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Abstract

Mediation analysis constitutes an important part of treatment study to identify the mechanisms by 

which an intervention achieves its effect. Structural equation model (SEM) is a popular framework 

for modeling such causal relationship. However, current methods impose various restrictions on 

the study designs and data distributions, limiting the utility of the information they provide in real 

study applications. In particular, in longitudinal studies missing data is commonly addressed under 

the assumption of missing at random (MAR), where current methods are unable to handle such 

missing data if parametric assumptions are violated.

In this paper, we propose a new, robust approach to address the limitations of current SEM within 

the context of longitudinal mediation analysis by utilizing a class of functional response models 

(FRM). Being distribution-free, the FRM-based approach does not impose any parametric 

assumption on data distributions. In addition, by extending the inverse probability weighted (IPW) 

estimates to the current context, the FRM-based SEM provides valid inference for longitudinal 

mediation analysis under the two most popular missing data mechanisms; missing completely at 

random (MCAR) and missing at random (MAR). We illustrate the approach with both real and 

simulated data.
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1. Introduction

Mediational analysis is employed in a wide range of behavioral, biomedical, and 

psychosocial research studies to investigate the causal mechanism of intervention, i.e., 

mediation. The traditional regression paradigm is ill-suited for modeling such 

multidimensional causal relationships, because of the complex relationships among different 

variables and multiple roles a variable may play. Although the structural equation model 

(SEM) provides an ideal conceptual framework for the dynamic role a mediator plays in 

channeling the effect of a causal agent to the outcome of interest, the various restrictions 

imposed by the available inference methods have hindered its wide use and limited the 

utility of the information provided in real studies.

In real longitudinal studies, we often encounter missing data on the mediator and outcome of 

interest that is dependent on information from a previous time point, an assumption that has 

been termed missing at random (MAR). For instance, if an intervention is effective, a patient 

may drop out of a study if they believe there is no added benefit in continuing the treatment. 

The missing data is associated with the treatment. If parametric assumptions are not met, 

under this commonly used assumption of MAR, there currently is no method available for 

unbiased inference in the SEM framework in the context of mediation analysis.

In this paper, we discuss a new, robust approach to address the various limitations of existing 

methods by utilizing a class of functional response models (FRM). In Section 2, we briefly 

review the concept of mediation and the SEM modeling framework for such a causal 

process. In Section 3, we discuss how to frame the mediation model using FRM after giving 

a brief review of the latter. In Section 4, we discuss inference for the distribution-free FRM-

based SEM for both complete and missing data in the longitudinal study design. In Section 

5, we illustrate the proposed approach with both real and simulated data, and compare its 

performance with existing alternatives. In Section 6, we give our concluding remarks.

2. Structural Equations Model for Mediation Analysis

2.1. Mediation Analysis

In treatment studies, it is often of great interest to identify and study mechanisms by which 

an intervention achieves its effect. By investigating such a mediational process through 

which the treatment affects study outcomes, not only can we further our understanding of 

the pathology of the disease and treatment, but may also provide alternative intervention 

strategies for the disease with efficient use of resources. For example, a tobacco prevention 

program may teach participants how to stop taking smoking breaks at work, thereby 

changing the social norms for tobacco use. As a result, this change in social norms reduces 

cigarette smoking (MacKinnon & Fairchild, 2009). With mediation analysis, we gain insight 

and acquire deep understanding about the mechanism of action of pharmacological and 

psychotherapeutic treatments. Such information provides an added dimension to understand 

the etiology of disease and pathways of therapeutic effects so more efficacious and cost 

efficient alternative therapies may be developed.
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Baron and Kenny (1986), in the first paper addressing mediation analysis, tested the 

mediation process through a series of regression equations. Since variables in a causal 

relationship can play both roles of the cause and effect, the standard regression paradigm is 

ill-suited for modeling such a relationship, because of the unique cause or effect qualifier of 

each variable it mandates (Kraemer, 2001; MacKinnon & Fairchild, 2009; Rothman & 

Greenland, 1998). The structural equation model (SEM) provides a formal modeling and 

inference framework for mediation and other related causal analysis.

There are many advantages for using the SEM framework in the context of mediation 

analysis. SEM simplifies testing of mediation hypotheses as SEM is designed, in part, to test 

these more complicated mediation models in a single analysis (MacKinnon, 2008). In 

standard regression, ad hoc methods such as the ones developed by Baron and Kenny 

(1986), Sobel (1982), and Clogg, Petkova, and Shihadeh (1992) must be used for inference 

about indirect and total effects. These ad hoc methods rely on combining the results of two 

or more equations to derive the asymptotic variance. This is especially problematic under 

missing data where a different number of observations may be missing in the different 

regression equations representing a mediation process. Also, in standard regression, by 

default, we handle missing data via listwise deletion since there is no built in missing data 

mechanism when using ordinary least squares (OLS).

Further, since we make causal assumptions in a mediation model, SEM analysis approach 

provides model fit information about consistency of the hypothesized mediational model to 

the data and evidence for the plausibility of the causality assumptions (Bollen & Pearl, 2012; 

Imai, Keele, & Tingley, 2010) we make in a mediation model. The procedure by Baron and 

Kenny (1986) has also been shown to be low powered (MacKinnon, 2008). SEM allows for 

ease of extension to longitudinal data within a single framework, corresponding with a 

study’s conceptual framework for clear hypothesis articulation (Preacher, Wichman, 

MacCallum, & Briggs, 2008). Finally, Bollen and Pearl (2012) note that even the same 

equation in SEM and regression analysis is based on completely different assumptions and 

has a different meaning. Standard regression analysis implies a statistical relationship based 

on a conditional expected value, while SEM implies a functional relationship expressed via a 

conceptual model, path diagram, and mathematical equations. The causal relationships in a 

hypothesized mediation process, simultaneous nature of the indirect and direct effects and 

the dual role the mediator plays as both a cause for the outcome and effect of the 

intervention can therefore be expressed better in terms of structural equations than 

regression analysis.

2.2. Structural Equations Model (SEM)

The structural equation model (SEM) addresses complex relationships among variables that 

are generally depicted in path diagrams. A path diagram consists of nodes representing the 

different variables and arrows showing relations among the variables. For example, shown in 

Figure 1 is the path diagram for the causal relationship between the three variables in the 

smoking prevention example discussed earlier. The three variables, prevention intervention 

(xi1), social norm (zi2), and amount of smoking (yi3), are measured at three assessment 

points in chronological order starting at baseline within a longitudinal setting. Also, all 
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effect-receiving variables such as the social normal and amount of smoking in this example 

are called endogenous variables, and effect-imparting variables such as the prevention 

intervention are known as exogenous variables in the nomenclature of SEM. In this paper, 

all variables are observed unless otherwise noted. See Bollen (1989) and Kowalski and Tu 

(2007) for more details about modeling complex relationships involving latent constructs 

using SEM.

