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Cognitive Mappers to Creatures of Habit: Differential
Engagement of Place and Response Learning Mechanisms
Predicts Human Navigational Behavior
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Learning to navigate plays an integral role in the survival of humans and other animals. Research on human navigation has largely
focused on how we deliberately map out our world. However, many of us also have experiences of navigating on “autopilot” or out of
habit. Animal models have identified this cognitive mapping versus habit learning as two dissociable systems for learning a space—a
hippocampal place-learning system and a striatal response-learning system. Here, we use this dichotomy in humans to understand
variability in navigational style by demonstrating that brain activation during spatial encoding can predict where a person’s behavior falls
on a continuum from a more flexible cognitive map-like strategy to a more rigid creature-of-habit approach. These findings bridge the
wealth of knowledge gained from animal models and the study of human behavior, opening the door to a more comprehensive under-
standing of variability in human spatial learning and navigation.

Introduction
A striking observation in human navigation is that individuals
vary greatly in how they get around in the world. Anecdotally,
people report everything from thinking in mental maps to estab-
lishing familiar routes to piecemeal wandering among land-
marks. Research into navigational styles has developed broad
categories for self-reported strategic preferences (Lawton, 1994;
Pazzaglia and De Beni, 2001), but little is known about why these
differences emerge at all—why should two people approach the
same navigational problem in dramatically different ways? We
offer a new approach to this question by asking how underlying
neural mechanisms may give rise to different strategies.

Since the mid-20th century, we have known that rats exhibit
two types of spatial learning (Tolman, 1948; Restle, 1957; Morris,
1981; Packard et al., 1989). For example, in the simple T-maze
preparation (Fig. 1, top), the animal repeatedly searches for a goal
in a maze with stable start and goal locations, such that the path to
the goal is the same each time. At test, the T-maze is reversed
relative to the environmental cues. When the animal navigates to
the correct location relative to the environment, he shows place
learning. Alternatively, when the animal navigates by taking the
repeated path (i.e., turns left), he shows response learning. Place

and response learning in rodents differ with respect to many
behavioral characteristics (Tolman et al., 1946; Ritchie et al.,
1950; Restle, 1957; O’Keefe and Nadel, 1978; Sage and Knowlton,
2000; Yin and Knowlton, 2006; Korol and Gold, 2007) and show
a double dissociation in the brain: deactivation of the hippocam-
pus reduces place performance with intact response perfor-
mance, whereas deactivation of the caudate nucleus reduces
response performance with intact place performance (Packard
and McGaugh, 1996).

Support for the existence of place and response learning in
humans comes from studies showing the engagement of hip-
pocampus and caudate during various navigational tasks (Hart-
ley et al., 2003; Iaria et al., 2003; Voermans et al., 2004; Iglói et al.,
2010). Here, we take the innovative step of asking whether pref-
erential engagement of these systems might be useful in charac-
terizing and accounting for individual variability in navigational
styles. In particular, we suggest that different explicit strategies
such as mental maps versus familiar routes may reflect how much
one is flexibly mapping (hippocampal place learning) or forming
habitual responses to an environment (striatal response learn-
ing). To support this argument, we need to first link these puta-
tive systems to behaviors consistent with different navigational
styles.

An elegant aspect of the dual-solution T-maze is that
encoding is kept constant; place or response learning is man-
ifested in behavior during retrieval. We present a novel dual-
solution task in humans designed to conceptually parallel the
T-maze to address how the preferential use of place and re-
sponse mechanisms during learning might explain variability
in human navigational performance by asking whether pref-
erential engagement of the putative place and response sys-
tems in the brain during encoding could predict behavioral
performance observed during retrieval.
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Materials and Methods
Participants. One hundred twenty-eight adult participants (58 males,
mean age � 19.72 years, age range 18 –24 years) participated in the be-
havioral version of this experiment in return for extra credit in introduc-
tory psychology courses, and 20 adult participants (10 males, mean age �
22.65 years, age range � 18 –34 years) participated in the fMRI experi-
ment in return for financial compensation.

Materials and procedure. During the encoding phase, participants
learned the locations of 12 objects in one of two 11 � 11 virtual environ-
ment (VE) mazes (constructed in Duke Nukem 3D; http//
eduke32.com/) (Fig. 1, bottom) by watching repetitions of a 62 s video
tour through the environment. The video tour always followed the same
path through the environment and was repeated nine times.

Following the encoding phase, participants practiced navigating with
arrow keys in an empty maze without choice points. Once participants
were familiar with the controls, they completed 24 retrieval trials in
which they were placed in the environment along the path observed
during encoding and were given 45 s to navigate to one of the objects. To
avoid any bias in strategy, participants began each trial facing a wall and
were given a brief reorientation phase in which they were rotated a full
360° over �6 s.

