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Abstract

Speech separation systems usually operate on the short-time Fourier transform (STFT) of noisy 

speech, and enhance only the magnitude spectrum while leaving the phase spectrum unchanged. 

This is done because there was a belief that the phase spectrum is unimportant for speech 

enhancement. Recent studies, however, suggest that phase is important for perceptual quality, 

leading some researchers to consider magnitude and phase spectrum enhancements. We present a 

supervised monaural speech separation approach that simultaneously enhances the magnitude and 

phase spectra by operating in the complex domain. Our approach uses a deep neural network to 

estimate the real and imaginary components of the ideal ratio mask defined in the complex 

domain. We report separation results for the proposed method and compare them to related 

systems. The proposed approach improves over other methods when evaluated with several 

objective metrics, including the perceptual evaluation of speech quality (PESQ), and a listening 

test where subjects prefer the proposed approach with at least a 69% rate.

Index Terms

Deep neural networks; speech separation; speech quality; complex ideal ratio mask

I. Introduction

THERE are many speech applications where the signal of interest is corrupted by additive 

background noise. Removing the noise from these mixtures is considered one of the most 

challenging research topics in the area of speech processing. The problem becomes even 

more challenging in the monaural case where only a single microphone captures the signal. 

Although there have been many improvements to monaural speech separation, there is still a 

strong need to produce high quality separated speech.

Typical speech separation systems operate in the time-frequency (T-F) domain by enhancing 

the magnitude response and leaving the phase response unaltered, in part due to the findings 
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in [1], [2]. In [1], a series of experiments are performed to determine the relative importance 

of the phase and magnitude components in terms of speech quality. Wang and Lim compute 

the Fourier transform magnitude response from noisy speech at a certain signal-to-noise 

ratio (SNR), and then reconstruct a test signal by combining it with the Fourier transform 

phase response that is generated at another SNR. Listeners then compare each reconstructed 

signal to unprocessed noisy speech of known SNR, and indicate which signal sounds best. 

The relative importance of the phase and magnitude spectra is quantified with the equivalent 

SNR, which is the SNR where the reconstructed speech and noisy speech are each selected 

at a 50% rate. The results show that a significant improvement in equivalent SNR is not 

obtained when a much higher SNR is used to reconstruct the phase response than the 

magnitude response. These results were consistent with the results of a previous study [3]. 

Ephraim and Malah [2] separate speech from noise using the minimum mean-square error 

(MMSE) to estimate the clean spectrum, which consists of MMSE estimates for the 

magnitude response and the complex exponential of the phase response. They show that the 

complex exponential of the noisy phase is the MMSE estimate of the complex exponential 

of the clean phase. The MMSE estimate of the clean spectrum is then the product of the 

MMSE estimate of the clean magnitude spectrum and the complex exponential of the noisy 

phase, meaning that the phase is unaltered for signal reconstruction.

A recent study, however, by Paliwal et al. [4] shows that perceptual quality improvements 

are possible when only the phase spectrum is enhanced and the noisy magnitude spectrum is 

left unchanged. Paliwal et al. combine the noisy magnitude response with the oracle (i.e. 

clean) phase, non-oracle (i.e. noisy) phase, and enhanced phase where mismatched short-

time Fourier transform (STFT) analysis windows are used to extract the magnitude and 

phase spectra. Both objective and subjective (i.e. a listening study) speech quality 

measurements are used to assess improvement. The listening evaluation involves a 

preference selection between a pair of signals. The results reveal that significant speech 

quality improvements are attainable when the oracle phase spectrum is applied to the noisy 

magnitude spectrum, while modest improvements are obtained when the non-oracle phase is 

used. Results are similar when an MMSE estimate of the clean magnitude spectrum is 

combined with oracle and non-oracle phase responses. In addition, high preference scores 

are achieved when the MMSE estimate of the clean magnitude spectrum is combined with 

an enhanced phase response.

The work by Paliwal et al. has led some researchers to develop phase enhancement 

algorithms for speech separation [5], [6], [7]. The system presented in [5] uses multiple 

input spectrogram inversions (MISI) to iteratively estimate the time-domain source signals 

in a mixture given the corresponding estimated STFT magnitude responses. Spectrogram 

inversion estimates signals by iteratively recovering the missing phase information, while 

constraining the magnitude response. MISI uses the average total error between the mixture 

and the sum of the estimated sources to update the source estimates at each iteration. In [6], 

Mowlaee et al. perform MMSE phase estimation where the phases of two sources in a 

mixture are estimated by minimizing the square error. This minimization results in several 

phase candidates, but ultimately the pair of phases with the lowest group delay is chosen. 

The sources are then reconstructed with their magnitude responses and estimated phases. 