Consider a longitudinal study with three assessment times indexed by t (1 ≤ t ≤ 3). Let xit, 

zit, and yit denote the causal (or predictor), mediator and response variables at time t. In this 

paper, we focus on continuous mediators and responses. The SEM for a typical mediational 

process involving a single predictor, mediator and response as depicted in the path diagram 

in Figure 1 is given by

(1)

The error terms ϵyi and ϵzi are typically assumed to be normal. However, since we focus on 

robust inference, we only assume that ϵyi and ϵzi are both continuous with mean 0 and 

variance Ψ. The above may be expressed in general matrix notation as follows:

(2)

or alternatively,

(3)

where

(4)

Note that stochastic independence is not taken for granted, as it is particularly important for 

causal inference (Bollen & Pearl, 2012; Imai et al., 2010). To facilitate validation, the usual 

independence is replaced by zero correlation, or pseudo-isolation, which can be empirically 

checked. For example, to assess the causal effect of xi1 and zi2 in (1), it is critical that xi1 be 

uncorrelated with ϵzi in the first and both xi1 and zi2 be uncorrelated with ϵyi in the second 

equation of the SEM. It is then readily checked that

(5)

In other words, ϵzi and ϵyi are uncorrelated as well, i.e., σϵyϵz = 0, for this particular SEM, 

and thus θ in (4) reduces to .
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Note that SEM such as the one in (1) only provides causal inference in the absence of 

selection bias, such as data from randomized controlled trials. Imai et al. (2010) have 

proposed approaches to extend SEM in the absence of selection bias based on the 

counterfactual outcome based causal framework, such as data from most epidemiological 

studies. In this paper, we assume no selection bias unless otherwise stated.

Although (1) can also be applied to cross-sectional data, the longitudinal data setting is more 

popular for mediation analysis since temporal changes are important for modeling causal 

relationships. In this paper we consider longitudinal data from multiple waves, based on a 

hypothesized relationship between xi1, zi2, and yi3. These repeated measures from different 

times are linked not only with each other, but with other variables as well (see Section 

5.1.1). For example, under MAR the missingness of zi2 may depend on zi1 and even yi1 in 

addition to xi1 (Kowalski & Tu, 2007; Robins, Rotnitzky, & Zhao, 1995).

For mediation analysis, the primary interest is the hypothesis of full mediation H0 : γxy = 0. 

Under this null, the direct path from x to y is broken, with the effect of x on y fully mediated 

through the change in z. In practice, however, it is more common that a researcher comes 

across partial mediation, where the direct path from x to y is partially broken through the 

change in z, indicating that z mediates some of the effect of x on y. Under partial mediation, 

one becomes interested in constructing the direct, γxy, indirect, βxzγxy, and total, γxy + 

βxzγxy, effect of the predictor xi1. The three types of effects are readily obtained from 

estimates of θ. Inference (standard errors and p-values) about such effects is also easily 

performed using the Delta or Bootstrap methods (e.g., Sobel, 1982; Clogg et al., 1992; 

Bollen & Stine, 1990).

Significant advances have been made over the past few decades in the theory and 

applications as well as software development for fitting SEM models. For example, in 

addition to specialized packages such as LISREL (Joreskog & Sorbom, 1997), MPlus 

(Muthén & Muthén, 1998–2010), EQS (Bentler, 2006), and Amos (Arbuckle, 1995–2010), 

procedures for fitting SEM are also available from general-purposes statistical packages 

such as R, SAS, STATA, and Statistica. These packages provide inference based on 

maximum likelihood (ML), generalized least squares (GLS), and weighted least squares 

(WLS). While ML assumes a multivariate normal for the joint distribution of all variables 

(exogenous plus endogenous variables such as the trivariate (xi1, zi2, yi3)⊺ in (1) within our 

context), GLS and WLS do not, thereby providing more robust estimates.

In recent years, many software packages have implemented robust variance estimates to 

improve the validity of inference in the presence of departures from assumed parametric 

models (Maas & Hox, 2004; Van der Leeden & Busing, 1994; Van der Leeden, Busing, & 

Meijer, 1997). In most real studies, missing data invariably occurs, especially for 

longitudinal studies. In the presence of missing data, such variance estimates not only do 

little to prevent inference bias (wrong standard errors and type I error levels), but also give 

rise to bias in parameter estimates (Lu, Tang, He, Yu, Crits-Christoph, Zhang, & Tu, 2009). 

Our simulations for the SEM-based mediation model in (1) have demonstrated similar poor 

performances by the GLS, ML, and WLS under departures from the assumed normality in 

the presence of missing data. We discuss these findings in detail in Section 5.
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Other approaches have also been proposed to address missing data. For example, 

Papadopoulos and Amemiya (2005) proposed a multistage analysis approach to handle two 

nonnormal, correlated endogenous variables and unbalanced data (due to missing data) in 

the longitudinal setting (Allison, 1987; Baker & Fulker, 1983; Satorra, 2002; Werts, Rock, & 

Grandy, 1979). However, their approach to missing data is analogous to the generalized 

estimating equations (GEE), which provides valid inference only for a more limited class of 

missing data following the missing completely at random (MCAR), rather than the more 

general response-dependent missing at random (MAR) mechanism focused in this paper.

In a recent paper, Zhang and Wang (2013) introduced a method using normal data and the 

EM algorithm along with bootstrapping for mediation analysis. However, like other methods 

that rely on parametric assumptions, their approach will also yield invalid inference under 

MAR, if the parametric assumptions are violated.

Finally, outside of the SEM framework using the Baron and Kenny (1986) approach, we 

might observe similar point estimates, though slightly different standard errors and Type I 

error, via OLS and SEM ML under complete data or under the MCAR assumption when 

standard regression assumptions are met. However, OLS does not have a built in mechanism 

to handle missing data and does not provide robust inference under the MAR assumption.

However, unlike traditional maximum likelihood inference for regression models, where 

only the regression coefficients such as γ0, γxy, γzy, β0, and βxz are estimated, the ML for 

SEM must also estimate the variance parameters such as  and  in (1) in order to make 

the γ’s identifiable (Bollen, 1989; Gunzler, 2011). However, the necessity to estimate these 

parameters not only complicates the estimation procedure, but also renders conventional 

robust methods inapplicable to SEM.

Before introducing a distribution-free approach to address the aforementioned flaws of 

available methods within a longitudinal data setting, we first give a brief overview of the 

functional response models upon which the new approach is premised.

3. Functional Response Models

As we have discussed earlier, we use SEM methods for mediation analysis in this paper that 

make simultaneous inference about both equations in the mediation model. We develop an 

approach in this section that will be used to achieve the inference step within the context of 

distribution-free SEM. Traditional regression models for cross-sectional data will not 

provide such inference and are all defined based on a single-subject response. For example, 

consider a sample of size n, and let yi and xi denote some response and a vector of 

explanatory variables (independent variables, predictors, or covariates) of interest (1 ≤ i ≤ n). 

