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Recently, a large population of mRNA was shown to be able to travel between plant organs via sieve elements as a putative
long-distance signaling molecule. However, a mechanistic basis by which transcripts are selected for transport has not yet
been identified. Here, we show that experimental mRNA mobility data in Arabidopsis can be explained by transcript
abundance and half-life. This suggests that the majority of identified mobile transcripts can be accounted for by non-
sequence-specific movement of mRNA from companion cells into sieve elements.

Acclimation to environmental conditions is vital for plants. At the
whole-plant level, this is aidedby long-distancesignalingbetween
organs, which is important both for plant development and de-
fense responses (Shah and Zeier, 2013; Sparks et al., 2013).
Mechanisms for long-distance communication include calcium
and reactive oxygen species waves, action potentials, and hy-
draulic waves, as well as phytohormones and some small RNAs
(Shah and Zeier, 2013; Sparks et al., 2013; Gilroy et al., 2014).
Long-distance signaling molecules can be transported through
the phloem, in enucleated cells called sieve elements. mRNA is
also able to move in sieve elements, and somemobile transcripts
have been shown to give rise to developmental differences at
distal locations (Spiegelman et al., 2013), leading to the sug-
gestion that mRNA could be another class of long distance sig-
naling molecules (Westwood, 2015).

mRNA moves between host and parasitic plants (Kim et al.,
2014) as well as between heterografts (Notaguchi et al., 2015).
Recently, a pioneering grafting approach identified a large pop-
ulation of 2006 mobile mRNA species that were able to move
between roots and shoots in grafted Arabidopsis thaliana eco-
types (Thieme et al., 2015). Interestingly, these data suggest that
a large percentage of mRNA can move against the direction of
phloem flow. Phenotypic changes related to specific mobile
mRNAs have been reported (Kim et al., 2001; Haywood et al.,
2005; Banerjee et al., 2006; Mahajan et al., 2012; Notaguchi et al.,
2012), but it remains unclear to what extent mRNA mobility is
biologically meaningful (Lough and Lucas, 2006; Notaguchi,
2015). Correlation between abundance and long-distance mo-
bility has been noted, leading to speculation that mRNA transport

could occur in both a selective and nonselective manner (Kim
et al., 2014; Notaguchi et al., 2015).
Here,weinvestigate thepotential linkbetweenmRNAabundance

andmobility by evaluating a simple diffusion-basedmodel (termed
the abundancemodel) in which non-sequence-specificmovement
of mRNA species from companion cells into sieve elements leads
to long-distance mobility. We find that this model is sufficient to
explain the large population of experimentally observed mobile
transcripts and makes predictions regarding mobile transcript size
andhalf-life thatareconsistentwithexperimentaldata.Thisanalysis
suggests that most of the identified mobile mRNA species are
mobile as a consequence of local abundance.

RESULTS

The Probability of mRNA Mobility Saturates with
mRNA Abundance

We developed a simple model to estimate the probability that
a transcript ismobile. In the companion cell, aftermRNA crosses the
nuclear envelope, most transcripts move through the cytosol by
diffusion (Fusco et al., 2003) and are translated or degraded. Alter-
natively, upon reaching the cell surface, the transcripts may pass or
be chaperoned through plasmodesmata into sieve elements (Kehr
and Buhtz, 2008; Notaguchi, 2015), in which molecules can move
bidirectionally (Lianget al., 2012). The fateof eachmRNAmoleculeof
a given transcript species was modeled by a random walk through
a3Dcell. Initiallypositionedat thecenterof thecell, ateachtimepoint,
themoleculecouldmoveup,down, left-right, forward,orbackasmall
distance relative to the size of the cell, or it could decay with a pre-
defined,constantprobability.At thecellboundary,aspatiallyuniform,
transcript-independent probability that the mRNA could pass into
sieve elements was assigned. If any simulated mRNA molecule
passed through cell membrane, then that transcript was considered
to be mobile (Figure 1A). These assumptions could be readily ex-
tended to include further information, suchas varyingplasmodesmal
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densities, but while simple they proved to be sufficient to explain the
observed data, thus not warranting further parameters in the model.

