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Abstract
Several models of Gastric Emptying (GE) have been employed in the past to represent the

rate of delivery of stomach contents to the duodenum and jejunum. These models have all

used a deterministic form (algebraic equations or ordinary differential equations), consider-

ing GE as a continuous, smooth process in time. However, GE is known to occur as a

sequence of spurts, irregular both in size and in timing. Hence, we formulate a simple sto-

chastic process model, able to represent the irregular decrements of gastric contents after a

meal. The model is calibrated on existing literature data and provides consistent predictions

of the observed variability in the emptying trajectories. This approach may be useful in met-

abolic modeling, since it describes well and explains the apparently heterogeneous GE

experimental results in situations where common gastric mechanics across subjects would

be expected.

Introduction
Gastric Emptying (GE) is the process by which the stomach delivers food into the duodenum:
the stomach exhibits regular churning contractions and these are occasionally coupled with
peristaltic contractions and relaxation of the pyloric sphincter to produce intermittent squirt-
ing of partially digested chyme into the duodenum. GE is thus a highly coordinated physiologi-
cal response to the presence of food in the stomach, which can be impaired in several
pathological conditions [1–3]. Besides its intrinsic interest in relation to disturbances of Gas-
tro-Intestinal (GI) motility, an understanding of GE is also very important for all those meta-
bolic studies, which depend on the delivery of nutrients from the stomach into the absorbing
portions of the GI tract [4–8]. It is now emerging that the rate of gastric emptying may be a
major determinant of postprandial glycemic excursions in healthy subjects, as well as in Type 1
and Type 2 Diabetes Mellitus (T1DM, T2DM) patients: studies suggest that an inverse relation-
ship between the rate of gastric emptying and blood glucose concentration exists in T2DM
patients and that similar regulatory mechanisms may exist in both T1DM and T2DM [9].
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It must be noticed that considerable intra-individual variability in gastric emptying rates
has been observed in several studies.

Fraser and coAuthors [10] reported high intra-individual variability in stomach ethanol
absorption. Twenty-four healthy subjects were studied in two different days. The ranges of
time to peak plasma concentration were 16.1–51.1 min in the first study, and, 20.7–61.1 min in
the second study. Furthermore, Fig 2 (page 389) shows the large differences between first and
second study (in the same subjects) in the mean values of AUC, peak concentration and time
to peak concentration.

Pedersen [11] studied gastric emptying of a liquid meal. This Author reported that there
was no evident relationship between the differences in twelve healthy subject pairs of repeated
measurements (2 times at different days) and the corresponding mean values. As shown in Fig
1 on page 341, there were large fluctuations in sonographic antral area measurements before a
meal of broth, immediately after the meal, and 10 min after the meal.

Brophy and coAuthors [12] reported high intrasubject variability for both the emptying of
solids and the emptying of liquids using traced meals. Eight healthy subjects were studied four
times on different days. As shown in Figs 2 and 3 on page 803, there were wide ranges in liquid
and solid half emptying times, respectively, within and between subjects.

In fact, the process of gastric emptying is far from continuous. Several concurrent, partially
coordinated mechanisms, contribute to the mixing of stomach contents; to the formation of
peristaltic waves and of retrograde waves (retropulsion); to the temporary limited opening of
the pyloric sphincter; and to the evidential squirting ejection of sufficiently liquid chime [13–
16]. While approximate frequencies of chyme expulsion from the stomach are assessed in
experimental preparations, during each meal the moments at which squirting through the
pylorus occurs as well as the corresponding squirted chyme amounts are irregular.

Several models have been proposed to describe the rate of GE (for both liquid and solid
meals) over time, in humans and in animals. These include at least mono-exponential models
[6, 8]; a lag-time exponential model [17]; power exponential models [4, 7, 17–19]; a double
power exponential model [17]; modified power exponential models [20, 21]; and nonlinear
first order deterministic elimination models [22]. These models are summarized below.

