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The retinoblastoma tumor suppressor (RB) was the first
identified tumor suppressor based on germline
predisposition to the pediatric eye tumor. Since these early
studies, it has become apparent that the functional
inactivation of RB is a common event in nearly all human
malignancy. A great deal of research has gone into
understanding how the loss of RB promotes tumor etiology
and progression. Since malignant tumors are characterized by
aberrant cell division, much of this research has focused upon
the ability of RB to regulate the cell cycle by repression of
proliferation-related genes. However, it is progressively
understood that RB is an important mediator of multiple
functions. One area that is gaining progressive interest is the
emerging role for RB in regulating diverse features of immune
function. These findings suggest that RB is more than simply
a regulator of cellular proliferation; it is at the crossroads of
proliferation and the immune response. Here we review the
data related to the functional roles of RB on the immune
system, relevance to immune evasion, and potential
significance to the response to immune-therapy.

Canonical Function for RB

Multiple studies have demonstrated that RB can associate
with numerous proteins across a disparate range of biological
functions. However, given that RB has no catalytic activity,
much of the attention has focused on how associations between
RB and critical transcription factors impact transcriptional activ-
ity. These studies have taken on a particular importance given
that RB is inactivated in a majority of human malignancies.1,2

Although RB is capable of acting as a transcriptional activator3,4

as well as a repressor, the tumor suppressive functions of RB have
generally been attributed to its ability to repress transcription or
otherwise modulate cell cycle progression. In this regard, the
interaction between RB and the E2F family of transcription fac-
tors serves as the prototypical example of RB function. The genes

involved in DNA replication, DNA repair, and G2/M progres-
sion are largely modulated by the E2F/DP heterodimer.1 During
quiescence hypophosphorylated RB masks the transcriptional
activation domains of E2F/DP both directly through interaction
with these proteins as well as indirectly through the recruitment
of additional co-repressors. Mitogenic signals lead to the induc-
tion of CDK4/6 and CDK2 activities that promote the hyper-
phosphorylation of RB. This event limits RB binding to E2F
proteins and co-repressors, allowing for increased transcription of
genes responsible for cell cycle progression.1 Thus the role of RB
in cell cycle control is relatively well established. However, addi-
tional roles for RB exist in the regulation of immune system
development and the immune response.

Contribution to Immune Progenitor Fate
Determination

The most obvious way in which RB impacts immune function
is by acting as a critical regulator of transcriptional pathways at
multiple checkpoints during progenitor differentiation. Haema-
topoietic stem cells (HSC) are multipotent progenitor cells with
the capacity to differentiate into any of the haematopoietic line-
ages. The first decision in the process of HSC differentiation is
whether the cell will become a lymphoid-lineage cell or a mye-
loid-lineage cell (Fig. 1). One of the determinants at this check-
point in stem cell differentiation is the expression of the
transcription factor PU.1.5 PU.1 is a member of the ets family of
transcription factors that is highly expressed in early myeloid line-
age cells as well as specific mature myeloid populations. Thus,
increased PU.1 transcriptional activity in multipotential progeni-
tors directs these cells toward the myeloid lineage, whereas lower
PU.1 activity leads these cells toward the lymphoid lineage
(Fig. 1). PU.1 expression is still a factor in lineage determination
in lymphoid cells, where cells with low levels of PU.1 will ulti-
mately become B cells as opposed to T cells which do not seem
to rely on PU.1 expression beyond very early stages. During early
lineage commitment decisions, Id2, a member of the inhibitor of
DNA binding family, binds PU.1 and keeps transcriptional activ-
ity in check, but ultimately this balance is maintained by mito-
genic signals. In slowly proliferating cells, hypophosphorylated
RB competitively binds Id2, allowing transcription of PU.1
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target genes and commitment to the myeloid lineage, whereas in
more rapidly dividing cells, hyperphosphorylated RB is unable to
bind Id2, resulting in commitment to the lymphoid lineage.6