mRNA species abundance is a consequence of transcription rate
and half-life. Different transcription ratesweremodeled by changing
the initial number of mRNAmolecules in the simulation, and half-life
by the decay probability. Transport across the graft boundary in
sieve elements was assumed to be fast, so if any molecule of
a transcript passed into sieve elements, then that transcript was
considered to be mobile; otherwise, the transcript was considered
nonmobile.ModeledmRNAspecies fatewas seen to be stochastic,
so foreachtranscriptspecies, thesimulationwasrun10,000timesto
estimate a probability of movement out of the cell, which was then
used to calculate the probability of an mRNA species moving into
sieve elements from multiple companion cells.

This simple model predicts a saturation relationship between
mRNA abundance and probability of mobility. The shape of this
curve depends on a number of variables such as cell size, the
number of companion cells, plasmodesmatal conductivity, and
nucleus size and position, as well as mRNA half-life, but can be
approximated by a saturation curve with only two unknown
parameters (Supplemental Figures 1 to 3; see Methods).

The Predicted Abundance Distribution of Mobile Transcripts
Fits Experimental Data

We compared the predicted relationship between mRNA abun-
dance and mobility from the model to the data set generated by

Thieme et al. (2015) (Figure 1B; see Methods). With fitted pa-
rameters (Figure 2A; see Methods), the computed relationship
between transcript abundance and probability of mobility was
able to reproduce the distribution of the mobile and nonmobile
mRNA species (Figure 2B), although as expected, the fate of in-
dividual transcriptswas highly stochastic. Thiswas also observed
within the experimental data, where transcripts frequently could
bemobile or not in different repeats. As can be seen in Figures 2A
and 2C, the predictions remained within experimental error; how-
ever, the experimental data seemed to deviate from the model

Figure 1. Workflow for the Simulation of mRNA Mobility.

(A) mRNA abundance model. Green boxes represent cells, with the side
facing inwards being adjacent to sieve elements. The rowsof cells represent
different simulation runs and different transcription rates. Blue diffusion
paths indicate simulations in which the transcript was considered to be
mobile, and red indicates those in which the transcript was nonmobile.
(B) Output of the abundance model (left, mobility versus abundance plot)
was combined with experimental mRNA abundance data to predict the
distributions for mobile and nonmobile mRNA (see Methods).

Figure 2. An Abundance Model of mRNA Mobility Captures the Experi-
mental mRNA Distributions.

(A) Fitted and experimentally derived P(mobile) curve; 95% experimental
confidence intervals are shown.TheexperimentalP(mobile)wasestimated
as the ratio of the number of mobile over nonmobile transcripts, binned by
abundance. The confidence interval was calculated using the Clopper-
Pearson Exact Binomial method.
(B) Experimental (left) and modeled (right) abundance distributions of
mobile and nonmobile mRNA using the fitted P(mobile) curve.
(C) Experimental and predicted abundance distribution for mobile mRNA
only; 95% confidence intervals are shown, calculated using the Clopper-
Pearson Binomial method.
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at both extremes of the transcript abundance distribution. This is
likely predominantly a consequence of the low copy statistics for
mRNA species of extreme abundances (Figure 2B), although it
could indicate the existenceof analternativemechanismaffecting
a small proportion of the population, which is otherwise hidden by
the abundance-driven mobility mechanism.

Analysis of Low-Abundance Mobile Transcripts

To investigate whether there are differences in the nature of the
transcripts that deviate most from our simple abundance model,
we analyzed the sequences of the low-abundance mobile tran-
scripts [ln(abundance) < 1, left-hand side of Figure 2A]. These
transcripts are listed in the Supplemental Table 1.Whereas for the
full data set we failed to find any statistically significant motifs,
for this subset we identified three statistically enriched motifs
(Supplemental Table 2) using DREME (Bailey, 2011). Analysis of
Gene Ontology terms revealed an enrichment of processes as-
sociatedwithdefense responseand thechloroplast for this subset
of transcripts (Supplemental Data Set 1).