Mono-exponential models: Ogungbenro and Aarons [6] proposed a semi-mechanistic
model for analyzing 13C-ocanoic acid breath test (a measurement of GE) data. The model had
five compartments. In the stomach compartment, a mono-exponential function

yðtÞ ¼ e�kt ð1Þ

was applied, where y(t) is the fraction of the liquid meal retained in the stomach at time t; and
k is the GE rate.

Yu and Amidon [8] modeled a compartmental absorption and transit system in the gastro-
intestinal tract for estimating oral drug absorption. As a part of the overall model, the delivery
of drug from the stomach into the small intestine was represented as first-order deterministic
elimination:

dy
dt

¼ �ky; ð2Þ

where y(t) is the amount of drug in the stomach; and k is the emptying rate constant. From this
equation the gastric drug retention is directly computed as:

yðtÞ ¼ Ce�kt; ð3Þ
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where C is a constant expressing initial gastric drug content. This equation clearly corresponds
to Eq (1) above.

A lag-time exponential model: Locatelli et al. [17] proposed three mathematical models
that describe human GE of pellets under fasting conditions. One of these models is a lag-time
exponential model

yðtÞ½%� ¼ 100e�kðt�tlag Þ; ð4Þ

where y(t) is the proportion of pellets still remaining in the stomach at time t; k is the first
order elimination rate constant; and tlag is the delay time in the GE. The other two Locatelli
models are described below.

Power exponential models: Locatelli et al. [17] proposed a second GE model incorporating
a two-parameter Weibull distribution over time:

yðtÞ½%� ¼ 100e�
t
Zð Þb ; ð5Þ

where y(t) is the proportion of pellets still remaining in the stomach at time t; η is the scatter
parameter; and β is the shape parameter.

Salinari et al. [7] proposed a mathematical model for the intestinal transit of a glucose bolus.
They described GE as a power exponential function

yðtÞ ¼ e�ðktÞb ; ð6Þ

where y(t) is the fraction of glucose retained in the stomach at time t after glucose ingestion;
and k, β are constants.

A double power exponential model: Again Locatelli et al. [17] proposed a third GE model
resulting from the sum of two of the previous Weibull models:

yðtÞ½%� ¼ ð100� HÞe� t
Z1ð Þb1 þ He�

t
Z2ð Þb2 ; ð7Þ

where y(t) is the proportion of pellets still remaining in the stomach at time t; η1, η2 are the
scatter parameters; β1, β2 are the shape parameters; andH is the percentage of pellets remaining
in the stomach when GE has temporarily stopped. When assessing their three models, Locatelli
et al. [17] concluded, on the basis of the Akaike criterion, that this sum-of-Weibulls best fitted
individual published data.

Amodified power exponential model: Siegel et al. [21] used a modified power exponential
function

yðtÞ ¼ 1� ð1� e�ktÞb; ð8Þ

where y(t) is the fractional meal retention at time t; k is the gastric emptying rate; and β is the
extrapolated y-intercept from the terminal portion of the curve. The goal of these Authors was
to obtain fractional meal retention values for analyzing the characterization and quantification
of the lag phase and the GE rate for both solids and liquids.

A nonlinear first order deterministic elimination model: Stubbs [22] applied the laws of
Laplace, Hooke, and Poisseuille to derive an equation of GE for human adults

dy
dt

¼ �kypð1� ðv
y
ÞnÞ; ð9Þ

valid when y(0)< 300 ml. Here y(t) is the volume in the stomach at a given time t after a meal;
k is the emptying rate constant, related to the composition of the meal; v is the volume of a rest-
ing stomach; and p, n are constants. By minimizing the squared residuals between some

Stochastic Model of Gastric Emptying

PLOS ONE | DOI:10.1371/journal.pone.0153297 April 8, 2016 3 / 15



published data and the fitted values obtained from the equation, they estimated p ¼ 4
3
; n ¼ 1

2

and v to about 28 ml.
In our view, the essential limitation of all of the above models is that they describe GE as a

continuous, smooth process in time. We however know that GE is a discontinuous process
[23–26], which proceeds in spurts separated by quiescent periods and that both the timing and
the volume of the spurts appear random to the observer. The aim of the present study is there-
fore to formulate a stochastic model, which can describe this behavior and which can be used
in the future to model gastrointestinal tract function.