After the initial commitment to the myeloid lineage, RB
remains an important factor in determining the ultimate fate of
cells (Fig. 1). High expression of the transcription factor GATA-
1 is required for maturation of common myeloid progenitors
(CMPs) into megakaryocytes or erythroid cells and this is
opposed by PU.1, leading to further myeloid differentiation. In
either case RB is involved in the process as GATA-1 binding to a
RB-E2F2 is required for erythropoiesis,7 but cooperation
between RB and PU.1 acts to repress GATA-1 expression, block-
ing erythroid differentiation.8 In addition to PU.1, further matu-
ration of myeloid cells into macrophages or granulocytes, and the
proper expression of key immunoregulatory receptors and genes
in these cells, also relies on the C/EBP family transcription fac-
tors as well as Sp1. The transcriptional activity of the C/EBP
family is activated through complexes with RB and, similar to
PU.1, RB acts as a transcriptional activator for Sp1 by releasing
the factor from its inhibitor, MDM2.9,10 Thus, RB manages to
play a critical role in the development of lymphoid, myeloid, and
erythroid lineage cells at multiple points and these lineage deci-
sions have obvious ramifications for immune function (Fig. 1).

Given the numerous roles RB plays in myeloid cell develop-
ment, it stands to reason that alterations in the RB family may
play a role in myeloid-derived cancers. Indeed, a significant num-
ber of patients with acute myeloid leukemia (AML) have either
truncated RB or a total loss of RB at the protein level.11

Similarly, RB-family deficiency has myeloproliferative effects in
mouse models and inhibition of the RB-suppressor CDK4/6
impedes proliferation in vitro and increases survival in an in vivo
model of Flt3-associated AML.12,13 On the other hand, it seems
reasonable that loss or RB in early haematopoietic progenitors
may also skew these developing cells toward the lymphocytic
lineage. This possibility seems to be supported by findings in
low-hypodiploid acute lymphoblastic leukemia, where more than
40% of cases have alteration in RB.14

Functional Implications of RB Loss on Immune
Responsiveness and Evasion

Loss of RB impacts the development of maturing leukocytes.
However, this is not particularly representative of the events sur-
rounding malignancy, where RB is functionally inactivated
within the tumor but is still expressed in surrounding cell types.
In this context, RB loss appears to have dual functions one of
which is to influence the action of myeloid suppressor cells and
influence the overall immunogenicity of the tumor.

One of the crucial functions of the immune system is detect-
ing cellular abnormalities and clearing the aberrant cells before
malignancy can develop. Thus, tumors that arise despite the nor-
mal immune response are likely to be the result of some form of
immune evasion or localized immune suppression.15 To this
end, while inflammatory monocytes mature into macrophages
under normal circumstances, as regulated by interactions between

Figure 1. RB is a critical regulator of haematopoietic differentiation and immune cell development. Haematopoietic lineage fate is determined by the
activity of a handful of transcription factors including PU.1, GATA-1, SP1, and the C/EBP family. RB influences the transcriptional activity of all of these fac-
tors through various interactions. Beginning at the earliest stages of haematopoietic development, (A) RB hypophosphorylation allows RB to competi-
tively bind Id2, allowing for increased transcription of PU.1 target genes that favor myeloid differentiation over lymphoid differentiation. RB plays an
important role in determining common myeloid progenitor (CMP) fate as well. (B) While RB and E2F2 promote GATA1-mediated transcription, RB also
cooperates with PU.1 to repress the GATA1 program and further enhances PU.1 driven gene expression by enhancing PU.1-promoting C/EBP family
members. In myeloid lineage cells, (C) RB contributes to myeloid cell differentiation and activation by binding MDM2, enhancing the transcriptional avail-
ability of Sp1. Meanwhile, epigenetic silencing of RB by HDAC2 skews myeloid derived suppressor cell populations toward PMN-MDSCs, which are pre-
dominantly expressed in cancer.
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RB/PU.1/C/EBPs and other factors (Fig. 1), myelopoiesis is
skewed in cancer resulting in the increased presence of immature,
activated myeloid cells known as myeloid-derived suppressor cells
(MDSCs).5,9,10,16 Expansion of these cells results in the negative
regulation of immune processes including the suppression of
much of the T cell response and the production of cytokines and
chemokines responsible for increased rates of angiogenesis and
metastasis.17,18 As opposed to cells undergoing physiologic mye-
lopoiesis, MDSCs in mice have been shown to not upregulate
RB expression after entering the periphery from the bone mar-
row.19 As a result, these cells express less RB than equivalent
monocyte populations and restoration of RB expression in these
cells leads to increases in traditional myeloid populations at the
expense of MDSCs. This alternative pathway of myeloid devel-
opment is enforced by histone deacetylase-mediated silencing of
RB in the presence of tumors (Fig. 1).19

