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Abstract

Monitoring subglottal neck-surface acceleration has received renewed attention due to the ability 

of low-profile accelerometers to confidentially and noninvasively track properties related to 

normal and disordered voice characteristics and behavior. This study investigated the ability of 

subglottal neck-surface acceleration to yield vocal function measures traditionally derived from 

the acoustic voice signal and help guide the development of clinically functional accelerometer-

based measures from a physiological perspective. Results are reported for 82 adult speakers with 

voice disorders and 52 adult speakers with normal voices who produced the sustained vowels /

a/, /i/, and /u/ at a comfortable pitch and loudness during the simultaneous recording of radiated 

acoustic pressure and subglottal neck-surface acceleration. As expected, timing-related measures 

of jitter exhibited the strongest correlation between acoustic and neck-surface acceleration 

waveforms (r ≤ 0.99), whereas amplitude-based measures of shimmer correlated less strongly (r ≤ 

0.74). Additionally, weaker correlations were exhibited by spectral measures of harmonics-to-

noise ratio (r ≤ 0.69) and tilt (r ≤ 0.57), whereas the cepstral peak prominence correlated more 

strongly (r ≤ 0.90). These empirical relationships provide evidence to support the use of 

accelerometers as effective complements to acoustic recordings in the assessment and monitoring 

of vocal function in the laboratory, clinic, and during an individual’s daily activities.
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I. Introduction

BODY surface vibrations generated during speaking often provide robust signals that can be 

related to the underlying physiological mechanisms of voice and speech production. 

Accelerometer (ACC) sensors can measure these signals by taking advantage of the 

piezoelectric effect to transduce mechanical forces into electrical signals. Since the 1960s, 

investigators have employed ACCs to supplement or replace acoustic microphone (MIC) 

recordings for selected applications in order to obtain estimates of parameters that are 

minimally affected by unwanted acoustic interference (e.g. environmental noise, speech of 

others, etc.). When placed appropriately, in addition to sensing phonation, ACCs can provide 

spectral features related to chest wall vibration [1], nasal resonances [2], [3], and subglottal 

resonances [4].

Recently, multiple types of nonacoustic body sensors have been shown to complement each 

other in speech communication systems that require robust performance in the presence of 

high noise environments [5]. ACCs placed on the anterior neck below the larynx are 

particularly well suited for measuring phonation because of their relative insensitivity to the 

time-varying speech signal and background noise levels [6], thus providing potentially 

significant benefits in the study of normal and disordered vocal function. In fact, when 

compared to MICs, ACCs are more immune to environmental noise artifacts [6]. 

Furthermore, when positioned on the anterior neck surface during voice production, ACCs 

may measure components related to tissue-to-tissue transmission of vocal fold collision 

forces through the thyroid cartilage and air-to-tissue transmission of aerodynamic energy 

through the trachea [7], [8]. The relative contribution of these two components may play a 

critical role in how ACC-derived measures complement their MIC-derived counterparts in 

the characterization of normal and disordered phonation.

In terms of voice source characterization, anterior neck-surface acceleration at the tracheal 

level has been studied in speakers with both normal and disordered voices to derive features 

related to average fundamental frequency (f0) [9], [10], instantaneous f0 [11], sound 

pressure level [12], voice activity detection [13], and glottal airflow features [14]. Robust 

estimation of vocal f0 has been the primary motivation for employing neck-placed ACCs, 

particularly in noisy environments [9], [10] and in breathy speech contexts when 

electroglottography fails to register a signal due to reduced vocal fold contact [15]. The 

Spearman correlation between MIC- and ACC-based f0 has been reported to range from 

0.73 to 0.92 during continuous speech in four speakers with normal voices [16]. Anecdotal 

evidence of short-term variation in the f0 has demonstrated that jitter values as measured by 

an MIC are similar to jitter derived from an ACC signal [17].

