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Abstract

Objective—The existing methods for identifying multiple rare variants underlying complex 

diseases in family samples are underpowered. Therefore, we aim to develop a new set-based 

method for an association study of dichotomous traits in family samples.

Methods—We introduce a framework for testing the association of genetic variants with diseases 

in family samples based on a generalized linear mixed model. Our proposed method is based on a 

kernel machine regression and can be viewed as an extension of the sequence kernel association 

test (SKAT and famSKAT) for application to familial data with dichotomous traits (F-SKAT).

Results—Our simulation studies show that the original SKAT has inflated Type I error rate when 

applied directly to familial data. By contrast, our proposed F-SKAT has the correct Type I error 

rate. Furthermore, in all of the considered scenarios, F-SKAT, which uses all family data, has 

higher power than both SKAT, which uses only unrelated individuals from the family data, and 

another method (abbreviated as IL) which uses all the family data.

Conclusion—We propose a set-based association test that can be used to analyze familial data 

with dichotomous phenotypes, while handling genetic variants with the same or opposite 

directions of effects as well as any types of family relationships.
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Introduction

With recent advances in high-throughput sequencing technology, significant progress has 

been made in identifying the association between genetic variants and complex diseases 

[1,2]. Such progress requires appropriate study designs and statistical methods. Genome-

wide association studies (GWASs) have been widely used both for identifying common 

single-nucleotide polymorphisms (SNPs) associated with human diseases and for further 

understanding the genetic basis of complex diseases [3–7]. In a typical GWAS, hundreds or 

thousands of individuals are recruited and a large number of genetic markers are genotyped 

for all of the subjects. The association between the trait and each of the genetic markers is 

usually tested one by one through single-marker association tests. As a useful complement 

to the single marker test, gene-based (or, more generally, set-based) tests are becoming more 

attractive [8–10]. If there are multiple causative variants which have small individual effects, 

single marker analysis may not identify those weak signals. On the other hand, set-based 

tests have higher power because they combine the effects of all SNPs in the set and thus may 

be able to detect small effects. In addition, set-based tests may have higher power in the 

presence of genetic heterogeneity. And finally, set-based approaches greatly reduce the 

burden of multiple testing in GWASs.

Many set-based approaches have been developed in recent years [8,9,11–22]. One popular 

test is the sequence kernel association test (SKAT) [9,21,22], a flexible, computationally 

efficient, and regression-based approach. In SKAT, covariates can be easily incorporated into 

the model. In addition, predefined weights can be assigned to each SNP in the SNP set. This 

increases the power when prior information shows that certain types of markers may be 

associated with a trait. For example, a weight as a function of a minor allele frequency 

(MAF) that follows a beta density is proposed in Wu et al. [21], which assumes that rare 

genetic variants have larger effects on common diseases. Furthermore, the test statistic 

derived in SKAT follows a mixture of chi-square distributions. Thus, p-values can be 

computed analytically without permutation, leading to significant improvement in 

computation.

Family-based designs have been widely used to study the association between diseases and 

genetic variants [23–26]. In GWASs with unrelated samples, a general linear model is 

usually used to investigate the association between quantitative phenotypes and genetic 

markers. However, a general linear model results in an inflated Type I error rate when the 

familial correlation is not appropriately handled. Thus, instead of a general linear model, a 

linear mixed model including a random effect is usually employed to deal with correlation 

between familial samples. The covariance of random effects of all individuals can be 

expressed by a variance of polygenic effect and kinship matrix (a matrix of kinship 

coefficients, which are measures of degrees of genetic correlations between individuals). 

Linear mixed models have been commonly used in single-marker GWASs for family data 

[27,28]. Recently, SKAT has been extended to be applicable for quantitative traits in family 

samples [29–31]. Furthermore, the extension to dichotomous traits in family samples is 

described in Ionita-Laza et al. [32] in which the algorithm follows a generalized linear 

model and incorporates laws of Mendelian transmission to calculate the genotype 

expectation conditional on parental genotypes. This method, however, ignores parental 
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phenotypes and therefore may lose power because it does not fully use the data. In addition, 

this method cannot handle non-parental relationships such as those between offspring, 

grandparents-grandchildren, or uncles-nephews.