Stochastic models have already been proposed, in alternative to deterministic models, in
other areas of biomedical research [27–30]. In all of these cases the rationale being that deter-
ministic models fail to correctly capture system behavior where conditions are far from the
usual assumptions for mean-field approximations. In the present case as well, using an expo-
nential or other similar deterministic model would lead to incorrect conclusions if the underly-
ing system were inherently stochastic. These considerations motivate the search for a simple,
plausible model, qualitatively coherent with known physiology.

Materials and Methods

The model
A stochastic model for gastric emptying is desired, such that at time t0 the (fractional) residual
meal content of the stomach is 1 (i.e. 100% of the meal, supposed to be instantaneously deliv-
ered to the stomach at time t0), and such that, by successive random (instantaneous) “spurts”
the residual content of the stomach decreases towards zero. In order to formulate this first sto-
chastic gastric emptying model (S-GEM1), we start with a standard Wiener processW = {W
(t)jt� 0}. Next, the power exponential function of standard Wiener process is evaluated as:

XðtÞ ¼ e�ajWðtÞjb ; ð10Þ
where α and β are parameters determining the shape of the variation of X over the positive
reals. Finally, the fractional residual meal content (S(t)) at a given time t can be represented as

SðtÞ ¼ min
0<s<t

XðsÞ: ð11Þ

The meaning and units of measurement of the model’s state variables and parameters are
reported in Table 1.

Clearly, S(t) will be a monotonically non-increasing jump process, where both the timing
and the size of the jumps are random and whose overall behavior roughly resembles a decreas-
ing exponential, given that large downward jumps of X(t) typically appear at earlier times.

Table 1. State variables and all parameters in the S-GEM1model.

Symbol Extended Name Value Unit

t Time - minute

W Standard Wiener process - #

X Power exponential function of Wiener process - #

S Fractional residual meal jump process - #

α Parameter 1 × 10−6 #

β Parameter 6 #

ftj; ujg1
j¼1

Actual spurts - (minute, #)

doi:10.1371/journal.pone.0153297.t001
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Notice that the actual spurts are given by the sequence ftj; ujg1j¼1, where {tj} = {t j S(t+)< S

(t)} and fujg ¼ fSðtjÞ � Sðtþj Þg.
As an example, S-GEM1 could be used, within a broader model of the glucose-insulin sys-

tem, by incorporating the resulting sequence of times and amounts of glucose entry into the
jejunum, for instance, as

dJ
dt

¼ �kGJJ þM0

X1

j¼1

dðt � tjÞuj ð12:1Þ

dG
dt

¼ �kXGIGI þ kx þ kGJJ þ . . . ð12:2Þ

dI
dt

¼ . . . . . . . . . . . . ð12:3Þ

. . . . . . . . . . . . . . . . . . ; ð. . . . . .Þ
where J is the amount of glucose in the jejunum while G and I respectively represent glucose
and insulin plasma concentrations andM0 is the total amount of glucose in the meal. Notice
that Eqs (12) above are deterministic except for the random set of times and amounts {tj, uj}.

Data acquisition
In order to adapt our model to real data, we graphically acquired the 19 individual data sets
presented in Locatelli et al. (see S1 File), referring to human GE studies conducted by means of
gamma-scintigraphic measurement of residual stomach content of orally administered pellets
under otherwise fasting conditions.

The nineteen scintigraphic data sets in Locatelli et al. [17] were all taken from young healthy
subjects, most of them male. The pellet size given to the subjects varied between 0.5 and 5 mm;
pellets were accompanied with 100–200 ml of water or orange juice. During the evaluation of
GE, all subjects were studied in the upright body position.