The popular linear model is defined by, , where E(yi | xi) denotes the 

conditional mean of yi given xi, and β a vector of parameters. In this model, the dependent 

variable is a single-subject response yi. Although the linear model has been extended for 

modeling more complex types of response variables such as binary and count data 

(McCullagh & Nelder, 1989), such models still involve the single-subject response yi. For 

example, in the generalized linear model defined by , although the right 

Gunzler et al. Page 6

Psychometrika. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



side is generalized to be a function of the linear predictor, , to accommodate the range 

restriction of non-linear response yi, the left side remains identical to the linear model. 

Further, the response only appears on the left, while the explanatory variable must stay on 

the right side of the model.

These constraints prevent regression models from being applied to many problems of 

interest in practice. For example, within our context of SEM, since an endogenous variable 

can be on either side of an equation, this feature immediately excludes regression as a 

framework for inference about SEM. In other applications such as correlation analysis, 

mixture models and social network connectivity, we are interested in relationships between 

defined by outcomes from multiple subjects, which again violates the confines of regression. 

By addressing the fundamental limitations of the classic regression, the functional response 
model (FRM) can express a broader class of problems under a regression-like framework 

(Kowalski & Tu, 2007; Kowalski, Pagano, & DeBruttola, 2002; Kowalski & Powell, 2004; 

Ma, Tang, Feng, & Tu, 2008; Ma, Tang, Yu, & Tu, 2010; Tu, Feng, Kowalski, Tang, Wang, 

Wan, & Ma, 2007; Yu, Tang, Kowalski, & Tu, 2011; Yu, Chen, Tang, He, Gallop, Crits-

Christoph, Hu, & Tu, 2013).

Consider a class of distribution-free regression models defined by

(6)

where yi = (yi1, … , yiq)⊺ denotes the vector of responses from the ith subject, f is some 

vector-valued function and g is a subset of variables yi1, … , yiq with f and g containing 

nonoverlapping variables, h(θ) some vector-valued smooth function (e.g., with continuous 

derivatives up to the second order), θ a vector of parameters of interest, q some positive 

integer, and  the set of  combinations of q distinct elements (i1, … , iq) from the 

integer set {1, … , n}. FRM in (6) extend the single-subject response in the classic GLM to a 

function of responses from multiple subjects. For example, by setting q = 1, we immediately 

obtain from (6) the class of distribution-free GLM.

To apply the FRM in our setting, let

(7)

where  is the set of parameters, and
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(8)

Then the FRM for the SEM in (7) is

(9)

Note that as σϵyϵz = 0 following from (1), this parameter is not included in θ. Note also that 

the xi in the FRM above is defined differently from the xi in (2) or (3).

As in the case of (1), hi (θ) above is not linear in the components of θ, and thus the FRM-

based SEM in (9) is again not a linear model. The first component f1i of the response 

function fi is identical to ui in the parametric setup in (1), while the second f2i contains the 

necessary second-order moments of ui to provide the needed information to identify all the 

γ’s in (7). The three higher-order moment equations in (8) not only permit estimation of the 

two variance parameters  and , but also supplement the needed information to address 

the identifiability of the γ’s.

For the particular SEM in (1) for mediation analysis, we may also define an alternative FRM 

to estimate the parameters of primary interest, , without the help of 

higher-order moments as f2i in (7). The issue of identifiability is introduced when taking the 

conditional expectation of yi3 given xi1 in the second equation (Bollen, 1989; Gunzler, 

2011). This “smoothing” process eliminates the independent information needed to estimate 

γzy, thereby rendering the resulting smoothed version incapable of identifying the 

parameters in the second regression model in (1). Thus, to identify all the γ’s without relying 

on higher-order moments, we may define an FRM by bypassing such a smoothing process.

To this end, consider an FRM defined by

(10)

As the SEM in (9), fi1 and gi1 contain no common variable. Since the mean response hi1(θ) 

above retains the variable zi2, all model parameters θ are uniquely defined, and thus 

estimable. Further, the FRM is not a longitudinal regression, since git involves a varying set 

of variables for t = 1, 2.

For either FRM-based mediation model in (7) and (10), its cross-sectional data version is 

similarly defined by simply modifying the respective components of the FRMs. Since the 

alternative FRM in (10) does not involve second-order moments as does ML, GLS, and 

WLS, it is much easier to implement, saving valuable computation time.
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4. Distribution-Free Inference

We first discuss distribution-free inference with no missing data, which is the same for either 

cross-sectional or longitudinal data, and then extend the considerations to the longitudinal 

setting under the two most common missing data mechanisms, MCAR and MAR.

4.1. Complete Data

Consider the FRM-based mediation model in (7) with complete data, with 

. Let

(11)

We estimate θ by the following set of estimating equations:

(12)

Given the model specifications, Si and Di are readily evaluated. Further, given parametric 

assumptions in (1), Vi is also easily computed. Under (9), the estimate  obtained as the 

solution of θ to the equations in (12) is consistent and asymptotically normal, regardless of 

the data distributions, i.e.,

(13)

where →d denotes convergence in distribution.

Unlike the ML estimate, the asymptotic results above do not require the (normal) 

distribution assumptions. But if the conditional joint ui = (yi3, zi2)⊺ given xi1 does follow the 

multivariate normal, the asymptotic variance Σθ in (13) simplifies to the model-based 
asymptotic variance Σθ = B−1. A consistent estimate of Σθ is obtained by substituting 

moment estimates in place of the respective parameters:

where , , , and  denote the corresponding quantities with θ replaced by . Further, 

since we are fixing on our exogenous variable xi1 in our estimating equations, the asymptotic 

results of the FRM-based approach will hold regardless of what type of variable (i.e., 

discrete, continuous) or the data distribution of xi1.

The set of equations in (12) bears a close resemblance to the generalized estimating 

equations II or GEE II (Kowalski & Tu, 2007; Prentice & Zhao, 1991; Reboussin & Liang, 

1998). For convenience, we refer to (12) as GEE II throughout the rest of discussion. By 

setting fi and hi equal to the ones in (10), we can also use (12) to provide inference about θ 
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for this alternative FRM. To ensure consistent estimates, however, we must select Vi in such 

a way that  (Scharfstein, Rotnitzky, & Robins, 1999). For 

example, this condition is met, if Vi = Var(fi | xi1). But, if Vi = Var(fi | xi1, zi2), 

 and (12) is not guaranteed to provide consistent estimates. 