In this study, we aim to propose a method that can handle non-continuous traits in family 

samples. Our proposed method uses kernel machine regression and can be viewed as a 

generalization of famSKAT [29]. Our new model, denoted as F-SKAT, is based on a 

generalized linear mixed model framework that is more general and can be applied to a 

larger range of studies with different types of traits. We demonstrate in our simulation 

studies that the original SKAT has inflated Type I error rate when applied to all family 

samples without consideration of their relationship. By contrast, our proposed F-SKAT has 

correct Type I error rate. Moreover, because it uses all family samples, F-SKAT is 

consistently more powerful than SKAT with the use of only unrelated individuals (founders) 

in the family data because SKAT can only use a subset of the samples for analysis in order 

to retain the correct Type I error rate. This is also consistent with the simulation results for 

quantitative traits in Chen et al. [29]. The same observation was also made in other studies 

[33].

Methods

The SKAT in a Generalized Linear Mixed Model Framework

The model setup is presented in a manner very similar to that of Chen et al. [29], although 

for binary traits instead. We assume that the n × 1 vector of the trait y follows a generalized 

linear mixed model. Now the trait is no longer assumed to follow a normal distribution. The 

link function h(·) is used to map a linear combination of predictors for observation i, ηi, to 

the conditional mean of observation i,  shown as

where X is an n × p covariate matrix, β is a p × 1 vector standing for fixed effects parameters 

(an intercept and p − 1 covariates), G is an n × q genotype matrix for q genetic variants of 

interest, γ is a q × 1 vector for the random effects of variants, Z is an n × k matrix for k 
random effects, and u is a k × 1 vector for the random effect coefficients, which is added to 

the original SKAT model [9,21]. The random effects γ is assumed to be normally distributed 

with mean 0 and variance  for variant i so the null hypothesis being tested is H0: γ= 0 

that is equivalent to test H0: τ = 0, which can be tested with a variance component score test 

[21] in the mixed model. Also assumed is that u is normally distributed and uncorrelated 

with γ, as in:
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where W is a predefined q × q diagonal weight matrix for each variant and may use 

 as in SKAT [21], and K is a k × k covariance matrix.

Following the same rationale as in the derivation of the SKAT and famSKAT score statistics 

[29,34–36] (refer to Supplementary Material for details), we have the following test statistic 

for our new model

where y* is the final working trait vector,  is the vector of estimated fixed effects of 

covariates under H0, and  is the estimated variance-covariance matrix under H0. The 

statistic Q is a quadratic form of  and follows a mixture of chi-square 

distributions [37] under H0. The p-values can be calculated by numerical algorithms such as 

Davies’ method [38]. This generalized linear model framework is very general with many 

models as special cases depending on the data type of the phenotype. For example, this 

framework can be simplified for continuous and dichotomous traits in a population-based 

study (see Supplementary Material), which is the same as the models described in Wu et al. 
[21]. In addition, count traits can also be handled. Furthermore, longitudinal and familial 

structures can be added in the model by manipulating the random effect term.

The SKAT for Dichotomous Traits in Family Samples

Specifically, the above approach can be used for handling dichotomous traits in family 

samples such that h(·) is replaced with logit(·) and Zu is replaced with δ that is an n ×1 

vector for the random effects of familial correlation. The dichotomous trait y follows a 

generalized linear mixed model,

where Xβ and Gγ are the same as in the above section. Again, the random effects vector γ is 

assumed to follow a normal distribution with mean 0 and covariance matrix τW, so the null 

hypothesis is to test H0: τ= 0, where W is the predefined weight matrix and may use 

. In addition, δ follows a normal distribution with mean 0 and 

covariance matrix , where Φ is twice the n × n kinship matrix obtained from family 

information only.

Simulation Study

We simulated samples based on a collection of 10,000 haplotypes over a 200-kb region 

generated by the calibrated coalescent model [39] with mimicked linkage disequilibrium 

(LD) structure of European ancestry. Almost all of the simulated variants are rare variants; 

1,200 haplotypes were randomly selected as parents’ haplotypes. The offspring haplotypes 

were generated by randomly transmitting one of the two haplotypes of the father and the 

mother. We generated 300 families with a father, mother, and at least one offspring in each 

family for a scenario of families with flexible numbers of offspring (sibship size ranges from 
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1 to 5) (Figure 1A). For simplicity, we also considered the scenario of trio families by 

selecting a father, mother, and one offspring from the 300 families (Figure 1B). In addition, 

in order to simulate a complex pedigree, we randomly selected 400 haplotypes as 

grandparents’ haplotypes and 400 haplotypes as independent parents’ haplotypes. For the 

three-generation family scenario, we generated 100 families with two grandparents, two 

independent parents, two dependent parents who are the offspring of the two grandparents, 

and four children (Figure 1C). Furthermore, 30 randomly selected SNPs with at least one 

copy of a minor allele appearing in the corresponding data set were used in the analysis. The 

genotype can be easily converted from the haplotype data and we simulated 100 such 

genotype data sets in the analysis for each of the three scenarios.

