

HHS Public Access

Author manuscript *J Med Ethics*. Author manuscript; available in PMC 2016 April 08.

Published in final edited form as:

J Med Ethics. 2012 June ; 38(6): 356–365. doi:10.1136/medethics-2011-100178.

The quality of informed consent: mapping the landscape. A review of empirical data from developing and developed countries

Amulya Mandava¹, Christine Pace², Benjamin Campbell³, Ezekiel Emanuel¹, and Christine Grady¹

¹Department of Bioethics, National Institutes of Health, Bethesda, Maryland, USA

²Section of General Internal Medicine, Boston University School of Medicine, Boston, Massachusetts, USA

³Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, USA

Abstract

Objective—Some researchers claim that the quality of informed consent of clinical research participants in developing countries is worse than in developed countries. To evaluate this assumption, we reviewed the available data on the quality of consent in both settings.

Methods—We conducted a comprehensive PubMed search, examined bibliographies and literature reviews, and consulted with international experts on informed consent in order to identify studies published from 1966 to 2010 that used quantitative methods, surveyed participants or parents of paediatric participants in actual trials, assessed comprehension and/or voluntariness, and did not involve testing particular consent interventions. Forty-seven studies met these criteria. We compared data about participant comprehension and voluntariness. The paucity of data and variation in study methodology limit comparison and preclude statistical aggregation of the data.

Results and Discussion—This review shows that the assertion that informed consent is worse in developing countries than in developed countries is a simplification of a complex picture. Despite the limitations of comparison, the data suggest that: (1) comprehension of study information varies among participants in both developed and developing countries, and comprehension of randomisation and placebo controlled designs is poorer than comprehension of other aspects of trials in both settings; and (2) participants in developing countries appear to be less likely than those in developed countries to say they can refuse participation in or withdraw from a trial, and are more likely to worry about the consequences of refusal or withdrawal.

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

Correspondence to: Dr Christine Grady, Department of Bioethics, National Institutes of Health, Bethesda, MD 20892, USA; cgrady@cc.nih.gov.

Contributors AM, CP and BC were responsible for acquisition of data, analysis and interpretation of data, drafting of the manuscript and critical revisions of the manuscript. EE was responsible for the original conception and design of the study and critical revisions of the manuscript. CG was responsible for conception, design and implementation of the study, acquisition of data, analysis and interpretation of data, critical revisions of the manuscript, supervision and final approval.

Introduction

Many prospective research participants in developing countries have little formal education, lack familiarity with biomedical research and consent procedures, and have limited access to healthcare services. Consequently, it is widely believed that they have more difficulty comprehending study information and providing voluntary consent than do their counterparts in developed countries.^{1–11} Such views are echoed in ethics guidelines such as those of the Council for International Organizations of Medical Sciences (CIOMS),¹² in a report by the National Bioethics Advisory Commission,¹³ and in the popular press. For instance, a front-page New York Times article framed the problems with comprehension in a trial in the Ivory Coast as a matter of an impenetrable wall between scientific complexity and the ability of locals to understand it—one participant was described as "still not grasp [ing]—even after repeated questioning—what a placebo is or why she might have been given that instead of a real medicine".¹⁴

But what do we know about the quality of informed consent in developing country research? Does available evidence demonstrate that the quality of informed consent from developing country participants is worse than the quality of informed consent from participants in developed nations?

To begin addressing these questions, we reviewed and compared available data on the quality of informed consent from research in both developing and developed countries. We identify similarities and differences between studies of consent in developed and developing countries, highlight gaps in the available data, and make recommendations for future research on the quality of informed consent.

Methods: search strategy and selection criteria

We conducted a comprehensive PubMed search using the Medical Subject Headings (MeSH) terms *informed consent, comprehension* and *decision making* in combination with *clinical trials* or *randomized controlled trials* (box 1). In addition, we examined bibliographies,¹⁵ literature reviews¹⁶¹⁷ and reference lists from relevant papers, and consulted with international experts on informed consent to clinical research.

We included studies that met four criteria: (1) used quantitative methods to study informed consent (to allow for comparison of relatively similar data sets); (2) surveyed participants or paediatric participants' parents in actual clinical trials rather than hypothetical scenarios (as we are concerned with what participants understand and how they make decisions in real trials); (3) did not test informed consent interventions aimed at improving its quality (to avoid confounding results); and (4) assessed at least one of two domains critical to measuring the quality of informed consent: comprehension of study information and voluntariness of consent. While some published data on disclosure exist, there are little to no comparable data from non-intervention utilising trials that evaluate understanding and comprehension relative to the quality of disclosure. A total of 427 studies were identified through the PubMed search (figure 1) and 79 from bibliographies, literature reviews, reference lists and consultations with experts. Of those 506 studies, 47 met all four criteria: 18 studies evaluated the quality of informed consent in trials in developing countries and 32

studies evaluated the quality of informed consent in trials in developed countries¹ (tables 1 and 2). Identified studies were reviewed by the authors and information extracted regarding the type and location of the clinical trial, the sample size, and the method and timing of assessing informed consent. Data about participants' comprehension of trial information and voluntariness were extracted, including understanding of the purpose and nature of the research, the risks and side effects, and randomisation and placebo controlled design (tables 3–5), as well as perceived pressure and participant knowledge of the right to refuse to enrol or withdraw from a trial (table 6). Direct comparison or meta-analysis of study data was not feasible, as the relevant studies did not employ a uniform methodology or study design.

Results

Study characteristics

Eighteen studies conducted in 11 different developing countries examined the consent of participants in clinical research on vaccines, nutritional supplements, HIV treatments, immune correlates in children, diarrhoeal disease in children, anti-malarial drugs and genetics (table 1). Sample sizes ranged from 33 to 700 research participants. Seven studies interviewed a parent of a participating child,¹⁸²¹²²²⁴²⁶²⁹³³ and of those seven, three interviewed only the mothers.²²²⁴³³ Thirteen studies^{19–212326–3335} used structured or semi-structured interviews, while five used questionnaires.¹⁸²²²⁴²⁵³⁴ In nine studies, participants were interviewed close to the time of consent^{18232426282933–35} and in eight others interviews were conducted 1–14 months or longer after the participant gave consent.^{19–2225273031} In one study, the timing was not specified.³²

Thirty-one studies, conducted in eight developed countries, examined the consent of participants involved in oncology, cardiology, gynaecology, HIV, analgesics/anaesthesia, neurological, antidepressant, antipsychotic, emergency management, arthritis, paediatric asthma, paediatric febrile convulsion, diabetes, malaria and genetics research (table 2). Sample sizes ranged from 21 to 570 research participants. Six studies surveyed the parents of children in paediatric trials.⁴⁰⁴²⁴⁵⁴⁸⁵⁴⁵⁷ Sixteen studies used structured interviews, ^{193839424547485054575860–64} nine used mailed surveys, ^{374143464951–5359} and six used questionnaires.¹⁸³⁶⁴⁰⁴⁴⁵⁵⁵⁶ In eight studies, questions were asked close in time to when consent was given, in each case within 48 h of consent¹⁸³⁹⁴⁰⁴²⁴⁸⁵⁵⁶⁰⁶⁴; the remaining 23 studies surveyed participants weeks to months after consent.^{1936–384143–4749–5456–5961–63}

Comprehension and recall of trial information

Participant understanding of research purpose, risks/side effects and design varied substantially across informed consent studies from both developing and developed countries. Across studies, comprehension of trial purpose or nature appeared to be better than comprehension of trial design and randomisation.