Another choice of Vi to ensure this condition is

A straightforward choice of Vi to ensure this condition is I2. The estimating equations 

approach discussed yields more robust inference than ML. Therefore, using nonnormally 

distributed data, we will obtain more robust estimates for the standard errors and Type I 

errors using this approach. Also of note is that while we are only estimating first moment 

parameters in the alternative FRM, the estimation procedure accounts for the correlated 

responses because we are including a working covariance matrix Vi.

4.2. Missing Data

Applications of GEE II are also used for unbalanced data, and analogous methods to GEE II 

have been proposed for nonnormal, correlated, and unbalanced data in the longitudinal 

setting, applicable to mediation analysis (Allison, 1987; Baker & Fulker, 1983; 

Papadopoulos & Amemiya, 2005; Satorra, 2002; Werts et al., 1979). However, as missing 

data with an underlying mechanism for missingness arise in virtually all real studies, 

applications of GEE II when restricted to the subsample of subjects with completely 

observed data over all assessments (t = 1, 2, 3) are not only inefficient, but more importantly 

are also vulnerable to selection bias (Kowalski & Tu, 2007; Lu et al., 2009; Robins et al., 

1995; Scharfstein et al., 1999; Tsiatis, 2006).

For mean-based distribution-free models such as the generalized linear model, the weighted 

generalized estimating equations (WGEE) is the most popular for inference when the 

missing data follows the missing at random (MAR) assumption, a plausible and yet quite 

general statistical model for missing data that is applicable to many studies in practice 

(Kowalski & Tu, 2007; Little & Rubin, 1987; Lu et al., 2009; Robins et al., 1995; 

Scharfstein et al., 1999; Tsiatis, 2006). We discuss below how to extend this inverse 

probability weighting (IPW) based approach to the current FRM-based SEM models for 

mediation analysis.

We assume that there is no missing data at baseline t = 1, and missing data is the result of 

missed visit. Thus, the trio (xit, zit, yit) is observed for t = 1, but subject to missing for t = 2, 

3. Define a missing (or rather observed) data indicator for each ith subject as follows:
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Under the assumptions, ri1 = 1 (1 ≤ i ≤ n). Let

(14)

In most applications, the missing data probability πit is unknown and must be estimated. 

Under the missing completely at random (MCAR) assumption (Little & Rubin, 1987), ri is 

independent of xi, zi and yi, yielding πit = Pr(rit = 1) = πt (2 ≤ t ≤ 3, 1 ≤ i ≤ n). In this case, 

πt, a constant independent of xi, zi and yi, is readily estimated by the sample moment: 

.

Under MAR, πit becomes dependent on the observed xis, zis, yis for s up to and including 

time t (2 ≤ t ≤ 3), making it difficult to model and estimate πit without imposing some 

further assumption. One popular constraint is the Monotone Missing Data Pattern (MMDP). 

Under MMDP, xit, zit and yit are observed only if their predecessors xis, zis, and yis prior to 

time t are all observed. As patient dropout is the most popular MAR, this assumption not 

only reduces the number of missing data patterns and complexity in modeling πit, but also 

posits a plausible model for modeling missingness in most real studies (Kowalski & Tu, 

2007; Robins et al., 1995).

For 2 ≤ t ≤ 3, let

denoting the vectors containing the explanatory, mediator, and response variables prior to 

time t, respectively. Let

In the above, Hit contains all the observed information prior to time t. It follows from the 

posited assumptions of MAR that

Thus, under MAR, the independence of rit with xi, zi and yi under MCAR is replaced by a 

weaker version of conditional independence; rit is independent of (xit, zit, yit) given Hit.

To estimate πit, let pit = Pr(rit = 1 | ri(t–1) = 1, Hit), denoting the one-step transition 

probability for observing data from time t – 1 to t. We can model pit using logistic 

regression:

(15)
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where  are the parameters for the logistic model above. It is readily 

shown that under MMDP

(16)

where  contains the collection of all parameters for modeling πit (η) (t = 2, 3). 

Thus, we can estimate πit from the estimates of pit using the relationship in (16).

To estimate η, we can use either maximum likelihood or estimating equations. For example, 

when using maximum likelihood, we estimate  as the solution to the score-based estimating 

equations:

(17)

where

(18)

With an estimated πit, we can develop a set of weighted GEE II (WGEE II) for inference 

about θ. Consider first the FRM in (7) and define a weighting matrix as follows:

(19)

Now consider the following WGEE II:

(20)

where Δi is given in (19), and Di, Vi, and Si are defined the same as in the equations in (12) 

except for the redefined longitudinal response fi and mean function hi. As in the GEE II 

case, Vi may be computed under the normal distribution assumption. Finally, to compute an 

estimate of θ from (20), we must substitute an estimate of γ such as the one defined by (17) 

and (18).

The estimate  obtained from solving the WGEE II in (20) has nice asymptotic properties, 

akin to GEE II, as summarized in a theorem below, with a sketch of the proof given in 

Appendix A.

Theorem 1. Under mild regularity conditions,
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1.  is consistent.

2.  is asymptotically normal with asymptotic variance given by

(21)

A consistent estimate of Σθ is given by

(22)

where  denotes the corresponding quantity with θ replaced by . Note that the asymptotic 

variance in (21) contains a modifying term B−1 Φ B−⊺ to account for the sampling variability 

in the estimated . By substituting the first 2 × 2 submatrix of Δi defined in (19) in place of 

Δi in (20), we can apply the resulting WGEE II to provide inference about the θ for the FRM 

in (10).

4.3. A Score Test

As Wald-type tests are typically anticonservative (Daniels & Kass, 2001; Pan, 2001; Yu et 

al., 2013), score statistics are often used as an alternative to reduce bias, especially for type I 

error rates for small to moderate samples. We develop a score statistic based on the WGEE 

II, which is asymptotically equivalent to theWald, but is often more accurate for small and 

moderate samples.

Let , with p and q denoting the dimension of θ(1) and θ(2). Consider testing 

the null H0 : θ(2) = θ(20), with θ(20) denoting a vector of known constants. Let

(23)

Denote by  the estimate of θ(1) from solving the following reduced WGEE II:

(24)

Note that only θ(1) is unknown in the equations above.

Gunzler et al. Page 13

Psychometrika. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To define the score statistic, let

(25)

where Ip designates the p × p identity matrix, B11 denotes the p × p submatrix, B12 the p × q 
submatrix, and B22 the q × q submatrix from the partitioned (p + q) × (p + q) matrix B 

defined in (21), and , with Σθ defined in (21). Let

i.e., the quantities of  and Σ(2) with θ substituted by .

Consider the score test statistic, . As asserted by 

Theorem 2, this statistic has an asymptotic (central)  distribution with q degrees of 

freedom, i.e.,

(26)

Theorem 2. Under mild regularity conditions, if H0 : θ(2) = θ(20) holds true, the score test 

 has the asymptotic distribution in (26). A sketch of the proof is given in 
Appendix B.