Simulation study
Each individual was simulated over 240 minutes, with a discretization step Δt = 0.01 min.

The 90%two-sided path confidence bounds for each couple of α and β parameter values
were evaluated numerically over a sample of 2000 trajectories for each parameter combination.

No formal parameter estimation was carried out, both for simplicity and because the origi-
nal data were not available to us (only graphically acquired points from a published paper were
used). Instead, the parameter combination was chosen, from all those used for simulation,
which generated a 90% confidence envelope broadly consistent with the reported Locatelli’s
data [17].

Results
For each couple of parameter values (α and β) 2000 trajectories were obtained from the model,
corresponding to 2000 stochastic realizations of the same emptying process (as defined by the
generating parameter values). What is not commonly appreciated in the medical environment
is that observed profiles corresponding to identically structured physiological phenomena can
appear strikingly different, when system noise is non-negligible. In the simulations obtained, in
fact, there is often a very considerable spread in the 2000 trajectories obtained with identical
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parameter values. This spread is obviously greater when neither the α nor the β parameter are
either very large or very small. When either parameter is very large the probability of rapid
emptying becomes so large that all trajectories are grouped in the bottom-left region of the
time-content plane. When both parameters are very small, stochastic variability as well as emp-
tying rate are minimal, and trajectories are grouped at the top of the time-content plane. These
findings are wholly expected and consistent with the physiology: substantial variability being
expected in normal subjects, while in paralyzed stomach as well as in, say, retching (which we
mention for the sake of argument, even though it does not represent a case of forward gastric
emptying), the expected behavior is much the same in all affected subjects.

Fig 1 shows the nineteen graphically acquired original subjects from Locatelli et al. [17],
each connected sequence corresponding to a different subject.

Fig 2 shows eight examples of individual simulated GE profiles from the stochastic model.
For each Fig 2 panel, both the X process (continuous line) and the corresponding (down-

ward) jump process S (dashed line) are shown.
The left panels of Fig 2 report examples for β = 4, the right ones examples for β = 6. In each

column, the four panels correspond, top to bottom, to increasing values of α (1 × 10−7, 1 × 10−6,
1 × 10−5 and 1 × 10−4).

It can be appreciated that when the volatility of X is very large (e.g. panels 2d, 2f, 2h), the S
process falls to zero very quickly. Conversely, when the volatility of X is small, S falls slowly
(e.g. panel 2c) or very slowly (e.g. panel 2a).

Fig 3 shows the two-sided confidence bounds of trajectories obtained with different combi-
nations of α and β parameter values. The panels in Fig 3 are arranged in the same way as the
panels in Fig 2, the left column corresponding to β = 4, the right column to β = 6, and panels
within each column corresponding, top to bottom, to α = 1 × 10−7, 1 × 10−6, 1 × 10−5 and
1 × 10−4.

An increase in β corresponds to a more rapid gastric emptying at any level of α, and simi-
larly an increase of α also corresponds to a faster overall rate of gastric emptying. Varying the
one or the other parameter however produces different changes in the shape of the 90% trajec-
tory envelope.

Fig 4 shows the mean, 5th and 95th percentile of 2000 trajectories of S(t). Fig 5 shows the
distribution of the 2000 values of S(t) at t = 150 minutes for various combinations of parameter
values.

Fig 1. Connected plots of 19 scintigraphic data sets. Connected plots (solid lines) of 19 profiles acquired
from Locatelli et al. [17]. Abscissa is time t after the pellet meal, ordinate is fraction f of meal remaining in the
stomach at each time.