Type I Error Rate

In analyzing the scenarios of families with flexible numbers of offspring and families with 

three generations, we compared F-SKAT to three other approaches: (1) the approach that 

applies SKAT on unrelated individuals (founders) in the family data (abbreviated as 

unrSKAT), (2) the original SKAT, and (3) the method by Ionita-Laza et al. (abbreviated as 

IL) [32]. For each of the 100 genotype data sets, we simulated 1,000 sets of phenotypes. The 

dichotomous phenotypes for each family were generated via the following model:

where α0 was determined to set the prevalence to 10% in our simulation. In other words, 

 and is from a multivariate normal distribution with means 0 and covariance 

 where Φ is twice the kinship matrix. For instance, a family with a father, mother, 

and two children has

and . The scenario of families with three generations has a more complicated kinship 

matrix (Figure 1S). The phenotypes for all of the families were generated in the same way 

and the 1,000 simulated phenotypes for each of the 100 genotype data sets were used to 

evaluate the Type I error rate. For the scenario of trio families, both parents and one child 

were selected from each of the families with flexible numbers of offspring. For these 

families, the covariance matrix  is the same for all the families, where
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Power Evaluation

We used the same genotype data sets as described above. We compared F-SKAT with 

unrSKAT and IL for the scenarios of families with flexible numbers of offspring and 

families with three generations. For each of the 100 genotype data sets, we simulated 1,000 

sets of phenotypes. The dichotomous phenotypes for each family were simulated via the 

following model:

where  is a continuous variable generated from a standard normal distribution,  is a 

dichotomous variable from a Bernoulli distribution with a probability of 0.5, 

 are the genotypes of causal SNPs, and are log odds ratios of the causal 

SNPs. We considered that 40% and 80% of all variants are disease susceptibility variants 

and that and δi were determined the same as in the Type I error rate section. Furthermore, 

 were set to  in order to assign large weights to rare variants, 

where c= 0.4 is chosen such that when MAF = 0.0001, β= 1.6 (i.e., OR = 4.9) [21]. Because 

SKAT can handle the presence of both risk and protective variants, we also considered that 

25% of the causal variants are protective, which means  (i.e., 30% 

disease variants and 10% protective variants; and 60% disease variants and 20% protective 

variants). The phenotypes for all of the families were generated the same way and these 

1,000 phenotypes for each of the 100 genotype data sets were used to evaluate the power. 

For the scenario of trio families, the simulated phenotypes of father, mother, and one 

offspring were selected from each of the families with flexible numbers of offspring.

Results

Simulation of the Type I Error Rate

Tables 1, 2 and 3 depict the empirical Type I error rate of F-SKAT, unrSKAT, SKAT, and IL 

at α level of 0.05, 0.01, 0.005, and 0.001 for trio families, families with flexible numbers of 

offspring, and families with three generations, respectively. The results indicate that the Type 

I error is inflated when SKAT is applied directly to all the samples including correlated 

individuals. In contrast, F-SKAT, unrSKAT, and IL retain the correct Type I error, but IL 

shows a trend of increased Type I error rate as the significance level decreases. From the QQ 

plots in Figures 2 and 3, we can see similar patterns. This indicates that F-SKAT and 

unrSKAT can control Type I error well for different significance levels; however, IL 

maintains the correct Type I error rate when the significance level is not stringent (say, α > 

0.005) but otherwise has an inflated the Type I error rate. The QQ plots in Figure 4 indicate 

that F-SKAT preserves the desired Type I error rate, and unrSKAT and IL maintain the 

correct Type I error rate at non-stringent significance levels. The inflation of the Type I error 

rate in SKAT becomes more severe as the number of correlated individuals in one family 

increases.
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Statistical Power Comparison

Because the original SKAT has an incorrect Type I error rate for family data, we only 

investigated the power of F-SKAT, unrSKAT, and IL (i.e. exclude original SKAT from power 

comparison). The simulation results for trio families, families with flexible numbers of 

offspring, and families with three generations are shown in Figures 5, 6 and 7, respectively. 