5. Applications

In this section, we illustrate the methodology with both simulated and real study data. Since 

only θ = (γ0, γzy, γxy, β0, βxz)⊺ is of primary interest for mediation analysis, we focus on the 

simplified FRM-based SEM in (10) for all simulated and real study data, except for the 

complete data case of the simulation study in which we also apply the FRM in (7) to 

estimate the variance parameters in addition to θ. We start with the simulation study.

5.1. Simulation Study

We carried out a series of simulation studies to examine the performance of the proposed 

approach with different sample sizes. Since the cross-sectional data is a special case of the 

longitudinal setting under complete data, we performed the simulations for the latter only in 

the order of no missing data, and missing data under MCAR and the MAR. We also include 

a power analysis.

We report results for sample size n = 50, 100, and 500 with complete data. Since we 

anticipate potential bias in the ML approach with missing data under MAR in violation of 

parametric assumptions, according to theoretical results, we define our large sample size in 

the missing data simulation as n = 2000 in place of n = 500 to evaluate how this bias 
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continues to increase with sample size. All simulations were performed based on a Monte 

Carlo sample size of 1,000, with data generated and FRM analysis performed using the R 

software (R Development Core Team, 2008).We assumed a continuous xi1 for the simulation 

study in the paper. However, the proposed approach works for continuous and discrete xi1.

We briefly outline the results of the simulation studies with complete data using the SEM for 

the mediation model in (1) in this section, before a more in depth treatment of the results 

with missing data. The FRM in (7) showed almost no bias with complete data and normal 

errors. The simplified FRM in (10) performed similarly well to the existing methods (ML, 

MLR, WLS, and GLS) with complete data and normal errors.

We also performed the same simulations for the simplified FRM in (10) under nonnormal 

error terms, using the t-distributed with 3 degrees of freedom and chi-squared with 1 degree 

of freedom (scaled to have mean 0 and variance 1) error terms, i.e., ϵzi, ϵyi ~ F(0, 1), where 

F(0, 1) is either a t distribution or a rescaled chi-square with 1 degree of freedom. The FRM-

based approach once again showed almost no bias and performed similarly to another robust 

approach, ML estimation with robust asymptotic standard errors (Satorra & Bentler, 1994, 

1998) performed using the MLR option in MPlus (Muthén & Muthén, 1998–2010), under all 

sample sizes. Although ML estimation in theory does not provide consistent estimates for 

nonnormal data, it performed well for these two particular nonnormal distributions, since we 

failed to observe large bias in the ML point estimates. We did observe slightly smaller 

estimates for the asymptotic standard errors under all sample sizes using our FRM-based 

SEM and slightly different Type I errors compared to ML, although these differences were 

almost trivial at n = 500. Another distribution-free approach, WLS, showed some potential 

convergence issues with nonnormal data, given that some of the Monte Carlo runs under the 

t-distributed errors with 3 degrees of freedom lead to inflated estimates for the asymptotic 

standard errors for the estimates of γ = (γ0, γzy, γxy)⊺ at n = 100 and at n = 500 when 

compared to FRM, MLR, ML, and GLS.

5.1.1. Missing Data—We considered the SEM for the longitudinal mediation model with 

central t-distributed random error terms with 3 degrees of freedom:

(27)

Assuming no missing data at baseline t = 1, we simulated missing responses under MCAR 

and MAR with about 15 % (30 %) missing data at t = 2 (3). We also included random effects 

gi, fi, ci, and di in our model for the between subject effects, linking observations of 

measures from previous time points to current time points, a common occurrence in real 

world data. Since the error terms are t-distributed, the joint normal distribution assumption is 

not met in the presence of missing data following MAR. Also, unlike the case in modeling a 

single response over time as in traditional longitudinal data analysis, the MAR mechanism 
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within the current context of mediation analysis is more complex, since missingness can 

occur to either or both of endogenous variables zit and yit.

Note that the random effects in (27) were used to create correlated repeated measures of 

both within- and between-variables. We could have used other approaches such as the copula 

method (Nelson, 2006). However, the random-effect approach allowed us to have better 

control about the relationships both within the same and across different variables.

We discussed how to model the missing data mechanism under MMDP in Section 4.2. In the 

simulation model in (27), the repeated measures of the three variables were linked together 

using random effects and thus missingness of any of the variables could be made to depend 

on itself or any of the other variables at the previous time points. For convenience and 

without the loss of generality, we considered a relatively simple Markov structure for the 

missing value indicator rit, with the missingness of zi2 (yi3) depending only on its 

predecessor zi1 (yi2), with the one-step transition probability pit in (15) taking the following 

form:

(28)

We set ηz2 = ηy3 = 0.4 (ηz2 = ηy3 = 0) for MAR (MCAR), and then selected values of η0t to 

yield about 15 % and 30 % missing data at t = 2 and 3 under MAR (MCAR). We considered 

the simplified FRM-based SEM in (10), but simulated (xit, zit, yit) over all three assessment 

times to enable us to model the missing data.

We fixed , ,  and  so that, approximately:

Therefore, in this simulation we chose a scenario using random effects to link repeated 

measures and a special case of our missing data model to illustrate the type of bias we might 

observe in practice with a moderate amount of missing data.

For the simulation study, we set θ = (γ0, γzy, γxy, β0, βxz)⊺ = (1, 1, 0, 1, 1)⊺. Since γxy = 0, we 

were able to examine the performance of the FRM when used to test the null hypothesis of 

full mediation. Given the correlations and distribution assumptions in (27), the outcomes, 

(xi1, zi2, yi3), were readily simulated from (27). The data generated was fit by the FRM-

based SEM in (7).

To examine type I error rates, we considered the null of full mediation, H0: γxy = 0, for the 

parameter of primary interest, and computed the Wald statistic, , where 

denotes the element of the estimated asymptotic variance  corresponding to . Let 

denote the value of this statistic from the kth MC simulation (1 ≤ k ≤ 1000). The type I error 
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rate for testing H0 was estimated by: , with q1,0.95 denoting the 

95th percentile of the central  with one degree of freedom.

Since the Wald statistic is often anticonservative (Yu et al., 2013), we also applied the score 

test statistic in Section 4.3 to see how this alternative would improve the Wald within the 

current setting. For testing the null H0 : γxy = 0, we partitioned θ as . with θ(1) 

= (γzy, βxz)⊺ and θ(2) = γxy. Under H0 : θ(2) = 0, the score statistic  in (26) has an 

asymptotic  distribution. The type I error rate for the score test was calculated similarly as 

in the Wald by , where  denotes the value of the statistic 

 from the kth MC simulation (1 ≤ k ≤ 1000).

The estimate of θ was obtained from the WGEE II. Both GLS and WLS perform listwise 

deletion and as a result do not provide valid inference in the presence of missing data. 