Krawczyk and Gerkmann [7] enhance the phase of voiced-speech frames by reconstructing 
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the phase between harmonic components across frequency and time, given an estimate of the 

fundamental frequency. Unvoiced frames are left unchanged. The approaches in [5], [6], [7] 

all show objective quality improvements when the phase is enhanced. However, they do not 

address the magnitude response.

Another factor that motivates us to examine phase estimation is that supervised mask 

estimation has recently been shown to improve human speech intelligibility in very noisy 

conditions [8], [9]. With negative SNRs, the phase of noisy speech reflects more the phase of 

background noise than that of target speech. As a result, using the phase of noisy speech in 

the reconstruction of enhanced speech becomes more problematic than at higher SNR 

conditions [10]. So in a way, the success of magnitude estimation at very low SNRs 

heightens the need for phase estimation at these SNR levels.

Recently, a deep neural network (DNN) that estimates the ideal ratio mask (IRM) has been 

shown to improve objective speech quality in addition to predicted speech intelligibility 

[11]. The IRM enhances the magnitude response of noisy speech, but uses the unprocessed 

noisy phase for reconstruction. Based on phase enhancement research, ratio masking results 

should further improve if both the magnitude and phase responses are enhanced. In fact, 

recent methods have shown that incorporating some phase information is beneficial [12], 

[13]. In [12], the cosine of the phase difference between clean and noisy speech is applied to 

IRM estimation. Wang and Wang [13] estimate the clean time-domain signal by combining a 

subnet for T-F masking with another subnet that performs the inverse fast Fourier transform 

(IFFT).

In this paper, we define the complex ideal ratio mask (cIRM) and train a DNN to jointly 

estimate real and imaginary components. By operating in the complex domain, the cIRM is 

able to simultaneously enhance both the magnitude and phase responses of noisy speech. 

The objective results and the preference scores from a listening study show that cIRM 

estimation produces higher quality speech than related methods.

The rest of the paper is organized as follows. In the next section, we reveal the structure 

within the real and imaginary components of the STFT. Section III describes the cIRM. The 

experimental results are shown in Section IV. We conclude with a discussion in Section V.

II. Structure within Short-time Fourier Transform

Polar coordinates (i.e. magnitude and phase) are commonly used when enhancing the STFT 

of noisy speech, as defined in

(1)

where |St,f| represents the magnitude response and θSt,f represents the phase response of the 

STFT at time t and frequency f. Each T-F unit in the STFT representation is a complex 

number with real and imaginary components. The magnitude and phase responses are 

computed directly from the real and imaginary components, as given below respectively.
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(2)

(3)

An example of the magnitude (top-left) and phase (top-right) responses for a clean speech 

signal is shown in Fig. 1. The magnitude response exhibits clear temporal and spectral 

structure, while the phase response looks rather random. This is often attributed to the 

wrapping of phase values into the range of [−π, π]. When a learning algorithm is used to 

map features to a training target, it is important that there is structure in the mapping 

function. Fig. 1 shows that using DNNs to predict the clean phase response directly is 

unlikely effective, despite the success of DNNs in learning clean magnitude spectrum from 

noisy magnitude spectrum. Indeed, we have tried extensively to train DNNs to estimate 

clean phase from noisy speech, but with no success.

As an alternative to using polar coordinates, the definition of the STFT in (1) can be 

expressed in Cartesian coordinates, using the expansion of the complex exponential. This 

leads to the following definitions for the real and imaginary components of the STFT:

(4)

(5)

(6)

The lower part of Fig. 1 shows the log compressed, absolute value of the real (bottom-left) 

and imaginary (bottom-right) spectra of clean speech. Both real and imaginary components 

show clear structure, similar to magnitude spectrum, and are thus amenable to supervised 

learning. These spectrograms look almost the same because of the trigonometric co-function 

identity: the sine function is identical to the cosine function with a phase shift of π/2 radians. 

Equations (2) and (3) show that the magnitude and phase responses can be computed 

directly from the real and imaginary components of the STFT, so enhancing the real and 

imaginary components leads to enhanced magnitude and phase spectra.