Trial purpose and nature—Available data show no substantial difference between participants in developing countries and those in developed countries with respect to their

ⁱEllis¹⁸ and Marshall¹⁹ each studied informed consent in both a developed and a developing country.

understanding of trial purpose, defined as the goal of a given clinical trial (table 3). In the developed country studies that measured it, understanding of trial purpose ranged from 10% of US males who understood the purpose of a variety of trials they were participating in⁶² to 100% of Canadian participants who understood the purpose of a neurooncology trial.⁴⁵ Understanding of trial purpose in developing country studies also varied, ranging from 26% of Malian parents who understood the purpose of a malaria trial for their children²⁶ to 90% of mothers with children in a paediatric influenza trial in The Gambia.³³ Similarly, reported understanding of trial nature, assessed by participants' understanding that they were participating in research and of the investigational and experimental nature of research interventions, varied from 31% of participants in a US phase 1 oncology trial⁵⁰ to almost 100% of participants in both a Swedish and a Finnish trial,⁵¹⁵⁹ and from 47% of women in a Bangladeshi nutritional trial for iron supplements³² to 100% of women in an HIV trial in Côte d'Ivoire.³⁰

Risks/side effects—The percentage of participants who could recognise or name trial side effects and risks also ranged widely among the studies reviewed (table 4). Reported understanding of side effects varied depending on how the questions were framed—more participants were able to recognise side effects from a list than were able to name or explain them in response to open-ended questions. For example, 86% of participants in a US analgesic trial recognised at least one side effect from a list, but only 48% were able to name at least one without the help of a list.⁵⁸ In a US rheumatoid arthritis trial, 30% responded that they knew the trial drugs were not completely safe, but were not asked to recognise or name the specific risks of the drugs.⁴⁴

In consent studies of developing country trials, 79% of participants in a South African vaccine trial knew the risks involved²² and 97% of Thai participants recognised possible side effects of an experimental HIV vaccine,³⁵ yet only 7% of Malian parents recognised that the investigational vaccine being given to their child might have side effects.²⁶

Randomisation and placebo trial design—Understanding of randomisation also varied among participants in both developing and developed country trials, but across all studies, understanding of randomisation was low compared to understanding of other aspects of a trial (table 5). In developed country studies, understanding of randomisation appeared to vary according to how close to actual consent it was measured. For example, 68% of parents understood randomisation when asked within 48 h of consent in US paediatric oncology trials,⁴⁸ and as many as 79% understood randomisation in an HIV vaccine trial when assessed immediately after disclosure.⁵⁵ Yet fewer than half of the participants were reported to comprehend randomisation in six developed country studies in which understanding was assessed months or years after consent.⁴⁴⁴⁶⁴⁷⁵¹⁵³⁶³

Five developing country studies measured understanding of randomisation (table 5); four of those five measured it within 1 week of consent.¹⁸²⁰²⁶²⁸²⁹ Comprehension of randomisation ranged from as high as 90% of parents whose children were enrolled in a malaria vaccine trial in Mali¹⁸ to as low as 19% of parents whose children were enrolled in a malaria treatment trial in Uganda.²⁹

Between 64% and 88% of participants understood the study design in six developed country trials,⁴¹⁴⁴⁴⁶⁵³⁶³⁶⁴ yet only 39% of the participants in a set of Canadian trials recalled their own chance of receiving placebo, and 29% of them "thought that the doctor [had known] what kind of medication they were taking".⁴⁶ Knowledge of placebo was measured in three developing country studies: 10% of mothers enrolling children in a Gambian trial understood the placebo control design,³³ 13% of Ghanaian trial participants knew that not all trial capsules were the same,²³ and 49% of South African participants knew they had a 50% chance of receiving placebo.²⁷

Although measured infrequently, individuals' understanding of research design diverges from their understanding of how it specifically applies to them. In one Thai HIV treatment trial, 31% correctly responded that half the participants would get the investigational drug, yet 48% said they had a 50/50 chance of receiving it.²⁸ In a Ugandan malaria trial, 19% of parents knew that not all children would receive the same treatment, even though 84% recalled being told about treatment assignment.²⁹ Similarly, in a US rheumatoid arthritis trial, 87% of participants said that some people in the trial would get placebo, but only 50% thought they personally could receive placebo.⁴⁴

Voluntariness

Data on voluntariness is organised into two categories: (1) participants' perceptions of pressure (not reported in a table); and (2) participants' knowledge of the right to refuse or withdraw from participation (table 6).

Pressure—Questions assessing perceptions of pressure differed across informed consent studies—some focused on whether or not participants knew or felt that participation was voluntary, while others asked more specific questions about the source and amount of pressure felt by participants.

Most (90%–99%) participants in a US hypertension trial, a Canadian neuro-oncology trial and UK paediatric trials reported no pressure to participate¹⁹³⁸⁴⁰ or reported that participation was voluntary.⁵² At the same time, 31% of US oncology and cardiology trial participants said that they felt that they had little other choice than to participate,⁵⁴ 25% of parents in a Netherlands paediatric oncology trial indicated that they felt obliged to participate⁵³ and 18% of Danish participants in an acute myocardial infarction trial reported feeling 'under pressure', although 70% said the decision was 'fully theirs'.⁴¹

Five developing country informed consent studies measured general perceptions of pressure and voluntariness. Most mothers (95%) in a Ghanaian paediatric trial²¹ and most participants (99%) in a South African influenza vaccine trial²⁷ said participation was voluntary. Similarly, most parents in an Indian paediatric trial (98%) reported that they joined the study freely without any pressure or compulsion.²⁴ In contrast, in another South African trial, 84% of the evaluation group and 93% of the sensitisation group reported feeling that participation was compulsory.³⁴

In consent studies that distinguished sources of pressure, more trial participants reported feeling pressure from their disease or circumstances than from other people. Although 29%

of US phase I and phase II oncology trial participants said that their physician did not actively want them to make their own decision,⁶¹ only 14% in a Swedish gynaecology trial,⁵⁹ 7% in another US oncology trial⁶² and 6% in a set of varied US trials reported feeling pressure from a clinician.³⁹ In the same oncology study in which 7% reported pressure from a clinician and 9% from their families, a full 75% reported pressure due to their progressive cancer.³⁹ In another US paediatric oncology trial, 70% of the parents cited high levels of distress and 'feeling overwhelmed' during the consent process.⁴⁵ Few participants in developed country trials reported pressure from anticipated consequences of withdrawing: 98% of UK anaesthesia trials participants,⁵² 86% of Canadian neuro-oncology trial participants³⁸ and 85% of Danish cardiology trial participants⁴¹ knew that refusal to participate would *not* compromise their care.

