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ABSTRACT
Genome-wide association studies (GWAS) have revealed numerous genomic ’hits’ associated with complex
phenotypes. In most cases these hits, along with surrogate genetic variation as measure by numerous
single nucleotide polymorphisms (SNPs) that are in linkage disequilibrium, are not in coding genes
making assignment of functionality or causality intractable. Here we propose that fine-mapping along
with the matching of risk SNPs at chromatin biofeatures lessen this complexity by reducing the number of
candidate functional/causal SNPs. For example, we show here that only on average 2 SNPs per prostate
cancer risk locus are likely candidates for functionality/causality; we further propose that this manageable
number should be taken forward in mechanistic studies. The candidate SNPs can be looked up for each
prostate cancer risk region in 2 recent publications in 20151,2 from our groups.
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Genome-wide association studies (GWAS) of complex pheno-
types became more and more powerful as sample sizes of cases
and controls increased and meta-analyses were employed. Also,
as next generation sequencing techniques became more feasible
and increasingly affordable, more and more single nucleotide
polymorphisms (SNPs) with lower and lower minor allele fre-
quencies (MAFs) have been identified. Thus, association signals
at any given locus have become increasingly complex in large
part due to the many candidate risk SNPs, correlated with each
other due to linkage disequilibrium (LD). Consequently, it is
virtually impossible to assign functionality, let alone causality,
to any given SNP at a risk locus. This dispiriting situation is
only made more daunting by the unexpected finding that 90%
or more of these risk SNPs are located in non-coding DNA.

To address these issues, we and others have used chromatin
biofeatures to inform potential functionality on the original dis-
covery SNPs, known to the field as index SNPs, and their many
surrogate SNPs, the former revealed by GWAS and the latter
defined by r2 of population-specific LD. Thus, software tools
such as FunciSNP,3 RegulomeDB,4 Haploreg,5 Annovar,6 IGV,7

and more recently FunSeq8 and motifbreakR9 were developed
to utilize correlated risk SNPs from the 1000 Genomes Project,
co-locating with chromatin annotations (such as obtained from
ChIP-seq and nucleosome occupancy data); this significantly
reduces the number of candidate functional SNPs. This became
necessary since the SNP surrogates were plentiful (for example,
there are on average »500 per prostate cancer risk region at r2

� 0.5 to the index SNP - Table 1). Over the last couple of years,
we have successfully used this annotation approach for pros-
tate10 and breast11 cancer risk regions. Despite the significant

reduction in candidate functional SNPs using this approach,
the on average »10 (median D 5) candidate SNPs per prostate
cancer risk locus still make a detailed and comprehensive wet-
lab analysis of functionality intractable (Table 1). However,
more recently a new approach emerged, known as fine-
mapping.

With the advent of fine-mapping strategies and correspond-
ing analysis methods, the complexity at any given locus or
region can be reduced further. Many new analysis aproaches
have been developed to go beyond simple rankings of marginal
p-values to statistically identify a putative set of candidate SNPs
for further functional analysis. These methods include Bayesian
and re-sampling approaches that formally incorporate the
uncertainty in estimation and ranking,1,12,13 model selection
approaches to condition on multiple SNPs in the region using
either individual-level data2,14 or marginal test statistics,15,16

and approaches that formally incorporate prior information,
such as SNP annotation, into the final inference.17,18

Recently, we and others have fine-mapped prostate cancer
risk regions using a multi-ethnic1 and a single large European
population.2 This reduced the candidate risk SNPs per region
(Table 1). Coupled with FunciSNP3 annotated functionality,
the 2 fine mapping studies further reduced the number of com-
mon candidates to on average only about 2 SNPs per region
(Table 1). This clearly means that without functional annota-
tion or fine-mapping a significant number of false positives at
each locus may well lead to non-productive functional analyses
that have little to do with risk. Ultimately SNPs must be func-
tional to be causal, but not all functional SNPs are inevitably
involved in risk.
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However, even with fine-mapping data at hand, downstream
analyses will be complicated when multiple biologically func-
tional SNPs with measurable allelic effects are present at a single
locus, of which only one is the major driver of cancer. Also plausi-
ble are haplotypes with 2 or more variants partially complement-
ing each other. Finally, an additional complication is that the
etiological target tissue of a given risk locus may lie outside the tis-
sue of origin for a particular disease. To give an example, risk for
prostate cancers (and others) are likely affected by immune cells
in addition to dysregulation in prostate epithelia. This may
explain the roughly 1/3 of risk loci where no functionality may be
assigned based upon extant epigenomics data in prostate epithe-
lial cell types.10 To give another example, there may be several
plausible tissues of origin, which may be at least partially
addressed by assessing candidate loci for enrichment in the epige-
nomic features of those various tissues. We showed for serous
ovarian cancers that finemapped risk SNPs were enriched in reg-
ulatory sites of immortalized primary cell lines derived from fallo-
pian tube serous epithelium (FTSE) over those of similar cell lines
derived from ovarian serous epithelia, supporting FTSE as the tis-
sue of origin.19 While this by no means settles the debate on such
questions, it may provide an important clue as to the tissue of ori-
gin and suggest therapeutic targets for prevention and early inter-
vention measures. Going forward, we anticipate that comparison
among multiple candidate tissues (or all known cell types) will
become standard in the field. Thus, in the midst of so much
uncertainty, it is essential that biological assays give repeatable
and reliable measures of these complex interactions. It must also
be stressed that functional annotations alone are clearly not com-
prehensive and that other, as yet unknown, chromatin-related
functions likely are to be considered in the future. The ultimate
goal would be to identify the true functional/causal SNP (or allele
with more than 1 SNP or even multiple causal alleles) at every
risk locus. Attainment of this goal may require development of
specific assays designed to measure the allelic affect on cancer
processes once the variant functionality vis-a-vis the epigenome
(or other) has been verified. The eventual utility from this will be
the compilation of more informative nomograms for risk assess-
ments and the identification of risk mechanisms.
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