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Abstract

Sequencing of exomes and genomes has revealed abundant genetic variation affecting the coding 

sequences of human transcription factors (TFs), but the consequences of such variation remain 

largely unexplored. We developed a computational, structure-based approach to evaluate TF 

variants for their impact on DNA-binding activity and used universal protein binding microarrays 

to assay sequence-specific DNA-binding activity across 41 reference and 117 variant alleles found 

in individuals of diverse ancestries and families with Mendelian diseases. We found 77 variants in 

28 genes that affect DNA-binding affinity or specificity and identified thousands of rare alleles 

likely to alter the DNA-binding activity of human sequence-specific TFs. Our results suggest that 

most individuals have unique repertoires of TF DNA-binding activities, which may contribute to 

phenotypic variation.

Exome sequencing studies have identified many nonsynonymous single nucleotide 

polymorphisms (nsSNPs) in transcription factors (TFs) (1). Genetic variants that alter 

transcript expression levels have been associated with human disease risk and are 

widespread in human populations (2, 3). Numerous Mendelian diseases are attributable to 

mutations in TFs (4). Missense SNPs that change the amino acid sequence of TF DNA 

binding domains (DBDs) might disrupt their DNA binding activities and thus have 

detrimental consequences on their gene regulatory functions. Despite their medical 

importance, the consequences of coding variation in DBDs on TF function have remained 

largely unexplored.

We identified 53,384 unique DBD polymorphisms (DBDPs) (Table S1) (here, defined as 

missense variants) in a curated, high-confidence set of 1,254 sequence-specific human TFs 

(5, 6) (Table S2) from genotype data for 64,706 individuals encompassing African, Asian 

and European ancestries (Fig. 1A) (1, 2, 7). We also identified 4,552 unique nonsense 

mutations that result in partial or full DBD truncation (Table S3).

We found a median of 60 heterozygous and 20 homozygous DBDPs (Fig. 1B) per genome. 

We found a significant depletion (odds ratio = 3.7, P = 0.005, Fisher's exact test) of DBDPs 

among TFs with known Mendelian disease mutations (6, 8), suggesting that DBDPs in 

disease-associated TFs have phenotypic consequences.

We developed a computational approach (6) to evaluate missense substitutions in TF DBDs 

for their impact on DNA-binding activity. Existing methods for predicting the impact of 

missense mutations (9, 10) do not adequately consider the roles of residues in protein-DNA 

interactions, which we reasoned should improve predictions. We first focused on 

homeodomain DBDs, as most known Mendelian disease mutations in TFs occur in 

homeodomain proteins. We analyzed homeodomain-DNA co-crystal structures in the 

Protein Data Bank to assemble a composite protein-DNA ‘contact map’ (Fig. S1). As 

anticipated, residues that contact DNA bases or phosphate backbone, or that immediately 

neighbor base-contacting residues, are enriched among Mendelian disease mutations (P < 

0.005, permutation test). In contrast, individuals in the population are depleted for variants at 
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base- or backbone- contacting positions (P = 0.0134 or 0.0312, respectively, permutation 

test) (Fig. 1C). This highlights the value of considering protein-DNA contacts in predicting 

the impact of variants.

Based on these results, we expanded our approach to other TF families. For each variant we 

considered multiple criteria, including: (a) position of the residue relative to the protein-

DNA interface in homologous co-crystal structures (Fig. S1); (b) DNA-binding specificity-

determining residues for particular DBD classes (Fig. S2); (c) scores from tools that predict 

mutation pathogenicity (9, 10); (d) minor allele frequencies; and (e) phenotypic associations 

from genome-wide association studies (11) or known Mendelian disease mutations (8).

Using these criteria, we selected 36 TF DBDPs (6) to assay for direct, sequence-specific 

DNA-binding activity (Fig. S3). These DBDPs were obtained from 1000 Genomes Project 

(1kG) Phase 2, the Exome Sequencing Project (ESP 6500), and the Exome Aggregation 

Consortium (ExAC). To calibrate the effects of these nsSNPs, we selected 81 Mendelian 

disease mutations, which are known or believed to be pathogenic (Fig. 1D) (8, 12). The 117 

variant DBD alleles span six major structural classes, representing 41 distinct TF allelic 

series (Fig. S4). We assayed these 158 DBD alleles using universal protein binding 

microarrays (PBMs) (6), on which each non-palindromic 8-bp sequence occurs on at least 

32 spots (13) (Table S4).

We identified variant-induced changes in DNA-binding specificity (14) (Fig. 2A) or affinity 

(Fig. 2B) by comparing the enrichment (E) scores of each of 32,768 nonredundant, 

ungapped 8-mers represented on PBMs to those of the corresponding reference allele (6, 

13). DNA-binding changes were reproducible across replicate PBM experiments and support 

previously reported DNA-binding affinity differences (Table S5, Fig. S5). We categorized all 

117 variant alleles as having altered DNA-binding specificity, affinity, both, or neither (Table 

S6). Three nsSNPs completely abrogated sequence-specific DNA-binding (Fig. 2C, Fig. S6). 