doi:10.1371/journal.pone.0153297.g001
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In Fig 4, in the left column, an increase in β corresponds to a more rapid gastric emptying,
and similarly in the right column, an increase of α also corresponds to a faster overall rate of
gastric emptying. Varying the one or the other parameter however produces different changes
in the shape of the 90% trajectory envelope. It should be emphasized that in order to maintain
the overall rate of gastric emptying for different choices of parameter values, if one increases
the values of β, then one needs to decrease the values of α. As a result, the 90% trajectory enve-
lope will be wider in the top panels and tighter in the bottom panels (as shown in the middle
column). The different behavior of increasing one or the other parameters can also be exam-
ined by comparing the distributions of the jump process S at some fixed time, e.g. at t = 150
min, for various combinations of parameter values. For each panel in Fig 5 the 50th percentile
of the process S at t = 150 min is approximately equal to 0.5, i.e. approximately half of the tra-
jectories show less than 0.5 emptying at 150 minutes and half show larger than 0.5 emptying at
150 minutes, or, in other words, at the fixed time 150 minutes 50 percent of the realizations
have less than one half the initial contents and the other 50 percent have more than one half

Fig 2. Model with the GE represented by Eqs 10 and 11.Model with the GE represented by Eq 10 (solid
lines) and Eq 11 (dashed lines) in two different values of parameter β: β = 4 (2a, 2c, 2e and 2g) and β = 6 (2b,
2d, 2f and 2h). In each parameter β, α is differently considered: α = 1 × 10−7 (2a and 2b), α = 1 × 10−6 (2c and
2d), α = 1 × 10−5 (2e and 2f), and α = 1 × 10−4 (2g and 2h). Abscissa is time t after the pellet meal, ordinate is
fraction f of meal remaining in the stomach at each time.

doi:10.1371/journal.pone.0153297.g002
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the initial contents. Each panel in Fig 5 corresponds to a different combination of values of β
and α, but for all these combinations the median at 150 minutes is always 0.5. However, for
smaller values of β and larger values of α (e.g. panel a), the distribution of S(150) is tightly con-
centrated around its median, while as the values of β increase and the values of α decrease, the
distribution of S(150) becomes more and more dispersed (e.g. panels e and f), corresponding to
a large variability of emptying at this time among realizations obtained with the same parame-
ter values.

Fig 6 shows again the graphically acquired data from the original Locatelli paper [17]
together with the 90% confidence bound, obtained numerically pointwise in time from 2000
realizations of the S-GEM1 solutions with parameters α = 1 × 10−6 and β = 6.

It should be noted that 9.73% of the Locatelli observations, obtained from six of the observed
patients fell outside this theoretical 90% confidence band.

Fig 3. 90% two-sided confidence bounds of S(t). 90% two-sided confidence bounds of S(t): the 5th
percentile (solid lines) and the 95th percentile (dashed lines). Parameters: β = 4 (3a, 3c, 3e and 3g), β = 6 (3b,
3d, 3f and 3h). α = 1 × 10−7 (3a and 3b), α = 1 × 10−6 (3c and 3d), α = 1 × 10−5 (3e and 3f), and α = 1 × 10−4 (3g
and 3h). Abscissa is time t after the pellet meal, ordinate is fraction f of meal remaining in the stomach at each
time.

doi:10.1371/journal.pone.0153297.g003
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Discussion
As is apparent from the brief review of previous mathematical models for GE reported in the
Introduction, rates of GE are generally calculated by fitting residual gastric content observa-
tions to deterministic mathematical representations of the emptying process. Several such GE
models have been proposed so far, based on exponential, power exponential, double power
exponential, linear-exponential, modified power exponential and deterministic elimination
models [4, 6–8, 17–22]. Currently, the most popular models for both liquid and solid meals are
the exponential and power exponential models [4, 6–8, 17–19].

As has already been mentioned before, however, the actual process of GE is characterized
physiologically by a random sequence of spurts of semiliquid, semidigested boli through the

Fig 4. 90% two-sided confidence bounds andmean of S(t). 90% two-sided confidence bounds and mean
of S(t): the 5th percentile (dashed lines), the 95th percentile (dashed-dot lines) and the mean (solid lines).
Parameters: β = 6 (4a and 4b), β = 4 (4d and 4e), β = 3 (4c, 4f, 4g, 4h, 4i, 4l and 4o), β = 2 (4j and 4k), β = 1
(4m and 4n). α = 1 × 10−6 (4b and 4c), α = 1 × 10−4 (4e and 4f), α = 1 × 10−3 (4a, 4d, 4g, 4h, 4i, 4j and 4m), α =
1 × 10−2 (4k and 4l), and α = 1 × 10−1 (4n and 4o). Abscissa is time t after the pellet meal, ordinate is fraction f
of meal remaining in the stomach at each time.