Twelve trials were critical “shortcut-available” trials, where a novel short-
cut offered a physically shorter path to the goal than the path experienced
during encoding. The remaining trials were catch trials in which novel
paths were equivalent to (“ambiguous,” six trials) or physically longer
than (“familiar fastest,” six trials) the learned path.

Individual differences. Fifty-eight of the participants in the behavioral
study also completed the Spatial Perspective Test (SPT) (Kozhevnikov
and Hegarty, 2001) as a measure of ability to reason flexibly about spatial

information. In this test, participants view a
simple display comprised of line drawings and
then take a perspective within the display. Par-
ticipants then draw a line to point to objects
relative to this perspective. Participants com-
plete 12 trials, and performance on this task is
measured as a 180° absolute average angular
error.

Imaging procedures. In the fMRI version of
the experiment, participants performed the
dual-solution task but were scanned while en-
coding the VE. To adapt the task for the scan-
ner, navigational control videos were
interspersed with repetitions of the video tour
during encoding. In this navigational control
condition, participants saw videos of motion
through random hallways in which they
tracked red and blue spheres.

Participants completed three runs with three
encoding and four control videos in each run.
The dual-solution retrieval task immediately
followed the scan session. To maximize power
in the fMRI experiment, the proportion of
shortcut trials was increased from 12 to 16.
Thirty-two of the 128 behavioral participants
were run using this proportion of trial types to
verify that the change did not produce a differ-
ent distribution of place–response indices.

fMRI acquisition. Imaging sessions were
conducted on a 3 Tesla Philips scanner
equipped with a SENSE parallel imaging head-
coil (MRI Devices) and higher-order shims to
compensate for local field distortions located at
the F.M. Kirby Research Center for Functional
Brain Imaging at the Kennedy Krieger Institute
in Baltimore, MD. Functional images were col-
lected using a T2*-weighted echo-planar
single-shot pulse sequence with an acquisition
matrix of 72 � 72, an echo time of 35 ms, a flip
angle of 70°, a sense factor of 2, an in-plane

resolution of 3 � 3 mm, and a TR of 2 s. Each volume consisted of 34
3-mm-thick axial slices with no gap, aligned parallel to the line from the
anterior to the posterior commissures. Four dummy scans were com-
pleted at the beginning of each run to allow for stabilization of the MR
signal. In addition, a structural whole-brain scan was acquired using an
MP-RAGE T1-weighted sequence with 231 oblique slices, 0.65 mm iso-
tropic resolution, and a field of view of 240 mm.

Subject-level fMRI analysis. Image analysis was performed using the
Analysis of Functional Neuroimages (AFNI) (Cox, 1996) software pack-
age. Functional images were coregistered and corrected for slice timing,
and head motion was accounted for using a three-dimensional registra-
tion algorithm to remove trials in which a significant head motion oc-
curred plus or minus one TR from further analysis. Functional runs were
subsequently concatenated, and behavioral vectors were defined to
model the encoding and control task conditions. These vectors were then
used to model each individual’s data using a deconvolution approach
based on general linear regression using the control condition as a base-
line. The resulting statistical fit coefficient maps represent the difference
in activity between the encoding and control conditions for a given time
point for a given voxel.

Cross-participant alignment. Methods used for cross-participant align-
ment in this study were previously described in detail (Kirwan and Stark,
2007; Yassa and Stark, 2009; Lacy et al., 2010). This method was devel-
oped to increase the power of multisubject regional fMRI studies by
focusing alignment power to regions of interest using a manual segmen-
tation of the subject’s anatomical scan. First, affine registration was used
to transform the subject’s anatomical and functional images to the Ta-
lairach coordinate system (Talairach and Tournoux, 1988). The caudate,
hippocampus, and the perirhinal, entorhinal, and parahippocampal cor-

Figure 1. Dual-solution tasks designed for rats (top) and humans (bottom). In these paradigms, encoding is completed through
repetition of the same set of responses in a stable environment. The critical test allows (at least) two solutions that reveal the type
of strategy used.
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tices were manually segmented bilaterally using methods described by
Insausti et al. (1998). Using the grayscale structural image for the pure
cross-correlation error metric, Advanced Normalization Tools (Avants
et al., 2008) was used to calculate the 3D vector field transformation for
each subject needed to align the subject’s structural data to a template
based on the modal grayscale model based on the entire sample (Klein et
al., 2009; Yushkevich et al., 2009). The resulting 3D vector field for each
individual was then applied to the concatenated fit coefficient maps from
the functional analysis.

Group analysis. Group data were modeled in AFNI using a hybrid
functional/anatomical analysis. The primary contrast for all analyses was
based on a two-tailed t test contrasting the encoding and control condi-
tions. To target our specific regions of interest, a liberal voxel threshold of
p � 0.05 was used on the overall t statistic in combination with a spatial
extent threshold of 50 contiguous voxels. The resulting areas of activa-
tion were then combined with the anatomical segmentation to only in-
clude voxels within the hippocampus and caudate. Voxels within each
functional/anatomical region of interest were then used in the subse-
quent analyses.