In developing country studies, reported pressure from others was also generally low, ranging from 6% of participants reporting pressure from spouses, family or the research team in a Ugandan paediatric malaria treatment trial²⁹ to 26% reporting pressure from village elders in a Malian paediatric vaccine trial.²⁶ Reported pressure came from various sources, for example, from village elders (26%), the research team (12%) and a spouse (7%) in the aforementioned Malian study,²⁶ and from a close friend (15%), a family member (7%) or their doctor (2%) in an HIV treatment trial in Thailand.²⁸ Similarly, in a Ugandan paediatric trial, 15% of parents reported feeling pressure from others, including spouses (6%), family or friends (6%) or the research team (6%), but 58% reported pressure because of their child's illness.²⁹ However, in one Gambian trial, 9% of mothers offered spontaneously and 36% agreed when directly questioned that it would have been hard to refuse participation–some reported feeling group pressure after watching other mothers agree to participate.³³

Participants in developing countries reported pressure from fear of the consequences of withdrawing. Although in one South African trial, 88% said their usual care would not be affected if they refused,²⁷ 87% of participants in a Bangladeshi trial felt that the trial offered such advantages that they couldn't refuse.³² Similarly, 32% of the evaluation study group and 23% of the sensitisation group in a South African perinatal HIV transmission trial thought that care would be compromised if they did not participate,³⁴ and 44% of parents in a paediatric malaria vaccine trial in Mali said they would lose healthcare access if they withdrew.²⁶

Knew they could refuse or withdraw—The clearest differences between respondents in developed and developing country informed consent studies were related to knowledge of the right to refuse to participate in research or to withdraw (table 6). In 15 of 18 developed country studies that measured this, more than 75% of trial participants knew they could withdraw or refuse, ^{181936374043444952–5460–6264} and in 10 of these studies, 90% or more said they could withdraw from research. ¹⁸¹⁹³⁶³⁷⁴⁰⁴³⁴⁴⁴⁹⁵³⁶⁰ In one US paediatric oncology trial, 90% of the majority race English speaking parents, 78% of the minority race English speaking parents knew they had a right to withdraw their children from the trial.⁴⁸

In contrast, in five of 15 developing country studies that measured it, less than half of respondents knew they could withdraw from research.^{222630–32} As few as 10% of mothers in

Mali knew they could withdraw their child from a malaria vaccine trial at any time,²⁶ and 27% of participants in an HIV trial in Côte d'Ivoire knew they could withdraw at any time.³⁰ However, in some developing country trials a higher percentage of participants knew they could withdraw or refuse, for example 50% of parents in a paediatric diarrhoeal trial²¹ knew they could leave the trial at any time, >90% of adults and parents of children in a Malian malaria vaccine trial¹⁸ knew they could withdraw from the trial and 88% of Thai vaccine participants knew they could 'refuse to participate at any time'.³⁵ One study of a South African HIV trial¹⁷ reported that 93% of the women knew they had the right to quit, but 98% said they believed the hospital would not allow them to quit.³⁴

Discussion

This is the first comparison of quantitative studies of the quality of informed consent from individuals participating in clinical trials in both developed and developing countries. Our review shows that the assertion that research informed consent is worse in developing countries than in developed countries is an oversimplification of a complex picture of the quality of consent. The quality of informed consent depends on the type and amount of information disclosed, adequate comprehension of trial information, and a voluntary decision to enrol. The existing data, which use comprehension and voluntary decision-making as measures of the quality of consent, do not support a categorical difference between the quality of consent from individuals in developed countries.

A paucity of data, especially from participants from developing countries, as well as variations in trial type, study methodology, sample size, measures used and timing of data collection relative to obtaining consent, limits comparison and statistical aggregation. Nonetheless, these data suggest certain important trends and point to the need for further research.

Our review highlights the following: (1) comprehension of study information varies among trial participants in both developed and developing countries, and comprehension of randomisation and placebo controlled designs is generally lower than comprehension of other aspects of a trial; (2) research participants report different sources of pressure to enrol, and those in developing countries are less likely than those in developed countries to say they can refuse or withdraw from participation, and more likely to worry about the consequences of refusal or withdrawal.

Data show a range of understanding of trial information in both developed and developing country trials. Individuals across studies tended to know that they were involved in research and often responded correctly to questions about the nature and purpose of the research, yet participants everywhere had more difficulty understanding information about trial design, randomisation and placebo controls. Not only are these methods and concepts unfamiliar to many people, but such methods may be contrary to their expectations or hope for therapeutic benefit, making them more difficult to comprehend. Notably, some studies reveal discrepancies between participants' understanding of what will happen in a trial and how this information will affect them *directly*. Knowledge of facts and appreciation of those facts are

different aspects of understanding, both of which are important to *informed* consent.⁶⁵ This discrepancy is a challenge for informed consent everywhere, and although few studies attempted to measure it, the present data do not suggest a difference in appreciation between developed and developing country participants.

Second, the data on refusal and withdrawal indicate a troubling trend. Finding it difficult to refuse participation in or withdraw from a trial, feeling pressure to join or stay enrolled in a trial, or worrying about the consequences of withdrawing all relate to the voluntariness of an enrolment decision. Studies which used these measures of voluntariness show that a disquieting number of participants, and more in developing country trials than developed country trials, do not know or do not believe that they can refuse to participate or can withdraw from research. Few studies probed these responses further to explain why participants felt they could not refuse or withdraw. Possible explanations include deference to authority, cultural norms, or a founded or unfounded fear of not being able to access needed care.

Lastly, while investigations of the impact of pressure on voluntariness were limited, overall few research participants report feeling pressured to participate in research, and those that did often felt pressure from their circumstances–such as worsening illness or fear that care would be withdrawn—more than from other people. Participants in developing countries were more likely to report pressure from fear of the consequences of withdrawing, including decreased access to healthcare. These issues merit further study.

Recommendations for future research

These data reveal that there is much to be done to improve the quality of informed consent in both developed and developing countries and that additional research would facilitate definitive conclusions about the quality of informed consent around the world. Currently available evidence regarding the effectiveness of strategies to improve consent is limited.^{66–68} Variation in methodology, trial types and populations across studies reviewed raised challenges about how to accurately understand and measure the quality of informed consent. Design and implementation of improvement measures depends on careful attention to, and rigorous delineation of, what the quality of consent entails.

Studies of the quality of informed consent would be greatly enhanced by a core set of validated questions that measure the comprehension and voluntariness of participants at the time of decision-making, and by comparison of participants from similar medically defined groups participating in similar types of research. Studying the quality of consent in multi-national trials, such as was done in one multi-site hypertension study we reviewed,¹⁹ would allow for useful comparisons between developed and developing countries. Additionally, more detailed and comprehensive studies of voluntariness are needed, including investigation of sources of pressure to participate and fears about withdrawal or refusal. Future studies should include detailed investigation of associations between cultural norms and attitudes, and socio-demographic characteristics such as education, literacy and socioeconomic status to better understand the impact of these factors on informed consent in both developed and developing countries. Innovative strategies and rigorous studies are

sorely needed to facilitate improvement in informed consent to better satisfy one of the fundamental requirements of ethical research.

Acknowledgments

Funding This research was supported by the Department of Bioethics of the NIH Clinical Center.