doi:10.1371/journal.pone.0153297.g004

Stochastic Model of Gastric Emptying

PLOS ONE | DOI:10.1371/journal.pone.0153297 April 8, 2016 9 / 15



Fig 5. Comparison of the distributions of the jump process S(t) at t = 150min. The distributions of S(t)
from 2,000 simulations at t = 150 min corresponding to different sets of parameter values, each of which has
the 50th percentile of the process S(t) approximately equal to 0.5. Abscissa is the values of S(t) at t = 150 min
and ordinate is the frequency.

doi:10.1371/journal.pone.0153297.g005

Fig 6. Connected plots of 19 profiles together with 90% two-sided confidence bounds of S(t).
Connected plots (solid lines) of 19 profiles acquired from Locatelli et al. [17] together with 90% two-sided
confidence bounds of S(t): the 5th percentile (dashed line) and the 95th percentile (dash-dot line)
corresponding to parameters α = 1 × 10−6 and β = 6. Abscissa is time t after the pellet meal, ordinate is
fraction f of meal remaining in the stomach at each time.

doi:10.1371/journal.pone.0153297.g006
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pylorus into the duodenum. This sequence of spurts is apparently random both in timing and
in size (volume of the boli), with the evident constraint that, as the stomach empties, the boli
must eventually decrease in size. Any deterministic model of the above process is a rather
crude approximation, whose value for applications mainly resides in its simplicity. The avail-
ability of a reasonably simple stochastic model for GE could be important for applications if it
allowed a better representation of the inherent variability of the GE process.

Stochastic models in literature are very frequent and they are used in different fields: in
finance (interest rate, stock prices), biology (population dynamics, epidemics), physics (fluid
particles thermal noise), control and signal processing (controllers, filtering). When modeling
the time course of a variable of interest as a stochastic process, different approaches can be fol-
lowed: it is possible to define a stochastic differential equation for the variable, or to define an
equation where the time evolution of the stochastic variable is directly represented, or to
express the time evolution of the probability density function of the variable. In the present
work, we propose a formulation of the relevant stochastic system by directly specifying the evo-
lution of the stochastic variable ‘Residual Stomach Content’ over time, as driven by a Wiener
process. Generally speaking Wiener processes with drift are often applied to modelling practi-
cal situations in which deterministic processes are disturbed by random fluctuations. Examples
of such an approach are given by Wiener-based degradation models, used to characterize the
path of degradation processes where the degradation increases linearly over time and where
fluctuations in degradation can be observed [31–33]. In this kind of approaches the main inter-
est is in Remaining Useful Lifetime (RUL) prediction.

Other examples are the exponential Levy models, frequently used in finance, which general-
ize the classical Black and Scholes models by allowing the stock prices to jump while preserving
the independence and stationarity of returns. The introduction of a Brownian motion with
drift in these kinds of models allows for continuous trajectories: it is interesting to note that an
exponential Levy model can be defined both starting from a differential equation model or
directly from its exponential formulation.

The most widely used approach to describe continuous time processes is however that of
extending the classical ordinary differential equation models by taking into account the vari-
ability in the dynamics of the system, using Stochastic Differential Equations (SDE) models,
which allow for the explicit representation of both intrinsic dynamical system noise together
with observation error [34–39]. Classical, well established examples of SDE models are found
in finance for the study of the behavior of the prices of financial assets (e.g. stocks, bonds, cur-
rencies, commodities). In biomedicine, SDE models have not been frequently used so far.
There have however already been examples of application of SDE models to some specific
research areas such as pharmacokinetic/pharmacodynamic (PK/PD) [40–44], cancer [34], neu-
ronal firing [38] and metabolism [37, 45, 46].