The field of ambulatory voice monitoring or voice dosimetry has heavily relied upon the 

estimation of f0 and sound pressure level from a neck-mounted ACC with the primary 

objective of quantifying the accumulated impact of prolonged voice use by speakers in 

occupations with high vocal demands [18], [19], [13], [20], [21]. ACC-based recordings are 

well suited for ambulatory monitoring as the ACC sensor is robust in the context of 

background noise and preserves speaker confidentiality when placed below the larynx (i.e., 

the sensor does not capture intelligible speech). However, there are limitations in the use of 
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accelerometry to estimate sound pressure level as the short-time energy in the ACC signal 

appears to only correlate with the acoustic sound pressure level to a particular degree of 

uncertainty that approaches ±6 dB [12]. Nevertheless, it is hoped that ACC-based voice 

monitoring systems will provide complementary information with data obtained from in-

laboratory MIC recordings, especially since certain voice disorders are associated with 

aberrant patterns of daily voice use [22].

Acoustic measures based on cycle-to-cycle perturbation (e.g., jitter and shimmer) and signal-

to-noise (e.g., harmonics-to-noise, cepstral peak prominence, etc.) levels are often used 

clinically to objectively assess the impact of voice disorders on vocal function. Acoustic 

measures of perturbation such as jitter have historical roots as indicators of “the physical 

processes of speech production” (p. 344) [23], and spectral measures of noise and tilt have 

been used to characterize glottal closure patterns [24]. In the cepstral domain, variations in 

acoustic measures have been obtained to study trading/compensatory relationships between 

vocal fold vibratory characteristics such as asymmetry, speed quotient, and incomplete 

glottal closure [25]. Based on the advantages described (e.g., relative immunity to 

environmental noise), use of the high-bandwidth ACC signal has the potential to enhance 

these types of voice assessment. Aside from some case studies, however, which have 

reported that the MIC signal tends to exhibit approximately twice as much shimmer as in 

simultaneously recorded ACC signals [17], little attention has been focused on whether the 

neck-surface ACC signal can be used to estimate analogous parameters.

This study was motivated by the desire to extract more information from the neck-surface 

ACC signal, especially characteristics that may be translated from vocal function measures 

used in clinical voice assessment. The specific purpose was to determine the extent to which 

vocal function measures extracted from the subglottal neck-surface ACC signal are related to 

analogous measures derived from the MIC signal in speakers with and without voice 

disorders. Sustained vowel production was thus analyzed for three categories of vocal 

function measures: (1) time-domain perturbation (jitter, shimmer, harmonics-to-noise ratio), 

(2) spectral characteristics (harmonics-to-noise ratio, spectral tilt), and (3) cepstral properties 

(cepstral peak prominence). It is acknowledged that using MIC-derived measures as 

reference metrics may be considered imperfect as researchers continue to elucidate the 

functional significance of various objective measures for clinical voice assessment [26]. 

However, the ongoing development of clinically significant acoustic measures, particularly 

those based on the cepstrum, shows promise for distinguishing voice qualities and 

classifying patients from vocally-normal speakers, e.g., [27].

It is hypothesized that timing-related measures will compare well between the ACC and 

MIC domains due to high correlations for average f0 in the literature and the theoretical 

basis that similar information from phonatory cycles radiates through the neck tissue and 

through the vocal tract and out of the mouth. Amplitude-based measures are expected to 

exhibit a decreased correlation between ACC and MIC signals due to larger variances across 

subjects of the ACC waveshapes. The lowpass-filter quality of the neck frequency response 

has been observed to be −8.4 dB per octave (dB/oct) for individuals with normal neck tissue 

[28] and −8.8 dB/oct across both laryngectomee patients and normal subjects [29]. Thus the 

spectral tilt of the ACC signal is hypothesized to have a statistically significant bias on the 
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order of 8 dB/oct when compared to the spectral tilt of the MIC signal. Since the cepstral 

peak prominence (CPP) is an integrative measure of perturbation, harmonics-to-noise ratio 

[30], [31], [32], and waveshape differences, it is expected that CPP will moderately correlate 

between ACC and MIC domains. Glottal turbulence noise, if present in the MIC signal, is 

hypothesized to be significantly attenuated in the neck-surface ACC signal, thus decreasing 

the variance of CPP measures in the ACC domain.