References

- Angell M. Investigators' responsibilities for human participants in developing countries. N Engl J Med. 2000; 342:967–9. [PubMed: 10738056]
- 2. Annas GJ, Grodin MA. Human rights and maternal-fetal HIV transmission prevention trials in Africa. Am J Public Health. 1998; 88:560–3. [PubMed: 9550993]
- Christakis NA. The ethical design of an AIDS vaccine trial in Africa. Hastings Center Rep. 1988; 18:31–7.
- Gostin L. Ethical principles for the conduct of human subject research: population-based research and ethics. Law Med Health Care. 1991; 19:191–201. [PubMed: 1779686]
- LaFraniere S, Flaherty MP, Stephens J. The dilemma: submit or suffer. The Washington Post. 2000:A1. [PubMed: 15793931]
- 6. Levine C. Placebos and HIV: lessons learned. Hastings Center Rep. 1998; 28:43-8.
- 7. Resnick DB. The ethics of HIV research in developing nations. Bioethics. 1998; 12:286–306. [PubMed: 11657295]
- 8. Rothman DJ. The Shame of Medical Research. New York Rev Books. 2000; 47:60-4.
- White MT. Guidelines for IRB review of international collaborative medical research: a proposal. J Law Med Ethics. 1999; 27:87–94. [PubMed: 11657148]
- Krogstad DJ, Diop S, Diallo A, et al. Informed consent in international research: the Rationale for different approaches. Am J Trop Med Hyg. 2000; 83:743–7. [PubMed: 20889858]
- Lema VM, Mbondo M, Kamau EM. Informed consent for clinical trials: a review. East Afr Med J. 2009; 85:133–42. [PubMed: 19702101]
- Council for International Organizations of Medical Sciences (CIOMS). International Ethical Guidelines for Biomedical Research Involving Human Participants. Geneva: CIOMS; 1993.
- 13. National Bioethics Advisory Commission (NBAC). Ethical and Policy Issues in International Research: Clinical Trials in Developing Countries. Bethesda: NBAC; 2001.
- 14. French H. AIDS research in Africa: juggling risks and hopes. The New York Times. 1997:A1. [PubMed: 11647252]
- 15. Sugarman J, McCrory DC, Powell D, et al. Empirical research on informed consent: an annotated bibliography. Hastings Center Rep. 1999; 29:S1–42.
- Edwards SJ, Lilford RF, Thornton J, et al. Informed consent for clinical trials: in search of the "best" method. Soc Sci Med. 1998; 47:1825–40. [PubMed: 9877351]
- Verheggen FW, van Wijmen FC. Informed consent in clinical trials. Health Policy. 1996; 36:131– 53. [PubMed: 10158765]
- Ellis RD, Sagara I, Durbin A, et al. Comparing the understanding of subjects receiving a Candidate malaria vaccine in the United States and Mali. Am J Trop Med. 2010; 83:868–72.
- Marshall PA, Adebamowo CA, Adeyemo AA, et al. Voluntary participation and informed consent to international genetic research. Am J Public Health. 2006; 96:1989–95. [PubMed: 17018820]
- Vallely A, Lees S, Shagi C, et al. How informed is consent in vulnerable populations? Experience using a continuous consent process during the MDP301 vaginal microbicide trial in Mwanza, Tanzania. BMC Med Ethics. 2010; 11:10. http://www.biomedcentral.com/1472-6939/11/10. [PubMed: 20540803]
- Sarkar R, Grandin EW, Gladstone BP, et al. Comprehension and recall of informed consent among participating families in a Birth Cohort Study on diarrhoeal disease. Public Health Ethics. 2009; 2:37–44.

- 22. Oduro AR, Aborigo RA, Amugsi D, et al. Understanding and retention of the informed consent process among parents in rural northern Ghana. BMC Med Ethics. 2008; 9:12. http:// www.biomedcentral.com/1472-6939/9/12. [PubMed: 18565230]
- 23. Hill Z, Tawiah-Agyemang C, Odei-Danso S, et al. Informed consent in Ghana: what do participants really understand? J Med Ethics. 2008; 34:48–53. [PubMed: 18156522]
- 24. Minnies D, Hawkridge T, Hanekom W, et al. Evaluation of the quality of informed consent in a vaccine field trial in a developing country setting. BMC Med Ethics. 2008; 9:15. http://www.biomedcentral.com/1472-6939/9/15. [PubMed: 18826637]
- Kaewpoonsri N, Okanurak K, Kitayaporn D, et al. Factors related to volunteer comprehension of informed consent for a clinical trial. Southeast Asian J Trop Med Public Health. 2006; 37:996– 1004. [PubMed: 17333746]
- 26. Krosin MT, Klitzman R, Levin B, et al. Problems in comprehension of informed consent in rural and peri-urban Mali, West Africa. Clin Trials. 2006; 3:306–13. [PubMed: 16895047]
- 27. Moodley K, Pather M, Myer L. Informed consent and participant perceptions of influenza vaccine trials in South Africa. J Med Ethics. 2005; 3:727–32. [PubMed: 16319239]
- Pace C, Emanuel EJ, Chuenyam T, et al. The quality of informed consent in a clinical research study in Thailand. IRB. 2005; 27:9–17. [PubMed: 15835065]
- Pace C, Talisuna A, Wendler D, et al. Quality of parental consent in a Ugandan malaria study. Am J Public Health. 2005; 95:1184–9. [PubMed: 15933235]
- Ekouevi KD, Becquet R, Viho I, et al. Obtaining informed consent from HIV-infected pregnant women, Abidjan, Cote d'Ivoire. AIDS. 2004; 18:1486–8. [PubMed: 15199334]
- Joubert G, Steinberg H, van der Ryst E, et al. Consent for participation in the Bloemfontein vitamin A trial: how informed and voluntary? Am J Public Health. 2003; 93:582–4. [PubMed: 12660201]
- Lynöe N, Hyder Z, Chowdhury M, et al. Obtaining informed consent in Bangladesh. N Engl J Med. 2001; 344:460–1. [PubMed: 11221611]
- 33. Leach A, Hilton S, Greenwood BM, et al. An evaluation of the informed consent procedure used during a trial of a Haemophilus influenzae type B conjugate vaccine undertaken in The Gambia, West Africa. Soc Sci Med. 1999; 48:139–48. [PubMed: 10048773]
- 34. Karim QA, Karim SS, Coovadia HM, et al. Informed consent for HIV testing in a South African hospital: is it truly informed and truly voluntary? Am J Pub Health. 1998; 488:637–40.
- Pitisuttithum P, Migasena S, Laothai A, et al. Risk behaviours and comprehension among intravenous drug users volunteered for HIV vaccine trial. J Med Assoc Thai. 1997; 80:47–50. [PubMed: 9078816]
- 36. Ravina B, Swearingen C, Elm J, et al. Long term understanding of study information in research participants with Parkinson's disease. Parkinsonism Relat Disord. 2010; 16:60–3. [PubMed: 19501011]
- Bergenmar M, Molin C, Wilking N, et al. Knowledge and understanding among cancer patients consenting to participate in clinical trials. Eur J Cancer. 2008; 44:2627–33. [PubMed: 18818068]
- 38. Knifed E, Lipsman N, Mason W, et al. Patients' perception of the informed consent process for neurooncology clinical trials. Neuro Oncol. 2008; 10:348–54. [PubMed: 18388256]
- Agrawal M, Grady C, Fairclough DL, et al. Patients' decision-making process regarding participation in phase 1 oncology research. J Clin Oncol. 2006; 24:4479–84. [PubMed: 16983117]
- 40. Franck LS, Winter I, Oulton K. The quality of parental consent for research with children: a prospective repeated measure self-report survey. Int J Nurs Stud. 2007; 44:525–33. [PubMed: 16712850]
- Gammelgaard A, Mortensen OS, Rossel P. Patients' perceptions of informed consent in acute myocardial infarction research: a questionnaire based survey of the consent process in the DANAMI-2 trial. Heart. 2004; 90:1124–8. [PubMed: 15367504]
- 42. Kodish E, Eder M, Noll RB, et al. Communication of randomization in childhood leukemia trials. JAMA. 2004; 294:470–5. [PubMed: 14747504]
- Lynöe N, Näsström B, Sandlund M. Study of the quality of information given to patients participating in a clinical trial regarding chronic hemodialysis. Scand J Urol Nephrol. 2004; 38:517–20. [PubMed: 15841789]