Based on this structure, a straightforward idea is to use DNNs to predict the complex 

components of the STFT. However, our recent study shows that directly predicting the 

magnitude spectrum may not be as good as predicting an ideal T-F mask [11]. Therefore, we 

propose to predict the real and imaginary components of the complex ideal ratio mask, 

which is described in the next section.
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III. Complex Ideal Ratio Mask and Its Estimation

A. Mathematical derivation

The traditional ideal ratio mask is defined in the magnitude domain, and in this section we 

define the ideal ratio mask in the complex domain. Our goal is to derive a complex ratio 

mask that, when applied to the STFT of noisy speech, produces the STFT of clean speech. In 

other words, given the complex spectrum of noisy speech, Yt,f, we get the complex spectrum 

of clean speech, St,f, as follows:

(7)

where ‘*’ indicates complex multiplication and Mt,f is the cIRM. Note that Yt,f, St,f and Mt,f 

are complex numbers, and can be written in rectangular form as:

(8)

(9)

(10)

where the subscripts r and i indicate the real and imaginary components, respectively. The 

subscripts for time and frequency are not shown for convenience, but the definitions are 

given for each T-F unit. Based on these definitions, Eq. (7) can be extended:

(11)

From here we can conclude that the real and imaginary components of clean speech are 

given as

(12)

(13)

Using Eqs. (12) and (13), the real and imaginary components of M are defined as

(14)

(15)

resulting in the definition for the complex ideal ratio mask

(16)
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Notice that this definition of the complex ideal ratio mask is closely related to the Wiener 

filter, which is the complex ratio of the cross-power spectrum of the clean and noisy speech 

to the power spectrum of the noisy speech [14].

It is important to mention that Sr, Si, Yr, and Yi ∈ ℝ, meaning that Mr and Mi ∈ ℝ. With 

this, the complex mask may have large real and imaginary components with values in the 

range (−∞, ∞). Recall that the IRM takes on values in the range [0, 1], which can be 

conducive for supervised learning with DNNs. The large value range may complicate cIRM 

estimation. Therefore, we compress the cIRM with the following hyperbolic tangent

(17)

where x is r or i, denoting the real and imaginary components. This compression produces 

mask values within [-K,K] and C controls its steepness. Several values for K and C are 

evaluated, and K = 10 and C = 0.1 perform best empirically and are used to train the DNN. 

During testing we recover an estimate of the uncompressed mask using the following inverse 

function on the DNN output, Ox:

(18)

An example of the cIRM, along with the spectrograms of the clean, noisy, cIRM-separated 

and IRM-separated speech are shown in Fig. 2. The real portion of the complex STFT of 

each signal is shown in the top, and the imaginary portion is in the bottom of the figure. The 

noisy speech is generated by combining the clean speech signal with Factory noise at 0 dB 

SNR. For this example, the cIRM is generated with K = 1 in (17). The denoised speech 

signal is computed by taking the product of the cIRM and noisy speech. Notice that the 

denoised signal is effectively reconstructed as compared to the clean speech signal. On the 

other hand, the IRM-separated speech removes much of the noise, but it does not reconstruct 

the real and imaginary components of the clean speech signal as well as the cIRM-separated 

speech.

B. DNN based cIRM estimation

The DNN that is used to estimate the cIRM is depicted in Fig. 3. As done in previous studies 

[11], [15], the DNN has three hidden layers where each of the hidden layers has the same 

number of units. The input layer is given the following set of complementary features that is 

extracted from a 64-channel gammatone filterbank: amplitude modulation spectrogram 

(AMS), relative spectral transform and perceptual linear prediction (RASTA-PLP), mel-

frequency cepstral coefficients (MFCC), and cochleagram response, as well as their deltas. 

The features used are the same as in [11]. A combination of these features has been shown to 

be effective for speech segregation [16]. We also evaluated other features, including noisy 

magnitude, noisy magnitude and phase, and the real and imaginary components of the noisy 

STFT, but they were not as good as the complementary set. Useful information is carried 

across time frames, so a sliding context window is used to splice adjacent frames into a 

single feature vector for each time frame [11], [17]. This is employed for the input and 
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output of the DNN. In other words, the DNN maps a window of frames of the 

complementary features to a window of frames of the cIRM for each time frame. Notice that 

the output layer is separated into two sub-layers, one for the real components of the cIRM 

and the other for the imaginary components of the cIRM. This Y-shaped network structure in 

the output layer is commonly used to jointly estimate related targets [18], and in this case it 

helps ensure that the real and imaginary components are jointly estimated from the same 

input features.

For this network structure, the mean-square error (MSE) function for complex data is used 

in the backpropagation algorithm to update the DNN weights. This cost function is the 

summation of the MSE from the real data and the MSE from the imaginary data, as shown 

below:

(19)

where N represents the number of time frames for the input, Or(t, f) and Oi(t, f) denote the 

real and imaginary outputs from the DNN at a T-F unit, and Mr(t, f) and Mi(t, f) correspond 

to the real and imaginary components of the cIRM, respectively.