II. Methods

A. Subject enrollment

The study sample consisted of 134 adult speakers: 52 subjects (47 female, 5 male) with 

normal voices and 82 subjects (69 female, 13 male) diagnosed with a voice disorder such as 

muscle tension dysphonia or having benign vocal fold lesions such as nodules and/or polyps. 

The average age (mean ± SD) of subjects with normal voices was 27.3 ± 11.4 years for the 

female group and 29.4 ± 8.4 years for the male group. The average age of subjects with 

voice disorders was 32.4 ± 14.5 years for the female group and 38.4 ± 11.9 years for the 

male group. In the group with voice disorders, 46 of the subjects were assessed during 

multiple visits throughout the course of treatment (e.g., before and after laryngeal surgery or 

voice therapy): 37 subjects were assessed twice, 7 subjects were assessed three times, and 2 

subjects were assessed four times. Thus, data were acquired over 191 total sessions.

B. Data collection

Figure 1 shows the data acquisition setup. Subjects were enrolled in a larger study on 

smartphone-based ambulatory voice monitoring whose in-laboratory protocol called for the 

simultaneous acquisition of acoustics, electroglottography, subglottal neck-surface 

acceleration, and aerodynamic estimates of oral airflow and subglottal pressure 

(pneumotachograph mask system) [33]. The current study focused on obtaining vocal 

function metrics from the MIC and ACC data. Each subject was instructed to sustain three 

vowels (/a/, /i/, /u/), each for 2–5 s at a comfortable pitch and loudness.

The MIC signal was recorded using a head-mounted condenser MIC with a cardioid pattern 

(Model MKE104, Sennheiser electronic GmbH, Wedemark-Wennebostel, Germany). The 

MIC was situated approximately 4 cm from the lips at a 45-degree azimuth. The MIC signal 

was input to a preamplifier (Model 302 Dual Microphone Preamplifier, Symetrix, Inc., 

Mountlake Terrace, WA), followed by preconditioning electronics (CyberAmp Model 380, 

Axon Instruments, Inc., Union City, CA) for gain control and anti-alias filtering at a 3 dB 

cutoff frequency of 8 kHz. The analog signal was digitized at a 20 kHz sampling rate, 16-bit 

quantization, and ±10 V dynamic range (Digidata Model 1440A, Axon Instruments, Inc.).

The ACC consisted of a miniature piezo-ceramic vibration transducer (BU-27135, Knowles 

Electronics) with unidirectional sensitivity in the axial dimension and dimensions 7.92 mm 

× 5.59 mm × 4.14 mm. The ACC has a linear frequency response from 20 Hz to 20 kHz and 

was wired to a three-conductor cable and mounted on a flexible silicone pad with a durable 

silicone sealant and epoxy. This sensor mounting was necessary to provide for a durable 

assembly that was also used for ambulatory monitoring of subjects in context of the larger 
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study [20]. The ACC assembly (sensor mounted on the silicone pad) was calibrated to 

physical units of acceleration (cm/s2) by sending a known stimulus to a mechanical shaker. 

The sensor was affixed to the subject’s anterior neck-skin surface halfway between the 

thyroid prominence and the suprasternal notch along the midsagittal axis using 

hypoallergenic double-sided tape (Model 2181, 3M, Maplewood, MN).

The ACC signal was recorded with a sampling rate of 11.025 kHz (16-bit quantization) on a 

Google/Samsung Nexus S smartphone that allowed for programmable gain control prior to 

input into a sigma-delta modulation audio codec (WM8994; Wolfson Microelectronics, 

Edinburgh, Scotland, UK). Automatic gain control was disabled to preserve relative signal 

levels. The codec’s highpass filter setting was modified to a cutoff frequency of 10 Hz.