- 44. Criscione LG, Sugarman J, Sanders L, et al. Informed consent in a clinical trial of a novel treatment for rheumatoid arthritis. Arthritis Rheum. 2003; 49:361–7. [PubMed: 12794792]
- 45. Kupst MJ, Patenaude AF, Walco GA, et al. Clinical trials in pediatric cancer: parental Perspectives on informed consent. J Pediatr Hematol Oncol. 2003; 25:787–90. [PubMed: 14528101]
- 46. Pope JE, Tingey DP, Arnold JMO, et al. Are subjects satisfied with the informed consent process? A survey of research participants. J Rheumatol. 2003; 30:815–24. [PubMed: 12672205]
- 47. Schats R, Brilstra EH, Rinkel GJ, et al. Informed consent in trials for neurological emergencies: the example of subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry. 2003; 74:988–91. [PubMed: 12810803]
- Simon C, Zyzanski SJ, Eder M, et al. Groups potentially at risk for making poorly informed decisions about entry into clinical trials for childhood cancer. J Clin Oncol. 2003; 21:2173–8. [PubMed: 12775743]
- Joffe S, Cook EF, Cleary PD, et al. Quality of informed consent in cancer clinical trials: a crosssectional survey. Lancet. 2001; 358:1772–7. [PubMed: 11734235]
- Daugherty CK, Banik DM, Janish L, et al. Quantitative analysis of ethical issues in phase I trials: a survey interview study of 144 advanced cancer patients. IRB. 2000; 22:6–14. [PubMed: 11697385]
- 51. Hietanen P, Aro AR, Holli K, et al. Information and communication in the context of a clinical trial. Eur J Cancer. 2000; 36:2096–104. [PubMed: 11044647]
- Montgomery JE, Sneyd JR. Consent to clinical trials in anaesthesia. Anaesthesia. 1998; 53:227–30. [PubMed: 9613266]
- 53. Van Stuijvenberg M, Suur MH, deVos, et al. Informed consent, parental awareness and reasons for participating in a randomized controlled study. Arch Dis Child. 1998; 79:120–5. [PubMed: 9797591]
- 54. Advisory Committee on Human Radiation Experiments (ACHRE). Final Report. New York: Oxford University Press; 1996.
- 55. Harrison K, Vlahov D, Jones K, et al. Medical eligibility, comprehension of the consent process, and retention of injection drug users recruited for an HIV trial. J Acquir Immune Defic Syndr Hum Retrovirol. 1995; 10:386–90. [PubMed: 7552502]
- 56. Harth SC, Thong YH. Parental perceptions and attitudes about informed consent in clinical research involving children. Soc Sci Med. 1995; 41:1647–51. [PubMed: 8746864]
- 57. Estey E, Wilkin G, Dossetor J. Are research participants able to retain the information they are given during the consent process. Health Law Rev. 1994; 3:37–41.
- Miller C, Searight HR, Grable D, et al. Comprehension and recall of the informational content of the informed consent document: an evaluation of 168 patients in a controlled clinical trial. J Clin Res Drug Dev. 1994; 8:237–48.
- 59. Lynöe N, Sandlund M, Dahlqvist G, et al. Informed consent: study of quality of information given to participants in a clinical trial. BMJ. 1991; 202:610–13. [PubMed: 1932901]
- 60. Benson PR, Roth LH, Winslade WJ. Informed consent in psychiatric research: preliminary findings from an ongoing investigation. Soc Sci Med. 1985; 20:1331–41. [PubMed: 2862705]
- 61. Penman DT, Holland JC, Bahna GF, et al. Informed consent for investigational chemotherapy: patients' and physicians' perceptions. J Clin Oncol. 1984; 2:849–55. [PubMed: 6737023]
- 62. Riecken HW, Ravich R. Informed consent to biomedical research in veterans administration hospitals. JAMA. 1982; 248:344–8. [PubMed: 7045434]
- Howard JM, DeMets D. The BHAT Research Group. How informed is informed consent? The BHAT experience. Control Clin Trials. 1981; 2:287–303. [PubMed: 6120794]
- 64. Bergler JH, Pennington AC, Metcalfe M, et al. Informed consent: how much does the patient understand? Clin Pharmacol Ther. 1980; 27:435–9. [PubMed: 6987027]
- 65. Berg, JW.; Appelbaum, PS.; Lidz, CW., et al. Informed Consent: Legal Theory and Clinical Practice. New York: Oxford University Press; 2001. p. 101-2.
- Flory J, Emanuel EJ. Interventions to improve research participants' understanding in informed consent for research. JAMA. 2006; 292:1593–601. [PubMed: 15467062]
- 67. Sanchez S, Salazar G, Tijero M, et al. Informed consent procedures: responsibilities of researchers in developing countries. Bioethics. 2001; 15:398–412. [PubMed: 12058766]

68. Benitez O, Devaux D, Dausset J. Audiovisual documentation of oral consent: a new method of informed consent for illiterate populations. Lancet. 2002; 359:1406–7. [PubMed: 11978341]

Box 1

MeSH terms strategy

(informed consent[mh] AND (Comprehension[mh] OR decision-making[mh])

AND (randomized controlled trials as topic[mh] OR clinical trial as topic[mh])

AND (Humans[Mesh] AND English[lang]))

J Med Ethics. Author manuscript; available in PMC 2016 April 08.

Author Manuscript

Figure 1.

PRISMA 2009 flow diagram (adapted from Moher D, Liberati A, Tetziaff J, *et al*, The PRISMA Group. Preferred reporting items for systemic reviews and meta analyses: the PRISMA statement. *PLoS Med* 2009;6: e1000097. For more information, visit http://www.prisma-statement.org). This figure is produced in colour in the online journal—please visit the website to view the colour figure.