Results
Behavioral results
The number of trials completed in each trial type and overall was
calculated for each participant to verify successful navigation (av-
erage percentage of trials completed: 83%). For the critical
shortcut-available trials, we compared the number of steps made
along one of the possible shortcut paths to the number of steps
made along the familiar path using the algorithm of Dijkstra
(1959). The trial was classified according to which path ac-
counted for more of the navigational behavior. Occasionally, par-
ticipants did not take either an optimal path or the familiar path,
or failed to reach the goal location; these indeterminate trials did
not contribute to the participant’s behavioral index.

We calculated the proportion of trials on which participants
took an available shortcut as an index of an individual’s tendency
toward place (reason flexibly) or response (stick to familiar)
learning (place/response index). The frequency of different val-
ues on the place/response index revealed that people varied
across the full range using 0 –100% of the available shortcuts,
with many people ranging in between (Fig. 2a). The correlation
between the place/response index and the score on the SPT
showed a strong positive relationship (r � 0.37, two-tailed t test;
t(56) � 2.98, p � 0.004), indicating that greater flexibility in rea-
soning was associated with more use of shortcuts (Fig. 2b). To-
gether, these results suggest that the place/response index is a
dimension along which individuals show natural variability, and
the connection between place performance and flexible spatial
reasoning is consistent with a distinction between flexible place
learning and rigid response learning (O’Keefe and Nadel, 1978;
Packard and McGaugh, 1996; Squire, 2004; Foerde et al., 2006;
Yin and Knowlton, 2006).

fMRI results
This smaller sample of participants completed an average of
89% of the trials and represented a place/response index rang-
ing from 0.06 to 0.83. As a manipulation check, we verified
that our encoding task was consistent with the broader litera-
ture using a whole-brain analysis for VE encoding versus con-
trol with a more stringent height threshold (p � 0.001). As
shown in Figure 3, we observed activation in the standard
“navigation network” associated with environmental learning
and memory (Maguire et al., 1998; Shelton and Gabrieli,
2002). With this validation of the paradigm, we then moved to
the central question of how behavior relates to activation in
the hippocampus and caudate.

To evaluate whether activation in the putative place and re-
sponse regions predicted subsequent performance, we first iden-
tified regions of interest based on structure and function as
described in the Materials and Methods section. We restricted

Figure 2. Behavioral results. A, The distribution of place/response indices for the behavioral
sample, revealing full range. B, Correlation between SPT performance, as a measure of spatial
flexibility, and the place/response index (r � 0.37, t(56) � 2.98, p � 0.004, two-tailed test).
Participants who showed greater flexibility in spatial reasoning (i.e. higher SPT scores) took
more available shortcuts than participants who showed less flexibility (i.e., lower SPT scores).

Figure 3. Regions identified in a whole-brain functional analysis for spatial encoding versus control.
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our analysis to regions of interest based on the hypotheses
from the rodent literature (bilateral hippocampus and cau-
date). However, these regions are embedded within broader
learning and memory networks, and we emphasize that their
functions must be interpreted in the context of the memory
systems they exemplify, rather than as discrete modules of pro-
cessing. In this light, we measured individual differences in the
relative activation of these two regions.

Voxel selection for the regions of interest resulted in the following
four areas of activation (Fig. 4, left): bilateral hippocampus (623 and
307 voxels in the right and left, respectively); and bilateral caudate
nucleus (465 and 149 voxels in the right and left, respectively). Mean
activity in these clusters was then used to calculate a normed ratio of
hippocampal/striatal activation. For each participant, we calculated
the place/response index at retrieval. We then correlated the normed
ratio of hippocampal/striatal activation with the place/response in-
dex. As shown in Figure 4, this resulted in a striking correlation (r �
0.44, two-tailed t test; t(18) � 2.10, p � 0.05), with the activation ratio
predicting 19% of the variance of subsequent memory performance.

To ensure that this relationship was not driven by the contri-
bution of a single region, we correlated activation in each region
separately with the place/response index. Although neither sepa-
rate correlation reached statistical significance (place/response
index and hippocampus: r � 0.31, two-tailed t test; t(18) � 1.43;
p � 0.18; place/response index and caudate: r � �0.26, two-
tailed t test; t(18) � 1.14; p � 0.27), they are each in the direction
predicted by the place and response literature in rodents. These
data reinforce our suggestion that the balance between memory
systems during learning is more important than either one alone.