Alignment of the MIC and ACC signal was achieved using a custom algorithm in MATLAB 

(The MathWorks, Natick, MA) that shifted the ACC signal (upsampled to the acoustic 

sampling rate of 20 kHz) such that the absolute value of the cross-correlation between the 

two signals was maximized. This alignment inherently compensated for time delays 

associated with the acoustic propagation time between ACC and MIC sensors. The middle 

0.5 s was extracted from each vowel waveform for vocal function analysis to capture a 

quasi–steady state segment unaffected by transient onset and offset behaviors.

C. Vocal function measures

Vocal function measures consisted of three types: (1) time-domain perturbation (jitter, 

shimmer, harmonics-to-noise ratio), (2) spectral harmonicity (harmonics-to-noise ratio, 

spectral tilt), and (3) cepstral periodicity (cepstral peak prominence).

1) Time-domain perturbation—Time-domain perturbation measures of jitter, shimmer, 

and harmonics-to-noise ratio were computed to capture time-varying features of period 

duration and amplitude that are hypothesized to translate from the ACC to MIC waveforms.

Figure 2A illustrates the identification of glottal pulse timings ti and amplitudes ai for cycle 

index i by Praat on example waveforms [34]. Praat estimates the f0 contour using a time-

domain autocorrelation approach, followed by the assignment of a time instant at each pulse 

at the maximum absolute amplitude within each period. In certain cases, the start-up 

processes in the algorithm yielded glottal pulse timings that were offset in the MIC signal 

relative to the ACC signal (38.2% of recordings). In those cases, the pairing of glottal cycles 

in the acoustic and acceleration waveforms was compensated for by a custom MATLAB 

algorithm that shifted the glottal pulse instants such that the cycle-to-cycle f0 (reciprocal of 

each period) maximally correlated between acoustic and acceleration domains for each 

recording. This post-alignment timing compensation is an important step for any algorithm 

analyzing pairs of independent signals, even when applied to quasi-stationary signals.

Figure 3 shows the effect of the glottal pulse timing compensation by displaying scatter plots 

of the f0 of periods within one recording of a female subject. The correlation increases from 

0.83 to 0.98, demonstrating that pulse-to-pulse alignment is as accurate as possible after 

glottal pulse timing compensation. Glottal cycle period durations were defined as pi = ti+1 – 
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ti with average period duration , where N is the number of glottal pulse 

timings found.

In the voice literature, many variants of jitter and shimmer have been proposed and studied 

in the area of acoustic voice analysis [35]. These perturbation algorithms typically employ 

some type of stability analysis to determine the degree of perturbation of a time series 

(cycle-to-cycle period duration and amplitude for jitter and shimmer, respectively). 

Parameters of these perturbation analyses include definitions of short-term variability, the 

use of the derivative operator, and smoothing factors.

For the current study, two variants of jitter and shimmer were computed using pi and 

corresponding amplitudes ai, respectively. The first variant, the coefficient of variation 

(standard deviation divided by the mean) of the period durations was defined as

(1)

JCV was selected as a measure of overall average variability of a time series with a stable 

mean.

To quantify cycle-to-cycle changes in period duration that take into account time ordering 

within the time series, local jitter [36], [37] was defined as the average absolute difference 

between consecutive period durations divided by the mean period duration:

(2)

Although many other definitions of jitter exist [e.g., smoothing parameters or temporal units 

used [35]], the two variants implemented provided initial results regarding the ability of 

global variability (no time ordering) and cycle-to-cycle variability (time ordering) to be 

mapped from the MIC signal to the ACC signal.

The two variants of shimmer—SCV and Slocal—were computed analogously:

(3)

and

(4)

where the average glottal cycle instantaneous amplitude .
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A time-domain estimate of harmonics-to-noise ratio (HNRtime) was computed using Praat 

through the Harmonicity (cross-correlation method) function [37]. The method employs 

template matching over sliding windows in the waveform, with variations in waveshape 

represented as the noise component.