In total, 77 variants altered DNA-binding affinity and/or specificity (Fig. 2D). Several 

nsSNPs predicted to be damaging but not scored here as having altered DNA-binding might 

cause subtle changes beyond the sensitivity of our approach or alternatively affect protein-

protein interactions.

Compared to DBDPs, Mendelian disease mutants lost a larger fraction of 8-mers bound by 

the corresponding reference alleles (P = 0.0044, Wilcoxon rank-sum test), consistent with 

more extreme phenotypes being associated with more drastic in vitro binding changes. The 

overall difference in gained 8-mers was not significantly different between these two sets of 

variants (P = 0.32, Wilcoxon rank-sum test; Fig. 2E).

PBM binding profiles within an allelic series differed for variants associated with distinct 

disease phenotypes (Fig. S7), supporting results from a yeast one-hybrid screen of 

Mendelian disease TF mutants (15). They also provided molecular insights into the 

molecular basis of clinical heterogeneity of disease mutations affecting the same genes. For 

example, CRX is associated with Mendelian diseases of retinal degeneration (16). The 

R90W allele, associated with the severe disease Leber congenital amaurosis 7 (17), lost the 

ability to bind most 8-mers bound by wildtype CRX. In contrast, the R41W allele, 
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associated with cone-rod dystrophy 2 (18), resulted in a moderate specificity change (Fig. 

S7B).

The 8-mer binding profiles of HOXD13 alleles displayed a range of effects; several of these 

alleles are associated with various limb malformations (19) (Fig. 3A). The I297V and 

N298S variants, predicted to be benign, did not alter DNA-binding activity. The Q325K and 

Q325R alleles gained recognition of novel motifs, consistent with those learned from 

chromatin immunoprecipitation with high-throughput sequencing (ChIP-Seq) data (12). 

Allele-preferred 8-mers (Fig. 3B, Fig. S8A) are enriched within ChIP-Seq peaks bound 

exclusively by the respective allele (Fig. 3C, Figs. S8B, S9) (P < 0.01, Wilcoxon signed-rank 

test). Putative target genes, associated with ChIP-Seq peaks enriched (P < 2.2 × 10−16, one-

tailed Wilcoxon signed-rank test) for Q325K- or Q325R-preferred versus reference-

preferred 8-mers (Fig. S10) (6), are over-represented among genes up-regulated by the 

corresponding allele (P < 0.01, permutation test) (Fig. 3D, Figs. S8C, S11), consistent with 

HOXD13 acting as a transcriptional activator (20). These results suggest that these variants’ 

changes in binding specificity alter genomic occupancy, leading to inappropriate gene 

expression through gained binding sites.

As expected, mutations in residues that either contact DNA or neighbor a base-contacting 

residue were enriched (odds ratio = 4.3, P = 0.003, Fisher's exact test) among DBDPs with 

altered DNA binding affinity or specificity (Fig. 4A). Interestingly, we also found variants at 

non-DNA-contacting positions that altered DNA binding, potentially by affecting protein 

conformation or stability. We identified 3,833 unique missense variants that are predicted to 

be damaging by both Polyphen-2 and SIFT and occur at DNA-contacting residues (Fig. 4B). 

These values are likely an underestimate of damaged DBDPs across all human TFs (Fig. 

4C). These damaging nsSNPs occur at lower frequencies in the ExAC population than 

nsSNPs for which no change in DNA-binding is predicted (P < 0.05, permutation test) (Fig. 

4D), suggesting that they are more likely to be deleterious.

Per individual, there were very few (median = 2) nonsense DBD variants, but a wide range 

in the number of putatively damaging missense variants (median = 9, DBDPs at DNA-

contacting residues and predicted as damaging by Polyphen-2 and SIFT) (Fig. 4E, Fig. S12). 

Hence, we investigated what mechanisms might allow damaged DBDPs to be tolerated. TFs 

reported to tolerate homozygous LoF mutations in Icelanders (21) had a significantly higher 

fraction of DNA-contacting residues altered by our identified nsSNPs (P = 6.63 × 10−8, 

permutation test) (Fig. 4F). TFs with a co-expressed paralog (22) had a significantly higher 

fraction of variable DNA-contacting residues (P = 6.11 × 10−8, permutation test) (Fig. 4G); 

this enrichment was significant independent of LoF-tolerance status (P < 0.005, t-test) (6). 

Additional compensation could arise from epistasis with cis-regulatory variants (23). 

Damaged DBDPs might be associated with undiagnosed or subclinical phenotypes, variably 

penetrant phenotypes due to epistatic or gene-environment interactions, or phenotypes that 

present in later life.

Our results highlight the utility of PBM profiling to reveal changes in the DNA binding 

activities of DBD variants. PBM profiling of DBDPs identified through additional 
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sequencing studies may elucidate disease pathologies by revealing alterations in DNA 

binding that result in transcriptional dysregulation.