Studies with genetic deletion of RB have demonstrated the
suppression of a broad range of genes associated with the
immune response; including surface receptors, complement, lym-
phocyte factors, and cytokines.20,21 Interestingly, this response
appears to be highly evolutionarily conserved, wherein even in
Drosophila models there is evidence for the suppression of genes
associated with immune function in concert with RB loss.22 The
complex nature of the immune system makes it difficult to infer
specifically how these alterations will affect immune recognition
of resultant tumors. However, several key elements of RB loss
impact Major Histocompatibility Complex (MHC), Interferon
gamma response, and IL-6 signaling.

When activated, immune cells secrete cytokines that act as
cell autonomous signaling mediators. These signals are gener-
ally considered to be either type 1, which stimulate cellular
immune responses (e.g. IFNg, TNFa) or type 2, which stim-
ulate antibody responses (e.g., TGFb, IL-6, IL-10) and
proper immune function relies on the production, secretion,
and recognition of these mediators to aid in recognition,
uptake, presentation, and killing of pathogens and deleterious
cells, such as those that would develop into tumors.23-25 RB
inhibits IL-6 gene expression and, conversely, IL-6 expression
in multiple myeloma inhibits RB, leading to increased prolif-
eration.26,27 Similarly, in the context of RB-deficient acute
myeloid leukemia, IL-6 mediates unchecked myeloid blast
proliferation in an autocrine fashion.28 Meanwhile, in mouse
embryonic fibroblasts lacking RB, IFNg is unable to stimu-
late MHC class II expression and this function is restored
upon the addition of RB.29 This is similar to the effect of
RB loss in human tumor cell lines where it was found that
RB-deficiency increases the stability of an Oct-1 containing
repressosome on the HLA-DRA promoter.30-38 The fact that
this relationship could be manipulated by small molecule
inhibition of RB suggests that this is an important gene regu-
latory network underlying tumor immunity and, presumably,
the cell cycle.39,40 Taken together, RB functions to limit type
1 cytokine signaling (IL-6) while also serving as a critical
mediator of type 2 cytokine signaling (IFNg/ and MHC class
II-mediated antigen presentation.

Anti-Viral Response—Is RB a Target for Immune
Evasion by Oncogenic Viruses?

It has long been appreciated that RB protein is a target of vari-
ous viral oncoproteins including human papilloma virus protein
E7, SV40 large T antigen, and components of hepatitis B virus
and hepatitis C virus.41-45 That multiple viruses target RB sug-
gests that RB is playing an important role in reducing the ability
of these viruses to replicate efficiently. While this has previously
been attributed to the loss of RB yielding enhanced capacity for
DNA replication, and thus disseminating viral products more
rapidly, there is mounting evidence to suggest that RB is also a
key regulator of the anti-viral immune response (Fig. 2).