Therefore, it was unnecessary to include these estimates in the simulation studies. Since 

results under MCAR are quite similar to those under complete data for FRM and ML, we 

only report results for the MAR case. The full information maximum likelihood (FIML) 

approach provided by Mplus handled missing data under ML (Muthén & Muthén, 1998–

2010).

Shown in Table 1 are the percent bias of parameter estimates, estimates of the average 

asymptotic standard errors over 1,000 MC replications and type I error rates for the SEM 

model in (27) under FRM and ML, with missingness modeled as in (28) for FRM. For 

comparison purposes, we also included the relative difference (RD) between the average 

asymptotic and “empirical” standard error estimates defined as

where |·| is the absolute value function.

The percent bias of parameter estimates for FRM was relatively small, and approached zero 

as the sample size increased. However, the estimates for ML showed a heavy bias, which 

stayed at about the same magnitude across the different samples. The Score type I error for 

FRM was close to or below 0.05 at all times, while the Wald type I error was inflated for n = 

50, 100, but decreased to 0.05 at the large sample size of n = 2000. In contrast, the type I 

error for ML remained high and even increased to 0.159 at n = 2000, confirming that ML 

does not provide consistent estimates.

Figure 2 visually depicts the bias in ML compared to FRM. FRM, as the sample size 

increases, becomes even closer to a horizontal line representing the bias of parameter 

estimates (difference between the mean parameter estimates and population parameter 

estimates) for all the estimates of θ = (γ0, γxy, γzy, β0, βxz)⊺, while ML continues to show 
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bias with a curvilinear pattern, under and overestimating the different parameters. We see 

that the size of the confidence intervals for the estimates whether by FRM or ML are all 

decreasing with sample size, with the difference that ML estimates are off target. 

Additionally, we performed the same missing data simulation using MLR in place of ML. 

Since the percent bias of parameters estimates will be the same between the two methods, 

both are problematic. Similar to the case of complete data, for n = 50, 100, the asymptotic 

standard errors were slightly smaller for MLR. However, the type I error was higher for 

MLR (Type I error = 0.092) at n = 50, and n = 100. (Type I error = 0.69). Again, however, at 

the large sample, in this case n = 2000, there was no distinct difference between the two 

methods of MLR (Type I error = 0.162) and ML.

5.1.2. Power Analysis—Shown in Table 2 are the power estimates under sample sizes n = 

50, 100, and 500 for the Wald test for the different methods generated under full mediation, 

H0 : γxy = 0 vs. Ha : γxy = 0.5, considered for the SEM model in (1), with complete data and 

normal errors as well as missing data following MAR modeled by (27) under correlated 

repeated measures and t-distributed errors. Under complete data, the Score test showed that 

the proposed approach had slightly lower power, but still performed well. Note that both the 

Wald test for FRM and WLS showed higher power than ML for n = 50, 100, but these were 

likely the result of bias in the estimates due to small to moderate sample sizes, since ML was 

(asymptotically) the most powerful in the simulation setting with normal errors and 

complete data.

Since we already established a bias in ML with missing data under MAR with nonnormal 

error terms, we wanted to see how FRM would perform under missing data in terms of 

detecting mediation effects. Since only FRM yielded valid inference in this case, the results 

in the table for the large sample size n = 500 indicated that ML had an upward bias. We have 

noted during the simulation study with missing data for the SEM model in (27) that the bias 

in ML is increasing with sample size, so this increase in power may lead a researcher to 

believe even more strongly in biased results.

As in the complete data case, the Wald test for FRM again showed some upward bias, 

especially for the small and moderate sample sizes n = 50, 100. Note that we did not include 

power estimates for GLS and WLS since these methods perform listwise deletion, which not 

only yielded inefficient estimates under missing data, but also invalid inference under MAR.

5.2. Real Study Data

The real study data is shown to complement the simulation results by showing how the 

methods may lead us to different estimates and conclusions when presented with nonnormal, 

skewed complete data and missing data under MAR.

5.2.1. Child Resilience Example with Complete Data—To illustrate the approach to 

real study data, we applied FRM to a longitudinal study known as the Child Resilience 

Project (Wyman, Cross, Brown, Yu, & Tu, 2010). This project is ongoing, with 401 students 

from first up to third grade in five Rochester City School District elementary schools. 

Enrollment began in Fall 2006, with data collection for the final cohort to be completed by 

June 2011. The study examines how children with a higher risk of developing behavioral 
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problems with a mentor socially improve compared to the control and lower risk children 

over periods of 6 and 18 months.

In this mediation analysis, both the mediator and response were focused on helping children 

to manage challenging emotions—emotion self-regulation, self-reported verbal, declarative 

knowledge of the skills the child is learning in the Resilience Project at 6 months. We 

examined what role a potential mediator plays in a cause and effect relationship between the 

treatment and the child’s self-initiated demonstration of skills he/she is learning at 6 months. 

Thus, we have longitudinal data with two assessment times, baseline and 6 months, with the 

mediator hypothesized to occur before the outcome. There were 253 subjects with these 

three measures forming a complete dataset. Shown in Table 3 is a sample of our longitudinal 

data set for the three variables of interest.

The treatment is a binary indicator as children either had a mentor or no mentor. In the 

hypothesis of interest, the treatment would be expected to predict a higher demonstration of 

skills, which would indicate that the children receiving a mentor improved their social skills 

over time. The distributions of both the verbal, declarative knowledge of skills, and 

demonstration of skills were skewed as shown in Figure 3.

By identifying the treatment condition as xi1, the verbal, declarative knowledge of the skills 

at 6 months as zi2, and the demonstration of skills at 6 months as yi3, we modeled the 

mediation process of interest using the SEM in (1).

Shown in Figure 4 are the path diagrams for the direct linear model and full mediation 

model. Since the path for the linear regression was significant, we looked to the mediation 

model to see how the mediator would effect the relationship between the treatment and 

demonstration of skills.

Shown in Table 4 are the estimates of θ, standard errors, and type I errors for this mediation 

model obtained from FRM and ML. Since the results for ML and GLS were practically the 

same, we only included the ML estimates in the table. WLS was unable to yield estimates 

for this highly skewed data, showing the same potential convergence problems as for some 

of the Monte Carlo runs with the t-distributed with 3 degrees of freedom error terms in our 

simulation studies. From the table, we see that the estimates for FRM and ML were 

practically the same. This is not surprising, since, as noted in our simulation study, ML 

would still produce consistent estimates in the presence of nonnormal error under complete 

data. However, the standard error was significantly lower for the FRM estimate of γ0, and 

the standard errors were also lower for the FRM estimates of β = (β0, βxz)⊺. Although the 

FRM and ML estimates of γxy, the parameter of primary interest to the mediation 

hypothesis, were identical to the three decimal places shown in the table, the slightly higher 

standard error and type I error of FRM may be the most accurate. Since we hypothesized 

(both conceptually as well as based on other related findings) that a demonstration of skills 

was positively associated with treatment in this model, the estimates of γxy confirmed this 

relationship.

