colonization of roots (for 12 root sections per plant, this is the
count of those successfully colonized), with a smaller contribution
from stem length and the number of roots sampled. We inter-
preted the second latent variable (2nd LDA; Table 1) as plant
growth. The largest contributor to this variable is stem length, fol-
lowed by root length and root weight, with a negative contribution
from leaf chlorophyll content.

The results of multiple mean comparisons of the fungal treat-
ments are shown in Table 2.

The upper right triangle gives p values for comparisons for the first
dependent latent variable (LDA1) and the lower left gives p values for
comparisons on the second dependent latent variable (LDA2). Nine
contrasts on colonization success (Fig. 3, top panel) were significant
with Micosis® WP and control (similar to each other) vs Beauveri-
plant® WP, Metarhiplant® WP, CIAT 014A, and CIAT 053 (latter four
similar to each other). Five contrasts on plant growth (Fig. 3, bottom
panel) were significant with BioMa® vs CIAT 359, Beauveriplant®
WP and Micosis (latter three similar to each other), and CIAT 359 vs
CIAT 001 and CIAT 014A (latter two similar to each other). Metarhi-
plant® WP vs BioMa® was not significant (p = 0.0503).

4. Discussion

We have demonstrated for the first time that B. bassiana and M.
anisopliae can endophytically colonize cassava roots. The soil

drench inoculation method led to colonization of cassava roots
by B. bassiana and M. anisopliae for up to seven weeks after inocu-
lation. This suggests that successful endophytic colonization by B.
bassiana and M. anisopliae can be achieved in actively growing
roots of cassava. Colonization of internal plant tissues of many
crops has been achieved with B. bassiana (Vega, 2008; see Intro-
duction) and with Metarhizium species (Akello and Sikora, 2012;
Batta, 2013; Behie et al., 2015) suggesting that these ento-
mopathogens have the potential to colonize many different plant
species.

We reisolated B. bassiana and M. anisopliae from surface-
sterilized roots of cassava plants but never from the leaves or
stems of those plants. This indicates that the fungi were not sys-
temic within the plant, but rather remained localized in the roots.
This localization is in contrast to other studies that have found B.
bassiana can establish as an endophyte throughout the entire plant,
particularly after seed inoculation (Akutse et al., 2013; Ownley
et al., 2008; Quesada-Moraga et al., 2009). However, for M. aniso-
pliae, our results are not surprising given that species of Metarhiz-
ium are more often reported as endophytes of roots and not the
upper parts of plants (Akello and Sikora, 2012; Behie et al., 2015;
Murphy et al., 2015). We do not know if systemic endophytic col-
onization by entomopathogens would be important in cassava for
protecting the plant against pests of the leaves, such as the white-
fly A. socialis. The mechanisms involved in the control of arthropod
pests and diseases using endophytes include antagonism, induc-
tion of plant host defenses, host plant tolerance, or a combination
of these (Ownley et al., 2010; Gémez-Vidal et al., 2009; Porras-
Alfaro and Bayman, 2011). If host plant defense is induced post-
inoculation with a fungal entomopathogenic endophyte, it may
not be necessary for the fungus to be systemic (Jaber and Vidal,
2010). In the present study, an attempt to investigate the effects
of the fungal treatments on resistance by cassava to A. socialis
was made, but large variability in the results among replicates pre-
cluded learning whether the various endophytic fungal ento-
mopathogens differentially affected resistance by cassava against
insects (unpubl. data).

There are several possible explanations for the lack of systemic
colonization by our isolates/strains. Firstly, some studies have
shown that colonization by the applied fungus is more likely in
the plant part that was in direct contact with the inoculum and less
likely or not at all in plant parts distant to the application site
(Akello et al., 2007, 2009; Tefera and Vidal, 2009). This would
explain why our soil drench inoculation resulted in colonization
only in the roots. This is supported by several surveys that have
suggested there is a lack of evidence for systemic growth by fungal
endophytes from one plant tissue type to another (Wearn et al.,
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Fig. 3. Results for the 10 fungal entomopathogens and control on the two latent axes (composite scores). LDA1 (top panel) is interpreted as colonization success, with larger
numbers indicating higher success. LDA2 (bottom panel) is interpreted as plant growth, with larger numbers indicating better plant growth. Gray dots are values for each
plant on their respective axes. Black dots are mixed model estimates (composite score, either LDA1 or LDA2 is the dependent variable) for each entomopathogen, with + one
standard error of the model estimate given by the vertical lines. Means separation letters follow each mean. Note that the entomopathogen order differs between panels.