The innate immune system is designed to respond rapidly
once specific molecular patterns are detected.46 One example of
this is the expression of toll-like receptors (TLRs) on antigen pre-
senting cells. Each TLR has a defined ligand that corresponds to
a particular pathogen (e.g. LPS-TLR4, ssRNA-TLR7, dsRNA-
TLR3). Once a pathogenic ligand engages its cognate TLR, a
series of signaling pathways are activated including those related
to type I IFNs as well as NF-kB.46 Thus, proper regulation of
TLRs and their signaling pathways are crucial to recognition and
clearance of pathogens and aberrant-self cells.47 Examination of
RB-deficient MEFs or cells transduced with RB-specific shRNA
revealed that RB was necessary for TLR3 expression and efficient
downstream signaling, including cytokine production. Mean-
while, antithetical to its typical role as a transactivator, E2F1
downregulated TLR3 expression in epithelial cells by binding to
the TLR3 promoter and repressing transcription. This inhibition
was initially independent of RB, but treatment with the TLR3-
ligand poly(I:C) stimulated RB expression, leading to increased
levels of TLR3 as a result of RB-mediated sequestration of E2F1
away from the TLR3 promoter. This positive feedback loop cre-
ated by poly(I:C) and RB demonstrates the importance of RB as
a regulator of immune signaling.48

Initial recognition of viral motifs leads to increased type I
IFN production through pathways mediated by interferon reg-
ulatory transcription factors (IRFs) and NF-kB. Subsequent
binding of type I IFN to its receptor results in the expression
of numerous immune function genes in anti-viral gene net-
works. Thus, IRF/NF-kB-mediated signaling provides the first
line of defense against infection by viruses. In RB-deficient
cells, viral production is greater than in RB-sufficient cells,
suggesting that RB serves to limit viral infectivity. This
enhanced rate of viral infection is associated with decreased
activation of NF-kB and reintroduction of RB results in mea-
surable IkB degradation, allowing for the restoration of some
NF-kB activity.49 These data suggest that RB acts as a mod-
ulator of IkB stability and is required for NF-kB activity.
Although loss of RB does not impact IRF3 expression, IRF5 is
decreased in RB-deficient cells, suggesting that RB plays other
roles in the IFN response aside from NF-kB.21,49 Given that
type I IFNs and NF-kB have numerous transcriptional targets,
this implies a mechanism by which RB may greatly impact
expression of numerous immune-related genes (Fig. 2).
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Polyoma viruses have long been recognized as having oncogenic
potential at least in part because the polyoma large T antigen (T Ag)
is capable of driving DNA synthesis and inhibiting cell cycle sup-
pressors (including the RB family).50-52 Additionally, T Ag can neg-
atively impact the host immune response. As has previously been
discussed, viral immunity relies on a robust IFN response stimulated
by the recognition of viral components.Merkel cell polyoma virus T
Ag promotes immune evasion via the downregulation of TLR9
expression, the receptor that mediates immune responsiveness to
unmethylated CpG DNA dinucleotides.53 Similarly, infection with
murine polyoma virus elicits an inefficient immune response charac-
terized by resistance to IFNb and ultimately results in the develop-
ment of tumors in the host. While wild-type virus is able to limit the
activation of the STAT1/STAT2/IRF9 complex (ISGF3), a mutant
virus lacking RB-binding capacity is incapable of mediating the
same response (Fig. 2). This is a function of the RB-binding defi-
cient virus being unable to bind and inhibit the STAT`1-activating
tyrosine kinase JAK1.54 Although the connection between T Ag,
RB, and JAK1 remains poorly understood, this report demonstrates
an immunoregulatory role for the T Ag-RB complex that would
seemingly complement the proliferative impact of this association in
promoting viral replication.