Table 1

Developing country consent studies

Authors	Country	Sample	Type of clinical research	Method of evaluation
Ellis <i>et al</i> , 2010 ¹⁸	Mali	89 M and F	Malaria vaccine phase 1 trial	Questionnaire administered after IC document reviewed but before consent
Vallely <i>et al</i> , 2010 ²⁰	Tanzania	99 F	Placebo controlled trial of HIV vaginal microbicide	Interviews at 4, 24 and 52 weeks
Sarkar <i>et al</i> , 2009 ²¹	India	368 Parents	Birth cohort study of diarrhoeal disease	Structured interviews 3–7 months post- trial
Oduro <i>et al</i> , 2008 ²²	Ghana	270 Mothers	Paediatric trials evaluating immune correlates of protection against malaria	Questionnaire administered at end of study
Hill <i>et al</i> , 2008 ²³	Ghana	60 F	Vitamin A supplementation trial	Semi-structured interviews after consent
Minnies et al, 2008 ²⁴	South Africa	192 Mothers	Paediatric case–control trial of immune correlates against severe childhood TB	Self-administered questionnaire with staff help if necessary, within 1 h of consent
Kaewpoonsri <i>et al</i> , 2006 ²⁵	Thailand	84 M and F	Malaria drug trials	Interview at third follow-up visit
Marshall et al, 2006 ¹⁹	Nigeria	307 M and F	Genetic studies of hypertension	Interviews administered at variable times usually long after consent
Krosin <i>et al</i> , 2006 ²⁶	Mali	163 Parents	Paediatric malaria vaccine prevention trial	Questionnaire within 48 h after consent
Moodley et al, 2005 ²⁷	South Africa	334 M and F	Influenza vaccine trial	Interviews 4-12 months post-trial
Pace <i>et al</i> , 2005 ²⁸	Thailand	141 M and F	HIV study of IL-2 effectiveness	Interviewers administered survey immediately after consent
Pace et al, 2005 ²⁹	Uganda	347 Parents	Paediatric malaria treatment study	Interviews immediately after consent
Ekouevi <i>et al</i> , 2004 ³⁰	Côte d'Ivoire	55 F	HIV mother-to-child transmission prevention trial	Interviews a median of 136 days after consent
Joubert <i>et al</i> , 2003 ³¹	South Africa	92 F	Trial of vitamin A for prevention of mother-to-child HIV transmission	Interviews a median of 14 months after consent
Lynöe <i>et al</i> , 2001 ³²	Bangladesh	105 F	Nutritional trial of iron supplements for pregnant women	Interviews after consent
Leach <i>et al</i> , 1999 ³³	The Gambia	137 Mothers	Paediatric trial of <i>Haemophilus</i> <i>influenzae</i> type B conjugate vaccine	Interviews within a week of consent
Karim <i>et al</i> , 1998 ³⁴	South Africa	Evaluation study group: 56 F	Perinatal HIV transmission trial	Questionnaires administered before and after counselling and consent
		Sensitisation control group: 56 F [*]		
Pitisuttithum <i>et al</i> , 1997 ³⁵	Thailand	33 M and F	HIV vaccine trial with drug users	Questionnaire before signing consent

* To evaluate the informed consent obtained for the HIV testing that preceded induction into the perinatal transmission trial, researchers administered both pre- and post-counselling questionnaires to an evaluation study group (n=56). A sensitisation control group (n=56) received only post-counselling questionnaires, so as to measure the sensitising effect of the pre-counselling questionnaire given to the evaluation study group.

F, female; IC, informed consent; M, male.

Table 2

Developed country consent studies

Authors	Country	Sample	Type of clinical research	Method of evaluation
Ellis <i>et al</i> , 2010 ¹⁸	USA	171 M and F	Malaria vaccine phase I trial	Questionnaire administered after IC document reviewed but before consent
Ravina <i>et al</i> , 2010 ³⁶	USA	149 M and F	Phase II Parkinson's trial	Self-administered questionnaire at final clinical trial visit
Bergenmar <i>et al</i> , 2008 ³⁷	Sweden	282 M and F	Phase II and phase III oncology trials	Mail surveys sent within 3 days–2 weeks of consent
Knifed <i>et al</i> , 200838	Canada	21 M and F	Neuro-oncology trial	Interviews within 1 month of IC
Agrawal et al, 2006 ³⁹	USA	163 M and F	Phase I oncology trials	Interview immediately after consent
Franck <i>et al</i> , 2007 ⁴⁰	UK	109 Parents	25 Different paediatric studies	Questionnaire taken immediately after and 3 months after consent
Marshall et al, 2006 ¹⁹	USA	348 M and F	Genetic studies of hypertension	Interviews long and variably after consent
Gammelgaard <i>et al</i> , 2004 ⁴¹	Denmark	103 M and F	Acute myocardial infarction trials	Mail survey sent to participants in the study 3 weeks after IC
Kodish <i>et al</i> , 2004 ⁴²	USA	137 Parents	Paediatric leukaemia trial	Parent pairs interviewed within 48 h of consent
Lynöe <i>et al,</i> 2004 ⁴³	Sweden	44 M and F	Chronic haemodialysis trials	Mail survey about 1 week after disclosure of information
Criscione et al, 200344	USA	30 M and F	Rheumatoid arthritis trial	Questionnaire 1–4 weeks after consent
Kupst et al, 200345	USA	20 Parents	Paediatric oncology trials	Interviews 1 month after IC
Pope <i>et al</i> , 2003 ⁴⁶	Canada	190 M and F	Cardiology, ophthalmology and rheumatology trials	Mail survey 2–5 months after consent
Schats <i>et al</i> , 2003 ⁴⁷	The Netherlands	37 M and F	Subarachnoid haemorrhage emergency management trials	Interviews 7–31 months after IC (median of 20 months)
Simon <i>et al</i> , 2003 ⁴⁸	USA	Majority English speakers: 60 parents	Paediatric oncology trials	Parents interviewed 48 h after consent
		Minority English Speakers: 27 parents		
		Minority non- English speakers: 21 parents		
Joffe <i>et al</i> , 2001 ⁴⁹	USA	207 M and F	Oncology trials, phase I, II and III	Mail survey 1–2 weeks after consent
Daugherty <i>et al</i> , 2000^{50}	USA	144 M and F	Phase I oncology trials	Interviews within 1 week of first administration of investigational treatment
Hietanen et al, 2000 ⁵¹	Finland	261 F	Oncology trial of tamoxifen	Mail survey 5–17 months after consent
Montgomery <i>et al</i> , 1998 ⁵²	UK	158 M and F	3 In-house and 3 multi-centre anaesthesia trials	Mail survey up to 24 months after consent
Van Stuijvenberg <i>et al</i> , 1998 ⁵³	The Netherlands	181 Parents	Paediatric trial of ibuprofen for febrile convulsions	Mail survey up to 2–3 years after consent
ACHRE, 1996 ⁵⁴	USA	570 M and F	Oncology and cardiology trials	Brief interviews followed by in- depth interviews
Harrison et al, 1995 ⁵⁵	USA	71 M and F	HIV vaccine trial	Self-administered questionnaire after disclosure and before consent