2) Spectral domain—Fig. 2B illustrates a representative average magnitude spectrum of 

the MIC and ACC waveforms. A spectral measure of harmonics-to-noise ratio (HNRspec) 

was performed using a periodic/noise decomposition method that employs a comb filter to 

extract the harmonic component of a signal [38], [39]. This ‘pitch-scaled harmonic filter’ 

approach uses an analysis window duration equal to an integer number (four in the current 

work) of local periods and relies on the property that harmonics of the f0 exist at specific 

frequency bins (every fourth bin) of the discrete-time Fourier transform. The harmonic 

component of the signal was thus estimated from the comb-filtered spectrum. Subtraction of 

the harmonic spectrum from the original waveform’s spectrum yielded the noise component, 

where spectral interpolation filled in gaps in the residual noise spectrum formerly containing 

harmonic power. The inverse discrete-time Fourier transform of the harmonic and noise 

spectral estimates yielded time-domain waveforms that are joined via overlap-add synthesis 

of successive analysis windows. HNRspec was the ratio, in dB, of the power of the 

decomposed harmonic and noise signals.

A measure of spectral tilt (TL8) was implemented to provide an estimate of the spectral 

slope over the first 8 harmonics associated with the voice source [40]. Each waveform was 

divided into eight analysis frames (Hamming windowed) with 50 % overlap, and an average 

spectrum obtained over the analysis frames (modified periodogram via Welch’s method). 

Harmonic amplitudes were estimated from the average spectrum as the first 8 peaks in the 

vicinity (±50 Hz) of integer multiples of the mean fundamental frequency of the waveform. 

For the MIC signals, harmonic amplitudes were compensated for the amplifying effects of 

the first three formants [41] to yield a voice source–related decay of harmonic amplitudes. 

Mean formant frequencies and bandwidths were estimated by Praat using the Burg method 

across 50 ms analysis frames with 50 % overlap [37]. Finally, TL8 was computed as the 

linear regression slope, in dB per octave, over the first 8 compensated harmonic magnitudes. 

Analysis of the ACC waveforms did not include formant compensation because minimal 

residual formant information was present in the ACC signal; subglottal resonances 

information in the ACC signal was unfiltered.

3) Cepstral domain—Fig. 2C displays an overlay of example cepstra of the MIC and 

ACC waveforms. Recently, measures derived from the acoustic cepstrum have been adapted 

for clinical voice assessment using the commercially available Analysis of Dysphonia in 

Speech and Voice (ADSV) program (PENTAX, Lincoln Park, NJ). Since the cepstrum can 

be calculated in many different ways, a brief description of the method used by the ADSV 

program is given here [42]. After resampling the waveform to 25 kHz, the signal was 

Hamming-windowed into 40.96 ms (1024 samples) frames with 75% overlap. Two 1024-

point discrete Fourier transforms were computed in succession with a logarithmic 

transformation between them. A 7-frame cepstral smoothing was performed by averaging 

the power cepstrum with those of the three frames prior to and following a given frame. Due 
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to a bias in the power cepstrum, a regression line was computed over quefrencies greater 

than 2 ms (corresponding to a quefrency range minimally affected by vocal tract-related 

information). Finally, the cepstral peak prominence (CPP) for each analysis frame was 

defined as the difference, in dB, between the magnitude of the highest peak and the baseline 

regression level in the averaged power cepstrum. The peak search was limited to quefrencies 

between 3.3 ms and 16.7 ms, corresponding to fundamental frequencies of 300 Hz and 60 

Hz, respectively. The final CPP measure was an average over all analysis frames for each 

waveform.

D. Statistical analysis

Pearson’s correlation coefficient r was used to evaluate the relationships between vocal 

function measures estimated from the MIC and ACC waveforms during sustained vowel 

production. Instantaneous glottal pulse f0 and amplitude were correlated within each 

recording and across all subject recordings. The set of vocal function measures was 

computed for each recording, and pairwise correlations between analogous algorithms on 

MIC and ACC signals were performed across subject recordings. Due to the computation of 

multiple statistical comparisons for each vowel, the baseline alpha level (0.01) of the 

correlation coefficients were Bonferroni corrected to mitigate the possibility of false positive 

results; i.e., correlation coefficients were considered statistically significant when p < 0.001.