The relationship was significant in the linear model, and the magnitude of the relationship 

has decreased, while the p-value has increased in the mediation model. Therefore, verbal, 
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declarative knowledge of skills at 6 months may be a partial mediator. It is important to note 

that all parameters θ = (γ0, γxy, γzy, β0, βxz)⊺ were highly significant for FRM by bothWald 

and Score Type I errors (p ≤ 0.005). However, for ML the γ0 parameter was not significant 

(p = 0.053).

5.2.2. Child Resilience Example with Missing Data—As mentioned in Section 5.2.1, 

there were 401 students in the child resilience project. We had full information on whether 

each child received the treatment at baseline. However, there were more missing 

observations for demonstration of skills at 18 months, as now only 164 students were 

observed. A longitudinal mediation analysis under missing data, using the same three 

variables as in Section 5.2.1, over 18 months will help us understand if the treatment is 

effective over a longer time period, accounting for all 401 children in the study.

When modeling for the missing data, we had 253 observations for the mediator, declarative 

knowledge of the skills at 6 months, as in the complete data example. Shown in Table 5 is a 

sample of our longitudinal data set for the three variables of interest.

We expanded our mediation analysis to an 18-month time period with missing data by 

identifying the treatment condition as xi1, the verbal, declarative knowledge of the skills at 6 

months as zi2, and the demonstration of skills at 18 months as yi3, and model the mediation 

process of interest using the SEM in (1), as shown in Figure 5.

We had a high percentage of (37 %/59 %) missing data at t = 2(3) and modeled our missing 

data using the following logistic model:

(29)

(30)

This is a special case of our missing data model from Section 4.2 in which we are only 

observing xi1, zi2, and yi3 and building our missing data models with only observed data at 

the previous time point from xi1 and zi2. We estimated the parameters in R with the glm 

function. Since we modeled our missing data at t = 2 based on the treatment information at 

baseline, we used all 401 observations.

Shown in Table 6 are the estimates of η = (η02, ηx1, η03, ηz2) for the missing data model in 

(29). The p-value for ηz2 was significant, indicating a MAR mechanism for the missing data 

at time 3. Since the p-value for ηx1 was not significant, missing data at time 2 was MCAR 

and we would expect no bias for the estimates of β = (β0, βxz)⊺ in ML according to our 

simulation results in Section 5.1.1. However, based on our simulation results in Table 1, we 

expect to see a bias for the estimates of the γ = (γ0, γxy, γzy)⊺ parameters in ML. 

Subsequently, if we assumed a MAR mechanism for the missing data at time 2 and a MCAR 

mechanism for the missing data at time 3, we would expect bias for the estimates of β = (β0, 

βxz)⊺ at time 2 but not for γ = (γ0, γxy, γzy)⊺ at time 3 in ML. In the hypothesis of interest, 

the treatment would be expected to predict a higher demonstration of skills at 18 months, 
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which would indicate that the children receiving a mentor improved their social skills over 

time.

Shown in Table 7 are the estimates of θ and associated standard errors and type I errors for 

this mediation model obtained from FRM and ML. From the table, we see that the estimates 

for FRM and ML were practically the same for the β = (β0, βxz)⊺ parameters, but different 

for γ = (γ0, γxy, γzy)⊺. In the three significant estimates with the same or similar results for 

FRM and ML, (γ0, β0, βxz)⊺, FRM had a smaller standard error. We saw from the simulation 

for longitudinal missing data in Table 3 that ML would produce a value of γxy biased less in 

magnitude than the true estimate. This appeared true again as the FRM estimate was higher 

in magnitude, confirming that the treatment predicted a higher demonstration of skills at 18 

months. The parameter γzy was not significant for either FRM or ML in this model (p > 

0.421 for the Wald test in both FRM and ML), implying a nonsignificant indirect effect in 

this mediation analysis.

6. Discussion

Mediation analysis is a critical component of many studies in biomedical, psychosocial, and 

related services research to investigate the causal mechanism of interventions. The 

traditional regression paradigm is ill-suited for modeling such multidimensional causal 

relationships, because of the complex relationships among different variables and many 

different roles a variable may play. Although the structural equation model (SEM) provides 

an ideal conceptual framework for the dynamic role a mediator plays in channeling the 

effect of a causal agent to the outcome of interest, the various restrictions imposed by the 

available inference methods have hindered its wide use, and limited the utility of the 

information provided in real studies. Namely, in real studies, commonly we come across 

missing data, where making the MAR assumption is reasonable and parametric assumptions 

may be violated.

Great progress has been made in the analysis of causal relationships, particularly in the area 

of distribution-free models for longitudinal data analysis, over the past few decades. 

However, little of this progress applies directly to SEM and its application to modeling 

mediation relationships within a longitudinal setting. One major block is the nonlinear 

nature of SEM in its parameters, which in general requires second- and even higher-order 

moments to identify model parameters. As only the first-order moment is modeled in the 

standard regression paradigm, addressing the limitations of SEM requires a paradigm shift 

by breaking the tradition in current regression analysis and creating a new framework for 

modeling nonlinear relationships and higher-order moments.

By taking advantage of the functional response models (FRM), we have developed a new, 

robust approach to systematically address the limitations of SEM as it applies to mediation 

analysis. This class of FRM-based SEM requires no parametric models for the data 

distribution and provides valid inference for longitudinal mediation hypotheses under the 

two most popular missing data mechanisms, missing completely at random (MCAR) and 

missing at random (MAR).
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The results from the simulation studies indicate that the new approach performed well under 

both complete and missing data for small and moderate sample sizes. Under complete data, 

the FRM-based SEM is nearly on par with the parametric ML in efficiency. Thus, the loss of 

efficiency seems to be negligible for practical purposes. On the other hand, the FRM-based 

mediation model shines when the missing data follow MAR with nonnormal errors, since it 

is the only model to provide robust estimates and valid inference.

The validity of WGEE II relies on a correct model for the missingness. If this model is 

misspecified, WGEE II estimates may be biased. Work is currently underway to investigate 

the possibility to extend the concept of double robust estimate in traditional distribution-free 

regression models to the current context of FRM-based mediation model (Browne, 1974; Lu 

et al., 2009; Satorra, 2002). Currently, in progress are also extensions of the approach to 

noncontinuous outcomes such as binary.
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Appendix A. Proof of Theorem 1

Let  and πi = (πi1, … , πim 1)⊺. Then , with Gi Δi Si = Gi(xi, 

θ) Δi(ri, πi, γ)Si(yi, xi, θ). It follows from the iterated conditional expectation that E(Gi Δi Si) 

= E[Gi SiE(Δi | ri, yi, xi)]. Since , it follows that E(Gi Δi Si) = E(Gi 

Si) = 0. Thus, the WGEE II is unbiased and the estimate  obtained as the solution to the 

equations is consistent.