Authors	Country	Sample	Type of clinical research	Method of evaluation
Harth et al, 199556	Australia	62 Parents	Paediatric trial of oral asthma drug	Self-administered questionnaire 6– 9 months after entered trial
Estey et al, 199457	Canada	29 M and F	Not specified	Interviews 1–6 weeks after consent
Miller et al, 199458	USA	168 M and F	Trial of analgesic drugs	Interviews 30–90 days after entered trial
Lynöe <i>et al</i> , 1991 ⁵⁹	Sweden	43 F	Gynaecology trial of antiphlogistic drugs for fallopian tube inflammation	Mail survey 18 months after study
Benson <i>et al</i> , 1985 ⁶⁰	USA	Depression study: 24 M and F	Antidepressant trial and antipsychotic trial	Interviews immediately following IC
		Schizophrenia study: 24 M		
Penman <i>et al</i> , 1984 ⁶¹	USA	144 M and F	Oncology trials, phase II and III	Interviews 1–3 weeks after consent
Riecken <i>et al</i> , 1982 ⁶²	USA	112 M *	50 Different trials	Interviews within 10 weeks of consent
Howard <i>et al</i> , 1981 ⁶³	USA	64 M and F	Cardiology trial of β-blockers (BHAT) for acute myocardial infarction	Interviews 2 weeks–15 months after consent
Bergler et al, 1980 ⁶⁴	USA	39 M	Hypertension trial of hydrochlorothiazide versus propranolol	Interviews and quizzes just after consent; repeated 3 months later

* The trial involved 156 participants, but only 112 indicated that they were aware that they were participating in a trial, and therefore only 112 were asked questions about voluntariness. ACHRE, Advisory Committee on Human Radiation Experiments; F, female; IC, informed consent; M, male.

)		4			
Developed country studies			Developing country studie	s	
Author	Country	Understood purpose	Author	Country	Understood purpose
Knifed et al, 2008 ³⁸	Canada	100%	Leach <i>et al</i> , 1999 ³³	The Gambia	%06
Ravina <i>et al</i> , 2010 ³⁶	USA	92.6%	Pace <i>et al</i> , 2005 ²⁸	Thailand	88%
Franck <i>et al</i> , 2007^{40}	UK	85%	Minnies et al, 2008 ²⁴	South Africa	80.6%
Howard <i>et al</i> , 1981 ⁶³	USA	80%	Pace <i>et al</i> , 2005 ²⁹	Uganda	80%
Miller <i>et al</i> , 1994 ⁵⁸	USA	73%	Kaewpoonsri et al, 2006 ²⁵	Thailand	50%
Van Stuijvenberg et al, 199853	The Netherlands	53%	Sarkar et al, 2009 ²¹	India	43%
Marshall <i>et al</i> , 2006 ¹⁹	USA	41%	Marshall <i>et al</i> , 2006 ¹⁹	Nigeria	39%
Benson <i>et al</i> , 1985 ⁶⁰	USA	37% each in depression and schizophrenia studies	Krosin <i>et al</i> , 2006 ²⁶	Mali	26%
Daugherty <i>et al</i> , 2000 ⁵⁰	NSA	31%	Joubert <i>et al</i> , 2003 ³¹	South Africa	28%, but 40% knew the substance being tested was vitamin A
Harth <i>et al</i> , 1995 ⁵⁶	Australia	13%			
Riecken et al, 1982 ⁶²	USA	10%			
Developed country studies			Developing country studie	s	
Author	Country	Understood nature	Author	Country	Understood nature
Knifed <i>et al</i> , 2008 ³⁸	Canada	100%	Ekouevi <i>et al</i> , 2004 ³⁰	Côte d'Ivoire	95% e100%
Criscione et al, 2003 ⁴⁴	USA	100%	Moodley <i>et al</i> , 2005 ²⁷	South Africa	95%
Hietanen <i>et al</i> , 2000 ⁵¹	Finland	100%	Minnies et al, 2008 ²⁴	South Africa	85.4% knew was research; 36.7% knew there were no immediate benefits
Lynöe <i>et al</i> , 1991 ⁵⁹	Sweden	98%	Vallely <i>et al</i> , 2010 ²⁰	Tanzania	77% knew gel may not prevent HIV
Howard <i>et al</i> , 1981 ⁶³	NSA	92%	Hill <i>et al</i> , 2008 ²³	Ghana	75% knew was research, but 93% thought trial capsules were a 'medicine or vitamin'
Ravina <i>et al</i> , 2010 ³⁶	USA	89% understood drugs were experimental $^{\prime\prime}$	Lynöe <i>et al</i> , 2001 ³²	Bangladesh	47%
Ellis 2010 ¹⁸	USA	85%	Krosin et al, 2006 ²⁶		26%
Penman <i>et al</i> , 1984 ⁶¹	USA	78%			
Gammelgaard <i>et al</i> , 2004 ⁴¹	Denmark	72%			

J Med Ethics. Author manuscript; available in PMC 2016 April 08.

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Table 3

Author Manuscript

Developed country studies			Developing country studies		
Author	Country	Understood purpose	Author	Country	Understood purpose
Riecken et al, 198262	USA	72%			
Bergenmar <i>et al</i> , 2008 ³⁷	Sweden	~70%			
Kupst et al, 2003 ⁴⁵	USA	55%			
Schats et al, 2003 ⁴⁷	The Netherlands	38%			
Joffe <i>et al</i> , 2001 ⁴⁹	USA	30%			
* Arranged from highest to lowes	t %.				

 $\dot{ au}$ Yet only 57% knew that participation in the study was not part of usual Parkinson's disease treatment.

ACHRE, Advisory Committee on Human Radiation Experiments.

Developed country studies			Developing country studie	s	
Author	Country	Understood risks or side effects	Author	Country	Understood risks or side effects
Daugherty et al, 2000 ⁵⁰	USA	100% named >1 side effect	Pace et al, 2005 ²⁸	Thailand	98% recognised side effects
Harrison <i>et al</i> , 1995 ⁵⁵	USA	89% recognised side effects	Pitisuttithum et al, 1997 ³⁵	Thailand	97% recognised side effects
Knifed et al, 2008 ³⁸	Canada	71% knew at least one general risk $ec{r}$	Minnies <i>et al</i> , 2008^{24}	South Africa	79.2% knew risks
Benson et al, 1985 ⁶⁰	USA	Depression study: 62% knew risks	Leach <i>et al</i> , 1999 ³³	The Gambia	53% named 1 side effect
		Schizophrenia study: 42% knew risks			
Howard <i>et al</i> , 1981 ⁶³	USA	61% could name 1 side effect	Oduro et al, 2008 ²²	Ghana	20% knew direct risks
Miller <i>et al</i> , 1994 ⁵⁸	USA	48% named and 86% recognised >1 risk	Pace et al, 2005 ²⁹	Uganda	18% named 1 or more side effects
Ravina <i>et al</i> , 2010 ³⁶	NSA	47% knew which drugs had highest risks, 93% knew PD could get better, worse or not change	Krosin <i>et al</i> , 2006 ²⁶	Mali	7% said there were side effects \mathring{I}
Estey <i>et al</i> , 1994 ⁵⁷	Canada	41% named >1 risk	Kaewpoonsri et al, 2006 ²⁵	Thailand	6.6% recalled being told of risks
Van Stuijvenberg et al, 199853	The Netherlands	40% knew side effects			
Joffe <i>et al</i> , 2001 ⁴⁹	USA	37% knew research risks			
Penman <i>et al</i> , 1984 ⁶¹	USA	31% named >3 of 11 risks			
Criscione et al, 2003 ⁴⁴	USA	30% knew there were risks g			
Bergler <i>et al</i> , 1980 ⁶⁴	USA	28% (at start), 3% (3 months later)			
Bergenmar <i>et al</i> , 2008^{37}	Sweden	18% knew research risks			
Schats et al, 2003 ⁴⁷	The Netherlands	6% knew side effects			
* Arranged from highest to lowest					
$\dot{ au}^{\prime}$ 39% did not recall ANY risks of	the trial drug the n	est of the narticinants could name general risks and at most narticina	nts could name un to four snec	ific risks or side	effects
+	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				

J Med Ethics. Author manuscript; available in PMC 2016 April 08.