The study also investigated any dependence of the correlations on vowel type (/a/, /i/, /u/) 

and any systematic bias exhibited by the ACC-based vocal function measures that would 

indicate under- or over-estimation of a particular measure with reference to the analogous 

measure derived from the MIC signal. Biases were computed as the average difference 

between the ACC-based measures and the analogous MIC-based measures within each 

subject. A nonzero bias was considered statistically significant when the associated paired t-

test achieved statistical significance (p < 0.001).

Outliers were removed prior to computing correlation coefficients if jitter/shimmer values 

(on either MIC or ACC signals) were greater than 5% [43] or values were three standard 

deviations away from the mean (8.9% outliers for shimmer metrics, 5.4% outliers for the rest 

of the measures). Data from the same subject on multiple visits were included in the analysis 

because of the general independence of the voice samples at points during the course of 

treatment.

All statistical analyses were performed across all subject recordings, as well as separately on 

the normative and patient groups.

III. Results

Figure 4 displays scatter plots showing the co-relation of the vocal function measures for 

each vowel type and any systematic biases exhibited by the ACC-based measures with 

reference to MIC-based measures. No systematic differences were found in the ability to 

derive the reported vocal function measures from the ACC signal for speakers grouped by 

the presence or absence of a voice disorder.
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A. Correlations of vocal function measures

Table I reports the correlation coefficients between ACC-based and MIC-based measures of 

jitter (JCV, Jlocal), shimmer (SCV, Slocal), harmonics-to-noise ratio (HNRtime, HNRspec), 

spectral tilt (TL8), and cepstral peak prominence (CPP). All correlation coefficients achieved 

statistical significance for each subject group. The strength of the correlations varied 

depending on the measure computed, with correlations generally in a similar relative range 

within each vowel type; although the highest correlations tended to be exhibited when 

speakers produced the vowel /a/. The strongest correlations were obtained for the two time-

domain jitter measures (JCV and Jlocal) and CPP, with JCV and CPP also exhibiting the 

highest and most consistent correlations across different vowels. JCV correlations reached as 

high as 0.99 for the vowel /a/, and CPP correlations peaked at 0.90 for the vowel /a/.

The ACC signal appears to capture the overall variance of period durations sensed by the 

MIC using the JCV measure. Jitter measures depending on time order (Jlocal) resulted in 

slightly lower correlations.

Overall, amplitude-based perturbation metrics of shimmer compared less well than the time-

based measures of jitter between MIC and ACC signals. In the pooled group, the degree of 

correlation ranged from 0.44 to 0.74 for SCV and from 0.24 to 0.35 for Slocal. Spectral 

measures of HNRspec and TL8 exhibited the lowest correlations (as high as 0.57 for TL8 

on /a/) when comparing analogous measures from the MIC and ACC waveforms.

B. Bias in accelerometer-based measures

Table II lists statistical biases observed when computing the vocal function measures from 

the neck-surface ACC signal in each subject group. Bias values were obtained by calculating 

the mean of the differences between measures derived from the ACC and MIC waveforms 

for each recording. Positive values indicated that the ACC-based value was higher on 

average with reference to the associated MIC-based value for a particular measure and vowel 

type.

Jitter measures demonstrated little to zero bias, whereas shimmer measures from the ACC 

signal tended to underestimate shimmer from the MIC signal from 0.48 to 2.00 percentage 

points in the pooled group. In contrast, the harmonics-to-noise ratio measures were 

significantly higher (up to 10.92 dB) when computed from the ACC signal, and the spectral 

magnitude of the first 8 ACC harmonic components decayed at a faster rate (approximately 

7 dB/oct faster) than the decay rate of the first 8 MIC harmonic components. In contrast, the 

average CPP measure was more stable, within 1.37 dB when measured in either ACC or 

MIC domains.