For trio families, in all of the scenarios we considered, the power of F-SKAT is consistently 

but only slightly higher than that of unrSKAT. The slight gain in power may be caused by 

the difference in Type I error rate (Figure 2S). The power of IL is not high in our simulation 

study. For families with flexible numbers of offspring and with three generations, the pattern 

is similar to that of the trio families. In all scenarios, the power of F-SKAT is consistently 

higher than that of unrSKAT and IL. Furthermore, F-SKAT achieves the highest power in 

families with three generations, and the power of F-SKAT is higher in families with flexible 

numbers of offspring than in trio families, which indicates that the power gain of F-SKAT 

increases as the size of families increases. This is expected because F-SKAT makes full use 

of the data, while in contrast, unrSKAT uses only unrelated samples and discards other 

family members.

Discussion

In this work, we have proposed a new method, F-SKAT, under a generalized linear mixed-

model framework that can be used to analyze familial data with various types of phenotypes, 

such as continuous and discrete, and covariates. The new method is based on kernel machine 

regression and can be viewed as an extension of SKAT [9,21] as well as famSKAT [29]. As 

a set-based analysis, F-SKAT shares the advantages of set-based methods, such as improved 

power by testing a set of genetic variants jointly and by reducing the multiple testing 

penalty. Our simulation studies show that the proposed method has consistently higher 

power than existing approaches in the scenarios we have considered. The new method 

includes various existing methods, such as SKAT and famSKAT, as special cases. This 

shows that the proposed method is theoretically more advantageous than the existing 

methods and allows us to conveniently analyze data using different approaches.

In the simulation studies, we show that using SKAT on data with related samples results in 

an inflated Type I error rate, which consistent with the results for quantitative traits in Chen 

et al. [29]. One strategy is to analyze only unrelated subjects from the data using SKAT. In 

this way, the Type I error rate can be controlled, but power is sacrificed because only part of 

the data is analyzed. In contrast, F-SKAT uses all the data, retains the correct Type I error 

rate, and achieves higher power in all of the scenarios we considered. Our simulation also 

shows that the larger the family size, the more power F-SKAT gains, which is also consistent 

with the findings for quantitative traits in Chen et al. [29]. Based on our simulation study, F-

SKAT makes a good choice for analysis of familial data with various traits, although we 

only considered dichotomous traits in this study. For quantitative traits, an extensive 

simulation study was published by Chen et al. [29].

The computation time of F-SKAT depends on both sample size (including family size and 

structure) and the number of genetic variants to be analyzed. F-SKAT involves fitting a 

generalized linear mixed model that must be done iteratively. This consumes much of the 
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computation time. Even though this step is computationally intensive, the total computation 

time, in fact, may not be a serious issue when analyzing data from GWASs. Like SKAT, F-

SKAT is basically a score test and thus under null hypothesis the estimates of covariate 

coefficients and covariance matrix are independent with genetic variants. The generalized 

linear mixed model under the null hypothesis only needs to be fitted once for the whole 

genome and is then reused in the analysis of other genes. Therefore, the total computation 

time is greatly reduced. To estimate the computation of the proposed methods, we conducted 

a simple simulation in R on a single computing node with 3 GHz CPU and 4 GB memory 

analyzing a 200-kb region on 1,500 individuals (500 trios). It took F-STAT 5.988 seconds 

for the analysis. Based on this simulation, we can estimate that it may take F-STAT 

approximately 25 hours to analyze the whole genome (~3 Gb) on the same samples. Using a 

computer cluster with multiple nodes, we anticipate that most of the genome-wide data 

analysis should be finished within hours using the proposed methods. Thus, complicated 

generalized linear mixed models can be implemented for GWASs without suffering from a 

huge amount of computation time. However, if the number of markers in a gene is large, 

inverting the large matrix is still computationally intensive. One way to handle this would be 

to partition the markers into smaller groups, such as groups of non-synonymous or 

synonymous coding variants. Another way would be to use fast algorithms, such as those 

implemented in the software EMMA/EMMAX [40,41], to make our algorithm faster and 

more efficient. The approach of clustering samples implemented in TASSEL [41] applies 

naturally to family data. Recently, several new fast algorithms have been proposed for mixed 

model [42–45]. Some of the new ideas may be used in our algorithm. The F-SKAT 

algorithm has been implemented in R (http://www.r-project.org/) and the source code is 

available is available online (http://www.soph.uab.edu/ssg/software).