*The question was complex and multi-choice. The correct answer was the only one that included a mention of side effects. However, it also included information about the potential benefits of the medicine (eg, that it could prevent malaria and correct other health problems).

 \hat{s}^{B} But were not asked to name or identify them.

PD, Parkinson's disease.

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Table 4

Understanding of risks and side effects*

Developed country studies			Developing country st	udies	
Author	Country	Understood study design	Author	Country	Understood study design
Van Stuijvenberg <i>et al</i> , 1998 ⁵³	The Netherlands	88% placebo design	Moodley <i>et al</i> , 2005 ²⁷	South Africa	49% knew they had a 50% chance of receiving placebo; 19% understood placebo
Criscione et al, 2003 ⁴⁴	USA	87% placebo design	Hill <i>et al</i> , 2008 ²³	Ghana	13% understood 'not all trial capsules were the same'
Howard <i>et al</i> , 1981 ⁶³	USA	86% double blind design	Leach <i>et al</i> , 1999 ³³	The Gambia	10% placebo design $^{ au}$
Harrison <i>et al</i> , 1995 ⁵⁵	USA	79%			
Pope <i>et al</i> , 2003 ⁴⁶	Canada	76% placebo design			
Bergler et al, 1980 ⁶⁴	USA	64% (at start), 28% (3 months later)			
Developed country studies			Developing country st	udies	
Author	Country	Understood randomisation	Author	Country	Understood randomisation
Ravina <i>et al</i> , 2010 ³⁶	USA	90%, yet only 67% understood there was a 1 in 3 chance of receiving placebo	Ellis <i>et al</i> , 2010 ¹⁸	Mali	80% of adults 90% of parents
Simon <i>et al</i> , 2003 ⁴⁸	USA	68% of majority English speakers	Krosin <i>et al</i> , 2006 ²⁶	Mali	68%
		26% of minority English speakers			
		14% of minority non-English speakers			
Bergenmar <i>et al</i> , 2008 ³⁷	Sweden	85%	Pace et al, 2005 ²⁸	Thailand	31%
Gammelgaard <i>et al</i> , 2004 ⁴¹	Denmark	79%	Moodley et al, 2005 ²⁷	South Africa	21%
Criscione et al, 2003 ⁴⁴	USA	50%	Pace et al, 2005 ²⁹	Uganda	19%
Van Stuijvenberg et al, 199853	The Netherlands	50%			
Kodish <i>et al</i> , 2004 ⁴²	USA	50%			
Howard <i>et al</i> , 1981 ⁶³	USA	43%			
Pope <i>et al</i> , 2003 ⁴⁶	Canada	39%			
Benson et al, 1985 ⁶⁰	USA	33% of depression study, 16% of schizophrenia study			
Hietanen <i>et al</i> , 2000 ⁵¹	Finland	23%			
Schats et al, 2003 ⁴⁷	The Netherlands	22%			
* Arranged from highest to lowest					

J Med Ethics. Author manuscript; available in PMC 2016 April 08.

Mandava et al.

Author Manuscript

Author Manuscript

Author Manuscript

randomication* puo --, 4 į 4

Author Manuscript

Mandava et al.

 \dot{f} When broken down into those who had received a written information sheet at least a week before consent, 15% of those who had received the sheet understood that there was a placebo group versus 4% of those who had not received prior written information.

Developed country studies			Developing country studie	s	
Author	Country	Knew could withdraw	Author	Country	Knew could withdraw
Joffe <i>et al</i> , 2001 ⁴⁹	USA	90%; 99% knew could refuse	Ellis <i>et al</i> , 2010^{18}	Mali	96% of adults 93% of parents
Ellis <i>et al</i> , 2010 ¹⁸	NSA	98%	Karim <i>et al</i> , 1998 ³⁴	South Africa	93% of evaluation study group, 88% of sensitisation control group $\mathring{\tau}$
Ravina <i>et al</i> , 2010 ³⁶	USA	98% felt 'free to refuse to participate'	Pitisuttithum et al, 1997 ³⁵	Thailand	88% knew could refuse
Marshall <i>et al</i> , 2006 ¹⁹	USA	97%	Moodley <i>et al</i> , 2005 ²⁷	South Africa	87%
Criscione et al, 200344	USA	96%	Pace et al, 2005 ²⁸	Thailand	71%
Benson et al, 1985 ⁶⁰	USA	Depression study: 95%; 75% knew could refuse.	Marshall <i>et al</i> , 2006 ¹⁹	Nigeria	67%
		Schizophrenia study: 83%; 75% knew could refuse	Minnies et al, 2008 ²⁴	South Africa	65%
Bergenmar <i>et al</i> , 2008^{37}	Sweden	93%; 100% knew could refuse	Pace <i>et al</i> , 2005 ²⁹	Uganda	65%; 41% knew could refuse
Franck <i>et al</i> , 2007^{40}	UK	91%	Kaewpoonsri et al, 2006 ²⁵	Thailand	53.1%
Van Stuijvenberg et al, 199853	The Netherlands	91%	Lynöe <i>et al</i> , 2001 ³²	Bangladesh	48%: 65% knew could refuse
Lynöe <i>et al</i> , 2004 ⁴³	Sweden	80%	Sarkar <i>et al</i> , 2009 ²¹	India	50%
Simon et al, 2003 ⁴⁸	USA	90% of majority English speakers	Ekouevi et al, 2004 ³⁰	Côte d'Ivoire	27%
		78% of minority English speakers	Joubert et al, 2003 ³¹	South Africa	24% (but 92% said care would no longer be good if they quit)
		60% of minority non-English speakers	Oduro <i>et al</i> , 2008 ²²	Ghana	21%
Montgomery et al, 199852	UK	83%	Krosin et al, 2006 ²⁶	Mali	10%
Penman <i>et al</i> , 1984 ⁶¹	USA	80%			
Riecken et al, 198262	USA	80%; 95% knew could refuse			
ACHRE, 1996 ⁵⁴	USA	78%			
Bergler <i>et al</i> , 1980 ⁶⁴	USA	77% (at start), 61% (3 months later)			
Harth <i>et al</i> , 1995 ⁵⁶	Australia	45% (but 32% said would not be allowed)			
Schats et al, 2003 ⁴⁷	The Netherlands	25%; 59% knew could refuse \sharp			
* Arranged from highest to lowest	: %.				
$^{t}_{\mathrm{H}}$ However, 98% of the evaluation	study group and 100)% of the sensitisation control group said hospital wou	ild not allow them.		

J Med Ethics. Author manuscript; available in PMC 2016 April 08.

 \mathring{t}^{\dagger} Knew participation was not obligatory.

Author Manuscript

Author Manuscript

Author Manuscript

Table 6

ACHRE, Advisory Committee on Human Radiation Experiments.

Author Manuscript

Author Manuscript

Author Manuscript