Specifically, each DNN hidden layer has 1024 units [11]. The rectified linear (ReLU) [19] 

activation function is used for the hidden units, while linear units are used for the output 

layer since the cIRM is not bounded between 0 and 1. Adaptive gradient descent [20] with a 

momentum term is used for optimization. The momentum rate is set to 0.5 for the first 5 

epochs, after which the rate changes to 0.9 for the remaining 75 epochs (80 total epochs).

IV. Results

A. Dataset and System Setup

The proposed system is evaluated on the IEEE database [21], which consists of 720 

utterances spoken by a single male speaker. The testing set consists of 60 clean utterances 

that are downsampled to 16 kHz. Each testing utterance is mixed with speech-shaped noise 

(SSN), cafeteria (Cafe), speech babble (Babble), and factory floor noise (Factory) at SNRs 

of −6, −3, 0, 3, and 6 dB, resulting in 1200 (60 signals × 4 noises × 5 SNRs) mixtures. SSN 

is a stationary noise, while the other noises are non-stationary and each signal is around 4 

minutes long. Random cuts from the last 2 minutes of each noise are mixed with each testing 

utterance to create the testing mixtures. The DNN for estimating the cIRM is trained with 

500 utterances from the IEEE corpus, which are different from the testing utterances. Ten 

random cuts from the first 2 minutes of each noise are mixed with each training utterance to 

generate the training set. The mixtures for the DNN are generated at −3, 0, and 3 dB SNRs, 

resulting in 60000 (500 signals × 4 noises × 10 random cuts × 3 SNRs) mixtures in the 

training set. Note that the −6 and 6 dB SNRs of the testing mixtures are unseen by the DNN 

during training. Dividing the noises into two halves ensures that the testing noise segments 

are unseen during training. In addition, a development set determines parameter values for 

the DNN and STFT. This development set is generated from 50 distinct clean IEEE 
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utterances that are mixed with random cuts from the first 2 minutes of the above four noises 

at SNRs of −3, 0, and 3 dB.

Furthermore, we use the TIMIT corpus [22] which consists of utterances from many male 

and female speakers. A DNN is trained by mixing 500 utterances (10 utterances from 50 

speakers) with the above noises at SNRs of −3, 0, and 3 dB. The training utterances come 

from 35 male and 15 female speakers. Sixty different utterances (10 utterances from 6 new 

speakers) are used for testing. The testing utterances come from 4 male and 2 female 

speakers.

As described in Sec. III-B, a complementary set of four features is provided as the input to 

the DNN. Once the complementary features are computed from the noisy speech, the 

features are normalized to have zero mean and unit variance across each frequency channel. 

It has been shown in [23] that applying auto-regressive moving average (ARMA) filtering to 

input features improves automatic speech recognition performance, since ARMA filtering 

smooths each feature dimension across time to reduce the interference from the background 

noise. In addition, an ARMA filter improves speech separation results [24]. Therefore, we 

apply ARMA filtering to the complementary set of features after mean and variance 

normalization. The ARMA-filtered feature vector at the current time frame is computed by 

averaging the two filtered feature vectors before the current frame with the current frame and 

the two unfiltered frames after the current frame. A context window that spans five frames 

(two before and two after) splices the ARMA-filtered features into an input feature vector.

The DNN is trained to estimate the cIRM for each training mixture where the cIRM is 

generated from the STFTs of noisy and clean speech as described in (16) and (17). The 

STFTs are generated by dividing the time-domain signal into 40 ms (640 sample) 

overlapping frames, using 50% overlap between adjacent frames. A Hann window is used, 

along with a 640 length FFT. A three-frame context window augments each frame of the 

cIRM for the output layer, meaning that the DNN estimates three frames for each input 

feature vector.

B. Comparison Methods

We compare cIRM estimation to IRM estimation [11], phase-sensitive masking (PSM) [12], 

time-domain signal reconstruction (TDR) [13], and complex-domain nonnegative matrix 

factorization (CMF) [25], [26], [27]. Comparing against IRM estimation helps determine if 

processing in the complex domain provides improvements over processing in the magnitude 

domain, while the other comparisons determine how complex ratio masking performs 

relative to these recent supervised methods that incorporate a degree of phase.

The IRM is generated by taking the square root of the ratio of the speech energy to the sum 

of the speech and noise energy at each T-F unit [11]. A separate DNN is used to estimate the 

IRM. The input features and the DNN parameters match those for cIRM estimation with the 

only exception that the output layer corresponds to the magnitude, not the real and 

imaginary components. Once the IRM is estimated, it is applied to the noisy magnitude 

response which, with the noisy phase, produces a speech estimate. The PSM is similar to the 

IRM, except that the ratio between the clean speech and noisy speech magnitude spectra is 
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multiplied by the cosine of the phase difference between the clean speech and noisy speech. 