C. Instantaneous f0 and amplitude

Recall Fig. 3B that illustrated the ability of the instantaneous f0—reciprocal of the duration 

of an individual glottal cycle—to correlate highly (r=0.98 in that example) when computed 

from both MIC and ACC domains. Pearson’s correlation coefficient between MIC-based and 

ACC-based values of instantaneous f0 across all subject recordings was 0.99, 0.98, 0.98 for /

a/, /i/, and /u/, respectively. Comparing the average f0 between ACC and MIC domains 
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resulted in near-perfect correlations for all vowel types. Pitch halving errors were 

experienced in a few cases when analyzing the MIC waveform, whereas corresponding 

processing of the ACC waveform was unaffected by these errors and yielded correct f0 

detection.

Analogous to the instantaneous f0 plot in Fig. 3B, comparisons were also made between the 

instantaneous glottal pulse amplitude (magnitude) of the same cycle in the MIC and ACC 

waveforms. Since signal amplitudes were in normalized units, Pearson’s correlation 

coefficients were obtained within each subject recording only. To obtain an estimate of the 

variation of the amplitude correlation across subject recordings, the mean (standard 

deviation) of the correlation coefficients were computed for the vowels /a/, /i/, and /u/ as 

0.67 (0.24), 0.58 (0.25), 0.61 (0.27), respectively. These results indicate the limited ability of 

the ACC signal to track cycle-to-cycle changes in amplitude that occurred in the MIC signal.

IV. Discussion

Given the potential advantages in clinical and ambulatory voice assessment that could be 

obtained by increased utilization of the subglottal neck-surface acceleration signal, this 

study sought to determine the extent to which this signal could be used to estimate vocal 

function–related parameters that are analogous to those currently obtained from the MIC 

signal. Models linking neck surface acceleration to radiated acoustic pressure during vowel 

production have employed lumpedelement representations of the subglottal tract, 

supraglottal tract, and neck skin in an effort to derive voice source–related properties such as 

maximum flow declination rate and spectral tilt [44], [45], [14], [28]. The transformation 

from acoustics to acceleration can be represented by a linear filter such that an inverse filter 

may recover the glottal source waveform [14]. These results imply the opportunity for 

capturing information related to acoustic perturbation and spectral measures because the 

acoustic-to-acceleration conversion is modeled as a time-invariant transformation. These 

models assume that the primary contribution to the ACC waveform arises from acoustic and 

aerodynamic energy at the glottis. Thus the model assumptions are potentially correct in 

some respects (i.e., that glottal noise information is not contributing much to the acceleration 

waveform) and incorrect in others (i.e., vocal fold collision forces may be contributing 

significantly to the differences seen between the measures derived from acoustic and 

acceleration signals).

The moderate-to-strong correlations between ACC- and MIC-based measures of 

perturbation and cepstral peak prominence provide evidence that 1) clinical voice 

assessment could be potentially enhanced/improved by the acquisition of the subglottal 

neck-surface acceleration signal, particularly in noisy environments; and 2) ambulatory 

voice monitoring systems that use neck-placed ACCs to sense phonation could be updated to 

include estimates of vocal function, which could be particularly useful in increasing the 

versatility of those systems that also provide ambulatory biofeedback for carryover of voice 

therapy goals. For example, due to the high correlation between ACC- and MIC-based 

estimates of CPP, future work could track changes in CPP from a speaker’s ambulatory 

accelerometer signal to reveal deterioration of vocal function over the course of a day due to 

vocal fatigue, etc.
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ACC-based measures of harmonics-to-noise ratio and spectral tilt displayed weaker 

correlations with acoustic versions of these measures, indicating that these acceleration-

derived measures are potentially providing different information than the acoustic measures. 

For example, measuring spectral tilt from the ACC signal showed a bias of approximately 

−7 dB/oct with reference to spectral tilt computed from the acoustic waveform. This 

empirical value agrees well with the lowpass-filter quality of the neck frequency response 

that was observed to be −8.4 dB/oct for individuals with normal neck tissue [28] and −8.8 

dB/oct across both laryngectomee patients and normal subjects [29]. Indeed, Fig. 2B 

illustrates that the bandwidth of the radiated acoustic signal typically surpassed 8 kHz, 

whereas little energy was present above 4 kHz in the ACC signal. The agreement of the 

ACC spectral tilt bias observed in the current study to the neck frequency response reported 

in the literature provide support that the spectral slope of the pneumotachograph mask was 

largely taken into account by the spectral compensation algorithm performed on the MIC 

signal prior to the computation of spectral tilt (Sec. II-C2).