Our analyses suggest that most unrelated individuals have a unique repertoire of TF alleles 

with a distinct landscape of DNA binding activities. Variants with subtle changes in DNA-

binding activities may confer reduced deleteriousness and thus have greater potential for 

giving rise to phenotypic variation. Analysis of genetic interactions among TFs, TF variants, 

and noncoding regulatory variation likely will provide insights into the structure of genetic 

variation that leads to phenotypic differences among people.
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One Sentence Summary

Comprehensive analysis of Mendelian disease mutations and single nucleotide 

polymorphisms (SNPs) in human transcription factors reveals a continuum of alterations 

in DNA binding activity.
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Figure 1. Evaluation of coding variation in TF DBDs
(A) Number of unique DBDPs in 1kG (Phase 3), ESP 6500, or ExAC v0.2 individuals. (B) 

Histograms of unique DBDPs per individual in either homozygous or heterozygous states. 

(C) Number of Mendelian mutations, and nsSNPs found in ExAC, across all homeodomain 

TFs annotated by their position and type of DNA contact associated with each position. “I”, 

“II, “III” refer to α-helices; III is the DNA-recognition helix. Adjacent bar graphs depict 

mean number of variants for each position type; enrichment (*) or depletion (**) relative to 

non-DNA-contacting residues (P < 0.05, permutation test), error bars = 1 standard error of 

the mean, N = 332 Mendelian mutations, 1,300 nsSNPs, and 11 base-contacting, 12 

phosphate-backbone-contacting, 5 neighboring-DNA-contacting, and 30 non-DNA-

contacting positions. (D) Allele types assayed by PBMs.
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Figure 2. Perturbed DNA-binding caused by nsSNPs or Mendelian disease mutations
(A) Specificity change in PAX4 R192H allele compared to no change in CRX V66I allele. 

Colored 6-mers are allele-preferred (Q < 0.05, intersection-union test with Benjamini-

Hochberg correction). (B) Altered E-score distribution of CRX R90W allele relative to the 

reference allele indicates altered DNA binding affinity. (C) Box plots depict E-scores of 

NR1H4 reference and C144R alleles and GST negative controls (6) for the top 50 8-mers 

bound by NR1H4 reference allele. C144R abolished binding specificity (* P < 2.2 × 10−16, 

Wilcoxon rank-sum test), resulting in E-scores indistinguishable from GST negative controls 

(Table S7). (D) Fraction of alleles with observed changes in DNA-binding affinity, 

specificity, both, or neither as determined from PBM binding profiles. Prioritized nsSNPs 

exclude those predicted as benign by both PolyPhen-2 and SIFT. (E) Violin plots depicting 

fraction of 8-mer binding sites gained or lost by variants relative to the number of 8-mers 

bound by the reference allele. Gains or losses were defined as E ≥ 0.4 for one allele and E < 

0.4 for the other allele. * P = 0.0044, Wilcoxon rank-sum test.
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Figure 3. Perturbations in TF DNA-binding and gene expression associated with HOXD13 
genetic variants
(A) Heatmap depicting PBM E-scores of DBD alleles (rows) for all 8-mers (columns) bound 

strongly (E > 0.45) by at least one allele, with corresponding motifs (13) and phenotypes. 

Rows and columns were clustered hierarchically. Pink boxes highlight allele-preferred 

sequences with corresponding motifs, generated by alignment of the indicated 8-mers (14). 

Variants in orange font exhibited altered specificity. “–” indicates no known phenotype. (B) 

Scatter plot comparing 8-mer E-scores of HOXD13 reference versus Q325K alleles. Allele-

preferred and allele-common 8-mers (6) are colored. (C) PBM-derived allele-preferred 8-

mers are enriched (* P < 0.01, Wilcoxon signed-rank test) within genomic regions bound in 

vivo exclusively by the respective allele. Dashed horizontal line indicates AUROC = 0.5 (no 

enrichment or depletion). (D) Genes associated with ChIP-Seq peaks enriched for reference-

preferred versus Q325K-preferred 8-mers are over-represented (* P < 0.01, permutation test) 

among genes up-regulated by the same allele. Z-scores were calculated using 100 random 

background gene sets (6).
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Figure 4. Properties of ExAC DBDPs predicted to alter DNA-binding activity
(A) Relative frequency of DNA-binding changes observed for variants at DNA-contacting 

residues. “Both” comprises residues at which variants changed DNA binding affinity and 

specificity either simultaneously in one protein or separately across different proteins. (B) 

Overlap between DBDPs affecting DNA-contacting residues in zf-C2H2, Fork_head, HLH, 

and Homeobox Pfam domains (blue) or predicted as “probably damaging” by PolyPhen-2 

and “damaging” by SIFT (green). (C) Number of sequence-specific TFs for which DBDPs 

were identified and their evaluation, as in (B). (D) Minor allele frequencies (ExAC v0.2) of 
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nsSNPs. (E) Histogram of DBD variants per individual (1000 Genomes Project Phase 3), 

annotated as in C. (F) Fraction of DNA-contacting residues per TF altered by at least one 

nsSNP (ExAC), for genes tolerant of homozygous or compound heterozygous LoF 

mutations versus genes for which LoF-tolerance was not observed (21). (G) Fraction of 

variable DNA-contacting residues (ExAC) in TFs with versus without at least one co-

expressed paralog.
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