Theoretically this amounts to using just the real component of the cIRM. TDR directly 

reconstructs the clean time-domain signal by adding a subnet to perform the IFFT. The input 

to this IFFT subnet consists of the activity of the last hidden layer of a T-F masking subnet 

(resembling a ratio mask) that is applied to the mixture magnitude, and the noisy phase. The 

input features and DNN structures for PSM and TDR estimation match that of IRM 

estimation.

CMF is an extension of non-negative matrix factorization (NMF) with the phase response 

included in the process. More specifically, NMF factors a signal into a basis and activation 

matrix, where the basis matrix provides spectral structure and the activation matrix linearly 

combines the basis elements to approximate the given signal. It is required that both 

matrices be nonnegative. With CMF, the basis and weights are still nonnegative, but a phase 

matrix is created that multiplies each T-F unit, allowing each spectral basis to determine the 

phase that best fits the mixture [26]. We perform speech separation using supervised CMF as 

implemented in [27], where the matrices for the two sources (speech and noise) are 

separately trained from the same training data used by the DNNs. The speech and noise 

basis are each modeled with 100 basis vectors, which are augmented with a context window 

that spans 5 frames.

For a final comparison, we combine different magnitude spectra with phase spectra to 

evaluate approaches that enhance either magnitude or phase responses. For phase estimation, 

we use a recent system that enhances the phase response of noisy speech [7] by 

reconstructing the spectral phase of voiced speech using the estimated fundamental 

frequency. It analyzes the phase spectrum to enhance the phase along time and in-between 

harmonics along the frequency axis. Additionally, we use a standard phase enhancing 

method by Griffin and Lim [28], which repeatedly computes the STFT and the inverse STFT 

by fixing the magnitude response and only allowing the phase response to update. Since 

these approaches only enhance the phase responses, we combine them with the magnitude 

responses of speech separated by an estimated IRM (denoted as RM-K&G and RM-G&L) 

and of noisy speech (denoted as NS-K&G and NS-G&L), as done in [7]. These magnitude 

spectra are also combined with the phase response of speech separated by an estimated 

cIRM, and they are denoted as RM-cRM and NS-cRM, respectively.

C. Objective Results

The separated speech signals from each approach are evaluated with three objective metrics, 

namely the perceptual evaluation of speech quality (PESQ) [29], the short-time objective 

intelligibility (STOI) score [30], and the frequency-weighted segmental SNR (SNRfw) [31]. 

PESQ is computed by comparing the separated speech with the corresponding clean speech, 

producing scores in the range [−0.5, 4.5] where a higher score indicates better quality. STOI 

measures objective intelligibility by computing the correlation of short-time temporal 

envelopes between clean and separated speech, resulting in scores in the range of [0, 1] 

where a higher score indicates better intelligibility. SNRfw computes a weighted signal-to-

noise ratio aggregated across each time frame and critical band. PESQ and SNRfw have been 
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shown to be highly correlated to human speech quality scores [31], while STOI has high 

correlation with human speech intelligibility scores.

The objective results of the different methods using the IEEE utterances are given in Tables 

I, II, and III, which show the results at mixture SNRs of −3, 0, and 3 dB, respectively. 

Boldface indicates the system that performed best within a noise type. Starting with Table I, 

in terms of PESQ, each approach offers quality improvements over noisy speech mixtures, 

for each noise. CMF performs consistently for each noise, but it offers the smallest PESQ 

improvement over the noisy speech. The estimated IRM (i.e. RM), estimated cIRM (i.e. 

cRM), PSM and TDR each produce considerable improvements over the noisy speech and 

CMF, with cRM performing best for SSN, Cafe, and Factory noise. Going from ratio 

masking in the magnitude domain to ratio masking in the complex domain improves PESQ 

scores for each noise. In terms of STOI, each algorithm produces improved scores over the 

noisy speech, where again CMF offers the smallest improvement. The STOI scores for the 

estimated IRM, cIRM, and PSM are approximately identical. In terms of SNRfw, the 

estimated cIRM performs best for each noise except for Babble noise where PSM produces 

the highest score.

The performance trend at 0 dB SNR is similar to that at −3 dB, as shown in Table II, with 

each method improving objective scores over unprocessed noisy speech. CMF at 0 dB offers 

approximately the same amounts of PESQ and STOI improvements over the mixtures as at 

−3 dB. The STOI scores for CMF are also lowest, which is consistent with the common 

understanding that NMF-based approaches tend to not improve speech intelligibility. CMF 

improves SNRfw on average by 1.5 dB over the noisy speech. Predicting the cIRM instead of 

the IRM significantly improves objective quality. The PESQ scores for cRM are better than 

PSM and TDR for each noise except for Babble. The objective intelligibility scores are 

approximately identical for RM, cRM, and PSM across all noise types. In terms of the 

SNRfw performance, PSM performs slightly better across each noise type.