Finally, we verified that this relationship could not be attrib-
uted to differences in overall learning. We performed a median
split on the participants based on their place/response index. Par-
ticipants in the place range (14.3 goals found) and response range
(13.4 goals found) did not differ in terms of their ability to find
goals (t(9) � 1.57, p � 0.15). In addition, we observed no evidence
of a correlation between the normed ratio of hippocampal/stria-
tal activation and the number of critical trials completed (r �
�0.1, two-tailed t test; t(18) � 0.426, p � 0.67). Together, the
relative engagement of memory systems during encoding pre-
dicts navigational strategy rather than the success of navigation.
As in the T-maze used in rodents, this suggests that how people

choose to navigate may depend on the dif-
ferential engagement of specific learning
mechanisms during encoding.

Discussion
Previous studies have suggested that hu-
mans use place- and response-like mech-
anisms in different situations akin to
those predicted from the animal models
(Hartley et al., 2003; Iaria et al., 2003; Vo-
ermans et al., 2004; Iglói et al., 2010). We
bring a new twist to this story by demon-
strating that the preferential engagement
of these putative mechanisms can be used
to explain some of the variability in hu-
man navigation. More importantly, our
results were not based on whether their
navigation was a success or failure. Our
participants successfully arrived at the tar-
get locations within the time constraints
and with limited wandering, whereas they
differed with respect to the paths chosen
during navigation. As such, the activation of

the place and response systems was not predicting whether people
navigated successfully but rather how they navigated successfully.
This provides a novel approach to navigational styles with broad-
reaching implications.

First, we suggest that preferential engagement of place and
response learning may be a dimension along which people vary.
An important observation was the continuous nature of both our
measure of place and response and the relative engagement of
hippocampus and caudate. That is, some people fell in the tails of
the continuum, but many showed a mixture of solutions across
trials. Similarly, participants tended to show activation in both
the hippocampus and caudate, with variability in both regions.
This is consistent with a model in which humans can avail them-
selves of multiple mechanisms during learning (for review, see
Schacter and Tulving, 1994; Squire, 2004). Critically, we observed
that the balance of the engagement of the underlying neural
mechanisms during encoding could predict the balance of the use
of the familiar path and the use of shortcuts at retrieval that could
not be captured by a simple all-or-none classification. These data
imply that when there are no specific constraints on the strategies
that can or should be used, individuals can differ with respect to
how they naturally weight the contributions of multiple memory
systems. We suggest that this preferential weighting at learning
reflects a tendency to encode spatial information more readily in
one system or the other, as evidenced by what they choose to do in
subsequent navigation.

To capture these findings, we suggest a potential model in which
individuals naturally engage both place and response learning mech-
anisms but have a baseline preference/bias for how they will balance
the engagement of those systems. This bias is reflected in the brain
activation during encoding when the conditions of retrieval may or
may not be evident. Thus, it appears that the balance of activation in
these brain systems may reflect individual differences in ap-
proaches to spatial learning rather than explicit encoding of one
solution or another. In other words, our participants were likely
learning about both the structure of the environment and the
repeated set of navigational responses but differed with respect to
the degree of learning that occurred in each system. We argue that
this may provide mechanistic support for the emergence of dif-
ferent strategies for solving the same navigational problem. For

Figure 4. Region of interest analysis. Activation in the hippocampus and caudate identified via learning– control contrast and
structural segmentation (left) was extracted and converted to a normed ratio [(hippocampus � caudate)/(hippocampus �
caudate)] in order to correlate with the place/response index (right). Individuals who showed greater hippocampal activation used
more shortcuts (more place-like).
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example, a bias toward place learning might support more global
strategies that emphasize flexible understanding, whereas a bias
toward response learning might support more path-based strat-
egies that emphasize repetition of effective routes.

In the current study, navigational style was measured in the
selection of particular strategies during retrieval when the condi-
tions would allow either system to prevail. The correlation be-
tween this behavior and the brain activation highlights the fact
that how people approached encoding had a clear impact on how
they selected to approach retrieval. However, our model also
makes predictions about what different people should be able to
do under different navigational constraints rather than simply
what they “choose” to do under unconstrained retrieval condi-
tions. In addition to accounting for some aspects of individual
differences (Lawton, 1994; Pazzaglia and De Beni, 2001; Fields
and Shelton, 2006), this work provides a foundation for investi-
gating how these two systems might be differentially used within
and across individuals. Thinking in terms of not only one’s initial
biases but also how environmental conditions, individual skill
sets, and navigational goals might cause people to use one strat-
egy over another will enrich our overall understanding of how
humans navigate.

Finally, this work represents a critical bridge between the sys-
tems neuroscience of rodent spatial learning mechanisms and
real-world behavior in human navigation. This opens the door
for taking questions about such aspects as neuromodulation,
hormones, genetics, and aging that have been articulated in the
rat and applying them to the complexities of human navigational
behavior. Together, these investigations would revolutionize our
approach by providing access to a wider range of factors to ex-
plain the enormous variability in human spatial learning and
navigation.
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