Although type I IFN plays an immediate role in establishing
the anti-viral host response, this initial response can also result in
the production of IFNg.55 IFNg production can lead to the che-
moattraction of numerous immune cells through the production
of CXCL10 in addition to inducing increased antigen presenta-
tion on macrophages.56 Limiting these responses is vital to the
ability of viruses to evade the immune response. Given that RB
plays a role in antigen presentation in response to IFNg stimula-
tion, it is not surprising that RB acts as a viral target in dampen-
ing the IFNg response. Following IFNg binding, STAT1 is
phosphorylated and translocates to the nucleus where it binds
interferon gamma activated sequence (GAS) domain, resulting in
increased transcription of genes such as IRF1. Upon further acti-
vation of IRF1, numerous genes are transcribed including several
genes associated with antigen presentation (e.g., HLA, TAP1),
chemokines (e.g. CCL5), and IFNb.57 To counteract this pro-
cess, the human papilloma virus (HPV) oncoprotein E7 transre-
presses IRF-1 targets by recruiting HDAC (Fig. 2).58 HPV-E7 is
strongly associated with the shift from latency to cellular transfor-
mation in HPV, largely due to its affinity for host RB and the
resultant increase in cellular proliferation caused by HPV-E7-
mediated RB-loss. Although E7 binds HDAC independently of

Figure 2. Anti-viral immunity requires RB. Recognition of viral motifs by mediators of the innate immune response triggers an anti-viral immune
response through a variety of signaling pathways. Expression of NF-kB and IFN-mediated gene targets require RB to elicit an efficient immune response.
Various viral products including E1A, E7, and Large T antigen disrupt these essential processes through their interactions with RB.
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RB, the RB-binding domain is necessary for the repression, sug-
gesting that RB plays a role in this process.58 HPV-E7 has been
shown to interfere with this pathway by blocking STAT1 activa-
tion as well, although RB was neither implicated nor excluded in
this association.59

Following the initial interferon responses to viral infec-
tion, other mediators, including tumor necrosis factor a
(TNFa/, provide critical support to the immune response in
its efforts to eliminate viruses. There are 2 distinct outcomes
following the recognition of TNFa by its receptor. One
results in caspase-mediated apoptosis while the other pro-
motes NF-kB activation resulting in increased expression of
pro-inflammatory and anti-apoptotic proteins. Adenoviral
infection leads to the suppression of the pro-inflammatory
TNFa pathway, presumably to protect against the initiation
of host immunity that would threaten viral survival and
propagation even at the cost of promoting cellular death by
apoptosis. To this end, it has been determined that this
skewing toward TNFa-induced cellular damage and apopto-
sis is dependent on the formation of a complex between the
adenoviral E1A protein, RB, and p300 that directly disrupts
NF-kB activation at late stages in the nucleus (Fig. 2).60,61

Given the functional and structural similarities with E1A, it
is worth noting that E7 plays a similar role in NF-kB inhi-
bition but does not form a ternary structure with RB and
p300 and thus there is currently no evidence that RB plays
a role in this association.61

These roles in regulating the innate immune response to
viral infection have important implications in light of the
paradigmatic role of RB in cell cycle regulation. Prolonged
tumor progression depends on multiple factors including
aberrantly increased cellular proliferation and the ability to
evade immune recognition. Given that these ends coincide
with the viral imperative to replicate, it is of little surprise
that some viral infections ultimately result in the rise of
malignancies. Indeed, it was recently shown that the pattern
of decreased immune gene expression demonstrated by acute
RB-loss is similar to that found in patients with advanced
hepatocellular carcinoma (HCC), a disease characterized by
both RB-silencing and decreased immune responsiveness at
later stages. This gene signature also was associated with
poor prognosis, suggesting a potential therapeutic approach
for a subset of patients with advanced HCC.21

Impact on Immunotherapies

Given the important role for RB in limiting proliferation
and the prevalence of RB disruption in malignancies, it is
not surprising that RB has been an attractive target for can-
cer therapies. 62 As additional roles for RB in the immune
response are reported, it is similarly tempting to consider
how RB modulation may impact cancer immunotherapies.