Table III shows the separation performance at 3 dB, which is relatively easier than the −3 

and 0 dB cases. In general, the estimated cIRM performs best in terms of PESQ, while the 

STOI scores between RM, cRM, and PSM are approximately equal. PSM produces the 

highest SNRfw scores. CMF offers consistent improvements over the noisy speech, but it 

performs worse than the other methods.

The above results for the masking-based methods are generated when the DNNs are trained 

and tested on unseen noises, but with seen SNRs (i.e. −3, 0, and 3 dB). To determine if 

knowing the SNR affects performance, we also evaluated these systems using SNRs that are 

not seen during training (i.e. −6 and 6 dB). Table IV shows the average performance at −6 

and 6 dB. The PESQ results at −6 dB and 6 dB are highest for the estimated cIRM for SSN, 

Cafe, and Factory noise, while PSM is highest for Babble. The STOI results are 

approximately the same for the estimated cIRM, IRM, and PSM. PSM performs best in 

terms of SNRfw.

To further analyze our approach, we evaluate the PESQ performance of each system (except 

CMF) using the TIMIT corpus as described in Sec. IV-A. The average results across each 
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noise are shown in Table V. Similar to the single speaker case above, cRM outperforms each 

approach for SSN, Cafe, and Factory noise, while PSM is the best for Babble noise.

Fig. 4 shows the PESQ results when separately-enhanced magnitude and phase responses 

are combined to reconstruct speech. The figure shows the results for each system at all SNRs 

and noise types. Recall that the magnitude response is computed from the noisy speech or 

speech separated by an estimated IRM, while the phase response is computed from the 

speech separated by an estimated cIRM or from the methods in [7], [28]. The results for the 

unprocessed noisy speech, an estimated cIRM, and an estimated IRM are copied from 

Tables I through IV and are shown for each case. When the noisy magnitude response is 

used (lower portion of each plot), the objective quality results between the different phase 

estimators are close across different noise types and SNRs. More specifically, for Cafe and 

Factory noise the results for NS-K&G and NS-cRM are equal, with NS-G&L performing 

slightly worse. This trend is also seen with SSN at SNRs above 0 dB. Similar results are 

obtained when the magnitude response is masked by an estimated IRM, with each phase 

estimator producing similar PESQ scores. These results also reveal that small objective 

speech quality improvement is sometimes obtained when these phase estimators are applied 

to unprocessed and IRM-enhanced magnitude responses, as seen by comparing the phase 

enhanced signals to unprocessed noisy speech and speech separated by an estimated IRM. 

This comparison indicates that separately enhancing the magnitude and phase responses 

would not be optimal. On the other hand, it is clear from the results that jointly estimating 

the real and imaginary components of the cIRM leads to PESQ improvements over the other 

methods across noise types and SNR conditions.

D. Listening Results

In addition to the objective results, we conducted a listening study to let human subjects 

compare pairs of signals. IEEE utterances are used for this task. The first part of the listening 

study compares complex ratio masking to ratio masking, CMF, and methods that separately 

enhance the magnitude and phase. The second part of the listening study compares cIRM 

estimation to PSM and TDR which are sensitive to phase. During the study, subjects select 

the signal that they prefer in terms of quality, using the preference rating approach for 

quality comparisons [32], [33]. For each pair of signals, the participant is instructed to select 

one of three options: signal A is preferred, signal B is preferred, or the qualities of the 

signals are approximately identical. The listeners are instructed to play each signal at least 

once. The preferred method is given a score of +1 and the other is given a score of −1. If the 

third option is selected, each method is awarded the score of 0. If the subject selects one of 

the first two options, then they provide an improvement score, ranging from 0 to 4 for the 

higher quality signal. Improvement scores of 1, 2, 3 and 4 indicate that the quality of the 

preferred signal is slightly better, better, largely better, and hugely better than the other 

signal, respectively (see [33]). In addition, if one of the signals is preferred the participant 

indicates the reasoning behind their selection, where they can indicate that the speech 

quality, noise suppression, or both helped lead them to their decision.