Let  be the solution to (17). By a Taylor expansion of the estimating equations in (17) and 

solving for , we obtain

(A.1)

where op(1) denotes the stochastic o(1) (Kowalski & Tu, 2007). Also, by applying a Taylor 

series expansion to the WGEE II in (20), we have

It follows from (A.1) and (A.2) that
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(A.2)

Since

(A.3)

where →p denotes convergence in probability, it follows from (A.2) and (A.3) that

(A.4)

By applying the central limit theorem and Slutsky’s theorem (Kowalski & Tu, 2007) to (A.

4),  is asymptotically normal with the asymptotic variance given by Σθ in (21).

Appendix B. Proof of Theorem 2

First, assume no missing data. Then . By applying the law of large 

numbers,

(B.

1)

It follows from a Taylor’s series expansion and (B.1) that

Thus,

(B.2)

Similarly, since , we have

(B.3)

It follows from (B.2) and (B.3) that

By the central limit theorem,
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(B.4)

where G is defined in (25) and Σθ in (21). In the presence of missing data, 

 as defined in (21). By a similar argument,  has an 

asymptotic normal distribution, which implies that the score statistic  has 

the asymptotic  distribution.
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Figure 1. 
Diagram showing the pathway of a mediation process for a tobacco prevention program.
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Figure 2. 
Simulation Results:Mean estimates – population estimates (± standard errors) show the bias 

in ML while FRM performs well with missing data.
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Figure 3. 
Histogram of the mediator and outcome for the Child Resilience Study.
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Figure 4. 
Path diagram for the mediation model for the Child Resilience Study.
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Figure 5. 
Path diagram for the mediation model for the Child Resilience Study with MAR Data.
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Table 1

Comparison of percent bias of parameter estimates, average asymptotic standard error, relative difference (RD) 

between average asymptotic and empirical standard error, and type I error rates, under and type I error rates, 

with missing data under MAR from 1000 MC simulations.

Missing data (15 %/30 % at time 2/3) with correlated repeated measures, t-distributed error terms

θ (%) Bias
Method

Standard error
Method

Asymptotic RD

FRM ML FRM ML FRM ML

Sample size = 50

γ 0 9.9 60.2 0.679 0.691 0.248 0.107

γ zy 1.7 4.9 0.181 0.187 0.264 0.082

γ xy −3.7 −6.7 0.347 0.357 0.204 0.062

β 0 0.8 21.4 0.549 0.555 0.070 0.028

β xz 1.4 3.3 0.234 0.246 0.175 0.086

α for H0: γxy = 0 Wald 0.134 0.079

Score 0.057

Sample size = 100

γ 0 5.4 61.9 0.512 0.495 0.227 0.078

γ zy 0.9 5.1 0.139 0.133 0.189 0.044

γ xy −0.1 −5.5 0.259 0.247 0.189 0.004

β 0 1.0 22.1 0.400 0.397 0.046 0.030

β xz 0.2 2.7 0.168 0.171 0.041 0.036

α for H0: γxy = 0 Wald 0.107 0.057

Score 0.064

Sample size = 2000

γ 0 0.4 63.3 0.138 0.111 0.148 0.053

γ zy 0.1 4.8 0.040 0.029 0.072 0.034

γ xy −0.4 −5.1 0.074 0.054 0.115 0.000

β 0 −0.3 22.2 0.093 0.090 0.052 0.033

β xz 0.2 2.9 0.040 0.038 0.000 0.027

α for H0: γxy = 0 Wald 0.054 0.159

Score 0.047
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Table 2

Comparison of type II error rates through power analysis from 1000 MC simulations.

Power Analysis under H0: γxy = 0, HA: γxy = 0.5
Normal error under complete data

Method

Sample size FRM (Wald) FRM (Score) ML GLS WLS

50 0.735 0.647 0.706 0.697 0.735

100 0.924 0.899 0.920 0.920 0.924

500 >0.999 >0.999 >0.999 >0.999 >0.999

Missing data (15 %/30 % at time 2/3) with correlated repeated measures, t-distributed error terms

Method

Sample size FRM (Wald) FRM (Score) ML

50 0.350 0.204 0.264

100 0.511 0.363 0.458

500 0.938 0.915 0.985
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Table 3

Child Resilience Study complete dataset sample.

ID Treatment at baseline Knowledge of skills at 6 months Demonstration of skills at 6 months

1 No 9 0

2 Yes 8 4

3 No 0 0

4 No 14 3

5 Yes 14 1

6 Yes 0 0

7 No 9 1

8 No 4 1

9 Yes 10 2

. . . .

. . . .
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Table 4

Parameter estimates, standard errors, and type I error rates for the mediation model for the Child Resilience 

Study with complete data.

Estimates, standard errors and type I errors
Child Resilience Study example under complete data

θ Estimate
Method

Standard error
Method

Asymptotic

FRM ML FRM ML

Sample size = 253

γ 0 0.392 0.392 0.127 0.202

γ zy 0.117 0.117 0.032 0.029

γ xy 0.873 0.873 0.306 0.279

β 0 3.429 3.429 0.369 0.374

β xz 4.390 4.390 0.527 0.529

Type I α for H0: γxy = 0 Wald 0.004 0.002

Score 0.005
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Table 5

Child Resilience Study dataset sample with missing data.

ID Treatment at baseline Knowledge of skills at 6 months Demonstration of skills at 18 months

1 No 9 3

2 Yes 8 4

3 No 0 NA

4 No 14 0

5 Yes NA NA

6 Yes 14 0

7 Yes NA NA

8 Yes 0 NA

9 No 9 2

. . . .

. . . .
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Table 6

Parameter estimates, standard errors, and p-values for the missing data model for the Child Resilience Study.

Estimates, standard errors and p-value
Child Resilience Example under missing data

η Estimate Standard error
Asymptotic

p-value

Sample size = 401

η 02 0.546 0.147 <0.001

η x1 −0.019 0.207 0.926

η 03 0.250 0.201 0.214

η z2 0.067 0.029 0.022
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Table 7

Parameter estimates, standard errors, and type I error rates for the mediation model for the Child Resilience 

Study with missing data.

Estimates, standard errors and type I errors
Child Resilience Study example under missing data (37 %/59 %)

θ 
Estimate
Method

Standard error
Method

Asymptotic

FRM ML FRM ML

Sample size = 401

γ 0 1.812 1.810 0.278 0.352

γ zy −0.042 −0.039 0.053 0.050

γ xy 2.330 2.283 0.503 0.480

β 0 3.429 3.429 0.370 0.374

β xz 4.390 4.390 0.528 0.529

Type I α for H0: γxy = 0 Wald < 0.001 <0.001

Score < 0.001
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