Recent reports offer some evidence that RB contributes in
immunotherapy efficacy. Since a number of cancers result
primarily from viral infections, vaccination against these
viruses is perhaps the most basic form of immunotherapy.
Cervical cancer, where HPV accounts for virtually all cases,
is a prime example of where vaccination can reduce cancer
incidence.63 Continued development of more effective vac-
cines has led to the usage of DNA-based vaccines. While
these have advantages over typical protein-based vaccine
approaches, they tend to be less immunogenic than tradi-
tional vaccines and they also run the risk of inserting viral
DNA into the host genome and, in the case of RB-associat-
ing viruses like HPV, causing unchecked proliferation. To
avoid this, a DNA vaccine for HPV was designed in which
the E7 protein was altered to abrogate RB binding. Not
only was this vaccine stable but it was also more immuno-
genic than a DNA virus produced from full E7, directly
implicating RB in the immunogenic response against
HPV.64

Baccilus Calmette-Gu�erin (BCG) therapy was initially
designed as a vaccine against tuberculosis. More recently, BCG
has become a promising immunotherapy adjuvant in several
malignancies including melanoma, colorectal cancer, and cervical
cancer. Usage of BCG is particularly prevalent in superficial blad-
der cancer where instillation of BCG after tumor resection has
become a first-line treatment. While the exact mechanism by
which BCG triggers an immune response against bladder tumors
remains unclear, RB expression predicts response to BCG.65,66

Although these data certainly include the effects of RB alteration
on proliferation, given that RB-underexpression specifically pre-
dicts BCG nonresponse when BCG is given in concert with
IFNa, these reports provide evidence that RB is playing a role in
the immunological response mediated by BCG instillation.65

These reports suggest that tumors deficient in RB could repre-
sent a particular challenge for immune-therapies. Perhaps the
most well known such therapies involve immune checkpoint
blockade as a result of inhibiting the function of CTLA-4 or PD-
L1.67 While expression of PD-L1 in tumor cells or tumor-associ-
ated stroma directly inhibits the cytotoxic function of CD8C T
cells by blocking co-receptor binding, CTLA-4 expression on T
cells reduces the capacity of antigen presenting cells to stimulate
antigen-specific responses in other T cells.68 Although these 2
immune checkpoints have differing mechanisms, blockade of
either checkpoint is intended to jumpstart an anti-tumor
immune response through the restoration of T cell function. In
this regard, proper function of either immune checkpoint block-
ade relies on TCR-MHC interaction. Similarly, a number of
MHC class II-based tumor vaccines have demonstrated some effi-
cacy in various solid tumor models based on their ability to initi-
ate a tumor-specific CD4C T cell response.69-72 Given that RB
is required for proper MHC expression, checkpoint blockade or
other MHC class II dependent immunotherapies may be less
effective in RB-deficient tumors as a result of a potentially inade-
quate T cell response.21,29-39,59 Further study in the context of
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ongoing clinical studies would be necessary to fully understand
how RB loss impacts checkpoint inhibitors and other immune-
based therapies.

Summary

The retinoblastoma tumor suppressor has been extensively
studied, yet we still do not fully appreciate the diverse roles
it plays in maintaining homeostasis by regulating prolifera-
tion, apoptosis, immunity, and development (Fig. 3).
Although RB has been associated with the immune response
for many years now, the role of RB in immunity has
expanded significantly over the last few years to suggest that
RB is an important mediator of innate immunity and that at
least some of this functionality may be separate from the role
of RB in regulating proliferation. Taken in concert, RB
appears to be positioned at a key crossroad between prolifera-
tion and immunity and this can potentially be exploited in
future cancer immunotherapies to improve therapeutic effi-
cacy. Given that RB function is lost or inactivated in a
majority of all human malignancies, further study is war-
ranted to explore whether the molecular interactions that
mediate the cell cycle functionality of RB and those that
mediate the immune functionality of RB overlap or if it is
possible to target individual aspects of RB.
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