For the first part of the listening study, the signals and approaches are generated as described 

in Secs. III through IV-B, including the estimated cIRM, estimated IRM, CMF, NS-K&G, 

Williamson et al. Page 11

IEEE/ACM Trans Audio Speech Lang Process. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and unprocessed noisy speech. Signals processed with combinations of SSN, Factory, and 

Babble noise at 0 and 3 dB SNRs are assessed. The other SNR and noise combinations are 

not used to ensure that the processed signals are fully intelligible to listeners, since our goal 

is a perceptual quality assessment and not intelligibility. Each subject test consists of three 

phases: practice, training, and formal evaluation phase, where the practice phase familiarizes 

the subject with the types of signals and the training session familiarizes the subject with the 

evaluation process. The signals in each phase are distinct. In the formal evaluation phase, the 

participant performs 120 comparisons, where 30 comparisons of each of the following pairs 

are performed: (1) noisy speech to estimated cIRM, (2) NS-K&G to estimated cIRM, (3) 

estimated IRM to estimated cIRM, and (4) CMF to estimated cIRM. The 30 comparisons 

equate to five sets of each combination of SNR (0 and 3 dB) and noise (SSN, Factory, and 

Babble). The utterances used in the study are randomly selected from the test signals, and 

the order of presentation of pairs is randomly generated for each subject, and the listener has 

no prior knowledge on the algorithm used to produce a signal. The signals are presented 

diotically over Sennheiser HD 265 headphones using a personal computer, and each signal is 

normalized to have the same sound level. The subjects are seated in a sound proof room. Ten 

subjects (six males and four females), between the ages of 23 and 38, each with self-reported 

normal hearing, participated in the study. All the subjects are native English speakers and 

they were recruited from The Ohio State University. Each participant received a monetary 

incentive for participating.

The listening study results for the first part of the listening study are displayed in Fig. 5(a)–

(c). The preference scores are shown in Fig 5(a), which shows the average preference results 

for each pairwise comparison. When comparing the estimated cIRM to noisy speech (i.e. 

NS), users prefer the estimated cIRM at a rate of 87%, while the noisy speech is preferred at 

a rate of 7.67%. The quality of the two signals is equal at 5.33% of the time. The 

comparison with NS-K&G gives similar results where the cRM, NS-K&G, and equality 

preference rates are 91%, 4.33%, and 4.67%, respectively. The most important comparison 

is between the estimated cIRM and IRM, since this indicates whether complex-domain 

estimation is useful. For this comparison, participants prefer the estimated cIRM over the 

IRM at a rate of 89%, where 1.67% and 9.33% preference rates are selected for the 

estimated IRM and equality, respectively. The comparison between the estimated cIRM and 

CMF produces similar results, and the estimated cIRM, CMF, and equality have selection 

rates of 86%, 9%, and 5%, respectively. The improvement scores for each comparison is 

depicted in Fig. 5(b). This plot shows that on average, users indicate that the estimated cIRM 

is approximately 1.75 points better than the comparison approach, meaning that the 

estimated cIRM is considered better according to our improvement score scale. The 

reasoning results for the different comparisons are indicated in Fig. 5(c). Participants 

indicate that noise suppression is the main reason for their selection when the estimated 

cIRM is compared against NS, NS-K&G, and CMF. When the estimated cIRM is compared 

with the estimated IRM, users indicate that speech quality is the reason for their selection 

with a 81% rate and noise suppression with a 49% rate.

Separate subjects were recruited for the second part of the listening study. In total, 5 native 

English subjects (3 females and 2 males) between the ages of 32 and 69, each with self-

reported normal hearing, participated. One subject also participated in the first part of the 
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study. cRM, TDR, and PSM signals processed with combinations of SSN, Factory, Babble, 

and Cafe noise at 0 dB SNRs are used during the assessment. Each participant performs 40 

comparisons, where 20 comparisons are between cRM and TDR signals and 20 comparisons 

are between cRM and PSM signals. For each of the 20 comparisons in each of the two cases, 

5 signals from each of the 4 noise types are used. The utterances were randomly selected 

from the test signals and the listener has no prior knowledge on the algorithm used to 

produce a signal. Subjects provide only signal preferences when comparing cIRM 

estimation to PSM and TDR estimation.

The results for the second part of the listening study are shown in Fig. 5(d). On average, 

cRM signals are preferred over PSM signals with a 69% preference rate, while PSM signals 

are preferred at a rate of 11%. Listeners feel the quality of cRM and PSM signals is identical 

at a rate of 20%. The preference rate and equality rates between cRM and TDR signals are 

85% and 4%, respectively, and subjects prefer TDR signals over cRM signals at a 11% rate.