Regulation of Mobility through Control of Abundance
Proximal to the Vasculature

It is possible that local transcript abundance near sieve elements
is altered relative to the rest of the tissue to control movement

from the site of transcription into sieve elements and thus to reg-
ulate mRNA mobility. To investigate this possibility, we analyzed
two available data sets, one with bundle sheath data (Aubry et al.,
2014) and the other with companion cell data (Mustroph et al.,
2009). In the bundle sheath, the mobile population was not
enriched relative to overall leaf expression levels (Figure 3A;

Figure 3. Mobile Transcripts May Be Preferentially Expressed Proximal to Sieve Elements.

The transcript expression ratio incellsproximal to thesieveelement relative to the restof the leaf: in thebundlesheath (B.S.; [A]) and incompanioncells (C.C.;
[B]). Thestatistical significanceof thedifferenceof themeans,Pvalue,wascalculatedusingWelch’s t test. Abundancedatawere taken fromMustrophet al.
(2009), Aubry et al. (2014), and Thieme et al. (2015); mobility classification was from Thieme et al. (2015).

Figure 4. The Distribution of Half-Life for Experimentally Determined
Mobile and Nonmobile mRNA Populations.

Data are taken from Narsai et al. (2007) and Thieme et al. (2015); 95%
Clopper-Pearson binomial confidence intervals are shown.
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Supplemental Figure 4). However, using the more localized com-
panion cell data, we found that mobile mRNA transcripts were
slightly but significantly overexpressed relative to the rest of leaf
(Figure 3B; Supplemental Figure 4). This suggests that local
regulation of abundance may be a plausible mechanism for de-
termining mRNA mobility.

mRNA Half-Life Contributes to Transcript Mobility

The abundance model predicts that mRNA half-life should affect
the probability of mobility, as more stable transcripts are likely to
have more chances to move out of the cell into sieve elements
before decaying (Supplemental Figure 5). Consistent with this
expectation, themobile population had a greater half-life than the
nonmobile population (Figure 4).

However, abundance is a function of transcription rate and half-
life, so this difference could be due to the effect of half-life on
abundance, rather than the separable effect predicted by the
model. Toaddress this question,weperformed linear discriminant
analysis to find the most informative projection of the data to
separate mobile from nonmobile transcripts and found that the
dominant eigenvector was:

�
Vabundance;Vhalf-life

� ¼ ð0:992; 0:123Þ;

indicating that there was a half-life effect on mobility separable
from its effect on abundance but that this contribution was small
relative to the size of the abundance effect. Visually, the best
boundary to discriminate mobile from nonmobile transcripts
found by logistic regression could be seen to have both an
abundance and a separate half-life component (Supplemental
Figure 6).

Smaller Transcripts Appear to Be More Mobile

Transcripts with a larger Stokes radius would be less likely to be
mobile, as they are slower to diffusewithin a cell andwithin a given
time less likely to reach plasmodesmata. Although complicated

by the formation of RNA secondary structures, we considered
transcript length as a proxy for the Stokes radius of an RNA
species. The dependence of transcript abundance in the non-
producing distal tissue as a function of transcript length is shown
in Figure 5. The small but statistically significant negative corre-
lation qualitatively supported that larger transcripts are less
mobile. To check that this was not due to experimental detection
bias, we analyzed the dependence of local transcript abundance
in the mRNA producing tissue as a function of transcript length.
We would expect that experimental bias to be similar in local and
distal tissue; however, we did not observe this (Supplemental
Figure 7). By contrast with Figure 5, we found no negative cor-
relation between mRNA transcript length and local abundance (a
minor positive correlation was observed), suggesting that ex-
perimental bias does not cause the size effect tendency.