In the present work the approach followed was that of directly defining an equation for the
time evolution of the fractional residual meal content in the stomach; a simple stochastic pro-
cess model is proposed to address the intrinsically noisy behavior of the GE mechanism.

The proposed model satisfies the requirements expressed in the introduction: it is a simple
stochastic model, it mimics physiology well, and it can usefully reproduce actual observations.

We see that, in the proposed model, there are two parameters α and β whose combined
effect is to vary the shape of the 90% confidence region of the solution paths. In particular,
when either α or β increases, GE trajectories are on the average faster.

Further, the reason of developing the proposed model instead of writing a stochastic differen-
tial equation (SDE) is because it is not readily apparent what physiology-based SDE would have
solutions S(t,W) which are strictly positive and bounded 0� S(t,W)� 1 8t,W, non-increasing,
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constant overRþnA where A is the set of no spurts in gastric emptying, and lim
t!1

Sðt;WÞ ¼ 0 8W.

In fact, the above criteria define the behavior of stomach emptying from a physiological point of
view.

One limitation of the current model is that it considers a homogeneous meal. It is well
known, however, that after a usual meal composed of both liquids and solid foodstuffs, the
stomach quickly empties itself of liquids, while solids take a longer time to be digested. Simi-
larly, fatty meals take a longer time being digested than non-fat-containing meals. Future ver-
sions of the model may therefore contemplate different stochastic processes, corresponding to
foods of different mechanical and chemical characteristic.

Another limitation of the present study is in fact that no formal parameter estimation proce-
dure has been performed on the available data. The reason is that multi-level, mixed-effects
procedures for stochastic process models are indeed rather cumbersome, and that the main
concern of the present work is the formulation and physiological justification of the model.
Parameter estimation will need to be addressed with future work.

It must be noticed that to the same couple of parameter values for α and β (for instance, α =
1 × 10−6, β = 6, see Fig 3 panel d) there corresponds a very marked variability of solution paths.
This behavior, which is typical of the solutions of stochastic differential equations, is usually
surprising to the medical practitioner. In fact, the choice of parameter values (α = 1 × 10−6, β =
6) corresponds very well to the observed variability in the trajectories actually observed by
Locatelli et al. [17], whose subjects could therefore belong to a homogeneous group in terms of
gastric emptying mechanics. This interpretation, which is supported by the actual model simu-
lations, would typically be in contrast with a mere inspective appraisal of Locatelli’s data, data
which would seem apparently consistent with a whole wide range of GE behaviors. In fact, the
original observations were obtained by Locatelli et al. [17] from a relatively homogeneous
group of subjects: young, healthy, mostly male, in nearly identical experimental conditions.
The fact that a single set of parameter values can describe apparently diverse GE results is
therefore very plausible if we consider the underlying subjects’ physiology.

It is a matter of direct, concrete, practical interest in the analysis of Locatelli’s original obser-
vations to decide whether a deterministic model is sufficient or if a stochastic process model
needs to be used. In fact, if we used a deterministic model (say, an exponential decay), we
would in all likelihood conclude that the original sample of subjects is heterogeneous with
regards to GE, and we would consequently be led to investigate the medical determinants of
this heterogeneity (disease, body habitus, lifestyle, etc.). Conversely, if we used the stochastic
process model proposed in the present work, we would in all likelihood conclude that the
apparently heterogeneous GE experiments are entirely consistent with common, uniform gas-
tric mechanics characteristics, the apparent heterogeneity being well explained by the inherent
variability in the emptying process itself. The decision of using deterministic or stochastic
dynamical models makes therefore a clear difference in the interpretation of the biology and in
the conclusions which can be drawn from the experiments.

In conclusion, a simple stochastic process model of GE can be formulated, is physiologically
very plausible, can be easily incorporated into more complex metabolic models, and can pro-
vide new insights into the results of classical experiments.
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