2012; Yan et al,, 2015). Secondly, competition with other endo-
phytes is likely to be important. Indeed, approximately 40 other
morphospecies were recovered from the surface-sterilized root
samples in our study and our analyses showed that the probability
of finding B. bassiana and M. anisopliae was reduced significantly
when other endophytes were present. We do not know if these
other endophytes originated from the environment in which the
plants were growing or from the stem cutting itself. The stem cut-
ting may contain a store of fungal and bacterial endophytes that
originate from the parent plant and these could compete with B.
bassiana and M. anisopliae inside the plant. A study investigating
the endophyte community within the stem cutting and how these
other endophytes interact with B. bassiana and M. anisopliae would
be useful.

Colonization by B. bassiana and M. anisopliae was higher in the
proximal portion of the root than in the distal portion across all
of our experiments. It is unknown if conidia of these fungi were
concentrated in the upper soil strata, where the proximal end of
the root is located but this is one hypothesis that could explain
our results (Kim et al., 2010; Storey and Gardner 1988). Future
studies could evaluate the presence of fungal entomopathogens

inoculated into the soil in the different soil strata to determine if
conidia adhere to soil particles in the upper soil layer around cas-
sava stem cuttings. Another hypothesis is that the proximal end of
the root provides different conditions that influence colonization.
For example, in some cassava varieties, the proximal end of cassava
root has been found to contain higher levels of cyanogenic glyco-
sides than the distal end (Cooke, 1978). We do not know if this is
the case in the cassava CMC-40 variety used in our experiments,
which is low in cyanogenic glycosides overall, but it shows that
conditions can be different across the longitudinal gradient of cas-
sava roots.

B. bassiana and M. anisopliae persisted in cassava roots for up to
seven weeks in all of the experiments. M. anisopliae colonization
levels remained relatively constant over time (in the screening
experiment) and increased in time (for the additional experiment)
between the two sampling dates, whereas B. bassiana colonization
levels decreased by half between sampling dates in all experiments.
This is not surprising given previous studies have shown M. aniso-
pliae is rhizosphere competent (Bruck, 2005, 2010; Hu and St.
Leger, 2002; St. Leger, 2008) and persists well in the soil environ-
ment, but B. bassiana does not persist as well (Lingg and
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Donaldson, 1981; Vanninen et al., 2000). Further, B. bassiana is more
commonly found aboveground whereas M. anisopliae is very com-
mon belowground (Meyling et al., 2011). At the same time, the pres-
ence of other endophytes increased over time (screening
experiments) or remained constant (additional experiment) and,
as mentioned above, for those plants that had other endophytes,
the probability of finding either B. bassiana or M. anisopliae was
reduced. This indicates that the presence of other endophytes in
cassava roots influenced the levels of colonization by both B. bassi-
ana and M. anisopliae. The reason that the level of colonization by M.
anisopliae remained constant despite an increase in other endo-
phytes is likely to be related to its competence in the rhizosphere.
There was opportunity for other endophytes to increase over time
because at both sampling times, some cassava root pieces were
not colonized by any fungi. In other words, colonization by other
endophytes could increase over time despite the level of coloniza-
tion by M. anisopliae being maintained and this is evident because
there were less un-colonized root pieces overall at the second sam-
pling time.

Using the composite scores we have shown clear differences in
the fungal entomopathogen isolates/strains in terms of coloniza-
tion success and plant growth. These results show that the com-
mercial products are not equivalent, with one of them (Micosis®
WP) being no different than the control on the first composite
score. Two of the entomopathogens (CIAT 053 and Beauveriplant®
WP) were among the best performing for colonization success and
two (CIAT 359 and Beauveriplant® WP) were among the best for
plant growth. Only one of the 10 fungal entomopathogens (Beau-
veriplant® WP) resulted in both higher colonization success and
plant growth, indicating it would be a good candidate for further
studies. The negative loading for chlorophyll was unexpected; it
could be a result of increased plant resource allocation to stem
and roots, consequently not producing as much chlorophyll.

Our results support previous studies where plant growth pro-
motion has been reported for B. bassiana (Lopez and Sword,
2015) and M. anisopliae (Kabaluk and Ericsson, 2007). Future
research could allow inoculated cassava plants to grow for a longer
period of time to investigate the influence of entomopathogens as
endophytes on plant growth and whether root growth in particular
increases, which might be beneficial for increasing root yield.
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