DISCUSSION

Using a simple computational model, we have shown that the
large mobile mRNA population recently identified by Thieme et al.
(2015) can be explained by non-sequence-specific movement of
mRNA intosieveelements.Within thismodel,mRNAabundance is
a key determinant of mobility. Furthermore, we have shown that
mRNA half-life and transcript length affect the mobile mRNA
population in amanner consistentwith the abundancemodel. The
consistency of the abundance model with existing experimental
data does not imply that identified mobile mRNA species are
not biologically relevant signaling molecules. The probability of
reaching the cell surface itself could be a biologically relevant and
regulated mechanism, in which the balance between half-life and
transcription rate determines the mobility of mRNA species;
indeed, mRNA 59 and 39 untranslated regions associated with
increasedmobility havebeenshown to increase transcript half-life
(Banerjee et al., 2009). Although we have predominantly used
tissue-level expression data, mobile transcripts are also highly
abundant in companion cells relative to nonmobile (Supplemental
Figure 4). Furthermore, mobile transcripts are slightly overex-
pressed in companion cells relative to constitutive expression,

Figure 5. Transcript Mobility as a Function of Transcript Length.

This plot shows themRNAabundance in thedistal tissueasa functionof transcript length. Data are taken fromThiemeet al. (2015). P valueswere computed
from Spearman’s rank correlation; the moving average (red) was calculated with a window size of 300.
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although it remains unclear whether this is evidence for a regulatory
process governing mobility or whether mobility is a side effect of
a transcriptome that has been changed for other purposes.

Our model defines mRNA mobility as the escape probability
from companion cells and does not explicitly consider the
transport process through sieve elements. This does not rule out
a possible sequence-specific unloading process. Experimental
data suggest that once a molecule is in the sieve elements, it can
move bidirectionally across a graft junction (Liang et al., 2012).
Therefore, we did not impose any directionality of mRNA move-
mentwithin sieveelements flow.Shouldquantitativemeasures for
transcript movement with sieve elements become available, the
model could be readily extended to include this information.

Key to reproducing experimentally determined mRNA mobility
from themodel is the saturationcurveshown inFigures1Band2A.
Our proposed abundance model, explained by transcription rate,
diffusion, and half-life, naturally captures this behavior. However,
we point out that, in principle, any process that gives rise to such
an abundance mobility saturation curve could explain the data.

In developing the presented abundance model, we made a
number of approximations that likely warrant future extensions,
such as not including advection in cytoplasmic transport and
using simple box-shaped cells. Notably, we have not needed to
account for different transport probabilities through the plas-
modesmata, say, as a function of mRNA size or shape to explain
the data. Analysis of the experimental data shows a correlation of
abundance in the distal tissue with transcript length, but does not
reveal a size threshold, which would be indicative of a size ex-
clusion limit. Given the size of mRNA transcripts, they could be
actively chaperoned through the plasmodesmata, perhaps sim-
ilarly to viral RNA.

If mRNA transport through plasmodesmata requires chaper-
ones that recognize a sequence motif that binds with an equi-
libriumdissociation constant,Kd, thenmRNAwith aconcentration
close to or above that Kd would bind and be transported. A
transcript that has a different but similarmotifmay result inweaker
binding that would require a higher abundance to bind. Thus,
selective and nonselective mRNA mobility may be conceivably
part of a common transport process, with abundance as the
determining factor. The presented model does not exclude the
possibility of mRNA motifs playing a role in mobility. However,
the tight relationship between mRNA mobility and abundance for
the bulk of the available data clearly demonstrates the importance
of abundance, whereas a similar relationship between mobility
and sequencemotifs across a large range of transcripts has yet to
be shown. The few putative motifs we identified in a reduced data
set require further experimental investigation.