In our work, the kinship coefficients in the kinship matrices are obtained from familial 

relationships. If genome-wide genotype data are available, it is more advantageous to use 

genetic markers to estimate the kinship coefficients among individuals [40,46–50]. The use 

of kinship coefficients enables our method to be applicable to data with any relationship 

(such as grandparents-grandchildren and uncles-nephews) and even with cryptic relatedness. 

We have shown that our new method is feasible for genome-wide studies, although the 

computation is still intensive. Fast algorithms, such as those developed for linear mixed 

models [31,40,41,43–45], are attractive and would be very helpful. Although we have only 

studied the performance of a linear kernel in this work, it is straightforward to use a non-

linear kernel within the flexible kernel machine-regression framework when a non-linear 

association between a disease and genetic variants is assumed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Three scenarios of pedigree structures in simulation studies.
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Figure 2. 
QQ plot of the p-values for F-SKAT, unrSKAT, SKAT, and IL for parent-offspring trio 

families from the null simulation, with 95% pointwise confidence band (gray area) that is 

computed under the assumption of the p-values being drawn independently from a uniform 

[0, 1] distribution.
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Figure 3. 
QQ plot of the p-values for F-SKAT, unrSKAT, SKAT, and IL for families with flexible 

numbers of offspring from the null simulation, with 95% pointwise confidence band (gray 

area) that is computed under the assumption of the p-values being drawn independently from 

a uniform [0, 1] distribution.
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Figure 4. 
QQ plot of the p-values for F-SKAT, unrSKAT, SKAT, and IL for families with three 

generations from the null simulation, with 95% pointwise confidence band (gray area) that is 

computed under the assumption of the p-values being drawn independently from a uniform 

[0, 1] distribution.
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Figure 5. 
Power comparisons of F-SKAT, unrSKAT, and IL for data with parent-offspring trio families 

(α level is from 0 to 0.05). (A) 40% disease variants scenario; (B) 80% disease variants 

scenario; (C) 30% disease variants and 10% protective variants scenario; (D) 60% disease 

variants and 20% protective variants scenario.
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Figure 6. 
Power comparisons of F-SKAT, unrSKAT, and IL for data of families with flexible numbers 

of offspring (α level is from 0 to 0.05). (A) 40% disease variants scenario; (B) 80% disease 

variants scenario; (C) 30% disease variants and 10% protective variants scenario; (D) 60% 

disease variants and 20% protective variants scenario.
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Figure 7. 
Power comparisons of F-SKAT, unrSKAT, and IL for data of families with three generations 

(α level is from 0 to 0.05). (A) 40% disease variants scenario; (B) 80% disease variants 

scenario; (C) 30% disease variants and 10% protective variants scenario; (D) 60% disease 

variants and 20% protective variants scenario.
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Table 1

Type I error rate of F-SKAT, unrSKAT, SKAT, and IL for parent-offspring trio families

α=0.05 α=0.01 α=0.005 α=0.001

F-SKAT 0.05188 0.01109 0.00577 0.00131

unrSKAT 0.04887 0.01009 0.00535 0.00138

SKAT 0.08802 0.02254 0.01239 0.0035

IL 0.05528 0.01380 0.00789 0.00195
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Table 2

Type I error rate of F-SKAT, unrSKAT, SKAT, and IL for families with flexible numbers of offspring

α=0.05 α=0.01 α=0.005 α=0.001

F-SKAT 0.05421 0.01151 0.00589 0.00134

unrSKAT 0.04887 0.01009 0.00535 0.00138

SKAT 0.12263 0.03530 0.02047 0.00598

IL 0.05242 0.01350 0.00766 0.00235
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Table 3

Type I error rate of F-SKAT, unrSKAT, SKAT, and IL for families with three generations

α=0.05 α=0.01 α=0.005 α=0.001

F-SKAT 0.05356 0.01201 0.00625 0.00158

unrSKAT 0.04779 0.00989 0.00527 0.00142

SKAT 0.17455 0.05511 0.03308 0.01022

IL 0.05159 0.01269 0.00727 0.00189
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