V. Discussion and Conclusion

An interesting question is what the appropriate training target should be when operating in 

the complex domain. While we have shown results with the cIRM as the training target, we 

have performed additional experiments with two other training targets, i.e. a direct 

estimation of the real and imaginary components of clean speech STFT (denoted as STFT) 

and an alternative definition of a complex ideal ratio mask. With the alternative definition of 

the cIRM, denoted as cIRMalt, the real portion of the complex mask is applied to the real 

portion of noisy speech STFT, and likewise for the imaginary portion. The mask and 

separation approach are defined below:

(20)

where separation is performed at each T-F unit. The data, features, target compression, and 

DNN structure defined in Sections III and IV are also used for the DNNs of these two 

targets, except for STFT where we find that compressing with the hyperbolic tangent 

improves PESQ scores, but it severely hurts STOI and SNRfw. The STFT training target is 

thus uncompressed. We also find that the noisy real and imaginary components of the 

complex spectra work better as features for STFT estimation. The average performance 

results, using IEEE utterances, over all SNRs (−6 to 6 dB, with 3 dB increment) and noise 

types for these targets and the estimated cIRM are shown in Table VI. The results show that 

there is little difference in performance between the estimated cIRM and the estimated 

cIRMalt, but directly estimating the real and imaginary portions of the STFT is not effective.

In this study, we have defined the complex ideal ratio mask and shown that it can be 

effectively estimated using a deep neural network. Both objective metrics and human 

subjects indicate that the estimated cIRM outperforms the estimated IRM, PSM, TDR, CMF, 
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unprocessed noisy speech, and noisy speech processed with a recent phase enhancement 

approach. The improvement over the IRM and PSM is largely attributed to simultaneously 

enhancing the magnitude and phase response of noisy speech, by operating in the complex 

domain. The importance of phase has been demonstrated in [4], and our results provide 

further support. The results also reveal that CMF, which is an extension of NMF, suffers 

from the same drawbacks as NMF, which assumes that a speech model can be linearly 

combined to approximate the speech within noisy speech, while a noise model can be scaled 

to estimate the noise portion. As indicated by these results and previous studies [34], [15], 

this assumption does not hold well at low SNRs and with non-stationary noises. The use of 

phase information in CMF for performing separation is not enough to overcome this 

drawback. The listening study reveals that the estimated cIRM can maintain the naturalness 

of human speech that is present in noisy speech, while removing much of the noise.

An interesting point is when a noisy speech signal is enhanced from separately estimated 

magnitude and phase responses (i.e. RM-K&G, RM-G&L, and RM-cRM), the performance 

is not as good as joint estimation in the complex domain. Sec. IV also shows that the DNN 

structure for cIRM estimation generalizes to unseen SNRs and speakers.

The results also reveal somewhat of a disparity between the objective metrics and listening 

evaluations. While the listening evaluations indicate a clear preference for the estimated 

cIRM, such a preference is not as clear-cut in the quality metrics of PESQ and SNRfw 

(particularly the latter). This may be attributed to the nature of the objective metrics that 

ignores phase when computing scores [35].

To our knowledge, this is the first study employing deep learning to address speech 

separation in the complex domain. There will likely be room for future improvement. For 

example, effective features for such a task should be systematically examined and new 

features may need to be developed. Additionally, new activation functions in deep neural 

networks may need to be introduced that are more effective in the complex domain.
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Fig. 1. 
(Color online) Example magnitude (top-left) and phase (top-right) spectrograms, and real 

(bottom-left) and imaginary (bottom-right) spectrograms, for a clean speech signal. The real 

and imaginary spectrograms show temporal and spectral structure and are similar to the 

magnitude spectrogram. Little structure is exhibited in the phase spectrogram.
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Fig. 2. 
(Color online) Spectrogram plots of the real (top) and imaginary (bottom) STFT components 

of clean speech, noisy speech, the complex ideal ratio mask, and speech separated with the 

complex ideal ratio mask and the ideal ratio mask.
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Fig. 3. 
DNN architecture used to estimate the complex ideal ratio mask.
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Fig. 4. 
PESQ results for different methods of combining separately estimated phase and magnitude 

responses. Enhancement results for each noise type and SNR are plotted.
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Fig. 5. 
Listening results from the pairwise comparisons. Plots (a), (b), and (c) show the preference 

ratings, improvement scores, and reasoning results for the first part of the listening study, 

respectively. Preference results from the second part of pairwise comparisons are shown in 

(d).
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TABLE V

Average PESQ scores for different systems on −3, 0, and 3 dB TIMIT mixtures. Bold indicates best result.

SSN Cafe Babble Factory

Mixture 1.86 1.78 1.88 1.73

RM 2.31 2.16 2.34 2.23

cRM 2.52 2.32 2.35 2.41

PSM 2.44 2.23 2.41 2.33

TDR 2.38 2.27 2.32 2.33
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TABLE VI

Comparison between different complex-domain training targets across all SNRs and noise types.

PESQ STOI SNRfw

cRM 2.62 0.81 8.08

cRMalt 2.61 0.81 7.99

STFT 1.92 0.68 3.68
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