An alternativemechanism formRNAmovement could be one in
which mRNA enters sieve elements from sieve tube precursor
cells, which undergo partial apoptosis during differentiation. If this
were the case, allmRNAcouldmoveacross thegraft junction, and
it is possible that experimental detection bias of mRNA might
potentially give rise to the abovementioned abundance mobility
saturation curve. However, this possibility is not supported by the
trends in the transcript length and count data, which were not
consistent across tissues. Furthermore, the implications of
this mechanism are the same as for the presented abundance
model in that the detected mobile mRNA transcripts are mobile

predominantly because of abundance rather than sequence-
specific transport processes.
Based on our results, we suggest that the large majority of

identified transcripts are unlikely to be selectively transported.
However, it is possible that mRNA species made mobile through
the processes described in the abundance model obscure a rel-
atively small population that is made mobile through a different
mechanism, as evidenced by mRNA fusion studies performed by
Thieme et al. (2015) and the statistically enrichedmotifs identified
in the low-abundance mobile population. We propose that the
presented abundance model should be considered the null hy-
pothesis when assessing mRNA mobility data and other mech-
anisms of mRNA transcript mobility.

METHODS

Data Sources

Abundance andmobility datawas taken fromsupplementary information 1
of Thieme et al. (2015). Transcripts with less than three counts were ex-
cluded from the data. For each transcript, in each grafted tissue, “abun-
dance” was calculated as the average read count per informative single
nucleotide polymorphism site for the local form and was considered
mobile if the read count for the nonlocal form of the transcript was greater
than zero in the reciprocal grafted tissue. Half-life data were taken from sup-
plementary Table 2 of Narsai et al. (2007). Localization information was taken
from supplementary data of Mustroph et al. (2009) and Aubry et al. (2014).

Calculation of Escape Probability from Many Cells

Probability of escape from a single cell, P(E), was computed using the
abundance model as described in the text. The expected probability of
a mRNA molecule moving into sieve elements from multiple companion
cells, P(F), could be calculated as P(F) = 1 3 (1 – P(E))m, where m is the
number of companion cells.

Mobility Prediction and Fitting to Abundance Data Using
Saturation Curve

The saturation curve equation used to describe the predicted relationship
between mRNA mobility and abundance was

PðmÞ ¼ An

Kn þ An;

where P(m) is the probability of the transcript being mobile, A is the ex-
perimentally measured transcript abundance, K is the abundance for which
theprobabilityofbeingmobile is50%,andngives thesteepnessof thecurve.

For each modeled transcript t, of abundance A, in the set of all ex-
perimentally measured transcripts (T ), P(m) was calculated, and At was
assigned to either the mobile set M or the stationary set S by

PðAt ∈MÞ ¼ PðmÞ ∀ t∈T

M∩ S ¼ ∅

M∪ S ¼ fA1; . . . ;ATg
This reflects the experimental approach taken by Thieme et al. (2015) in
which transcripts where classified as either “mobile” or “nonmobile.”

For determining theK and nparameters, the distribution of abundances
for predicted and experimental mobile and nonmobile transcripts was
approximatedbyhistogramsand thedifferencebetween thepredicted and
experimental distributions minimized.
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Supplemental Data

Supplemental Figure 1. The effect of cell size, cell number, and half-
life on mRNA mobility.

Supplemental Figure 2. The effect of nucleus position and size on
mRNA mobility.

Supplemental Figure 3. The effect of varied probability of passing
through the cell surface on mRNA mobility.

Supplemental Figure 4. The abundance distribution of mobile and
nonmobile transcripts in cells proximal to the vasculature.

Supplemental Figure 5. The predicted effect of half-life and abun-
dance on transcript mobility.

Supplemental Figure 6. The contributions of half-life and abundance
to mRNA mobility.

Supplemental Figure 7. Detected transcript abundance as a function
of length in the producing tissues.

Supplemental Table 1. List of low abundance mobile transcripts
present in the data set of Thieme et al. (2015).

Supplemental Table 2. List of putative motifs identified in the low
abundance mobile transcripts.

Supplemental Data Set 1. Gene Ontology enrichment of mobile
mRNAs.
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