The potential of subglottal neck-surface acceleration to contribute additional information 

regarding glottal source aerodynamics and vocal fold collision forces merits further study. It 

has been speculated that the neck-skin surface wave may contain contributions due to the 

propagation of mechanical energy of vocal fold collision forces radiating through laryngeal 

and neck tissue as well as to the propagation of acoustic pressure [7]. The estimation of 

these collision forces from the subglottal neck-surface acceleration signal may help in better 

understanding the pathophysiology of phonotraumatic vocal fold lesions (e.g., nodules and 

polyps) and hyperfunctional behaviors associated with their development [46]. In fact, when 

measuring vocal fold collision forces using a contact transducer, the potential confound of 

capturing information related to glottal air pressures on the sensor must be taken into 

account. Disambiguation of the various energy sources may be performed through the 

precise delineation of the timing of peaks in the acoustic, accelerometric, force, and 

electroglottographic signals within a glottal cycle [8], [47].

ACC sensors are designed to be immune to acoustic noise sources in the environment [6]. 

This study obtained further evidence showing that the ACC sensor also exhibited a reduced 

sensitivity to acoustic turbulence generated at the glottis due to the large positive bias of 

measuring HNRspec from neck-surface acceleration relative to the acoustic pressure 

measure. In addition, HNRspec was not highly correlated between the two domains. 

Although these findings might point to potential challenges in characterizing speakers with 

highly breathy and/or dysphonic voice qualities, acoustic CPP measures correlated highly 

with CPP measures computed from subglottal neck-surface acceleration. The amplitude of 

the first rahmonic in the cepstrum is thought to act as a geometricmean HNR [31]; however, 

a reduced sensitivity to the turbulent noise component of the voice source forces the 

accelerometric CPP to reflect primarily aperiodicity of the waveform. Thus, orthogonal sets 

of measures may be established by accelerometric CPP for noise-free periodicity and 

acoustic HNR for perturbation-free turbulent noise estimation [48].

The results of this study have implications for both understanding physiological mechanisms 

of speech production and clinical voice assessment. In this study, no differences were found 

in the ability to derive the reported vocal function measures from the ACC signal for 
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speakers grouped by the presence or absence of a voice disorder. This result may be in part 

due to the fact that most patients in this study exhibited mild-to-moderate dysphonia, and 

therefore practically all the perturbation measures were valid. The high correlations 

exhibited by timing-based measures of instantaneous f0 and jitter, as well as CPP, bode well 

for the derivation of recently popular measures of vocal hyperfunction and dysphonia—

relative fundamental frequency [11] and the cepstral/spectral index of dysphonia [42]—

solely from subglottal neck-surface acceleration. Based on the encouraging result with CPP, 

future work calls for further investigation into vocal function assessment during continuous 

speech segments and on a larger sample of subjects with severely dysphonic characteristics. 

Furthermore, results of this study may act as a guide for applying vocal function features as 

inputs to machine learning algorithms to aid in the classification and/or online monitoring of 

voice disorders [21].

V. Conclusion

This study provides evidence supporting the derivation of measures related to vocal function 

using an ACC sensor placed on the subglottal surface of the neck above the sternal notch. 

Strong relationships were observed between timing-based jitter of neck-surface vibration 

and radiated acoustic sound pressure. Lower correlations exhibited by amplitude-based 

measures of shimmer may point to combined effects of subglottal filtering and contributions 

of vocal fold impact forces. Spectral measures of harmonics-to-noise ratio (reflecting 

aspiration noise energy) appeared to be significantly reduced with a steeper spectral tilt 

(harmonic amplitude decay) when obtained from the subglottal neck-surface acceleration 

signal. Finally, the cepstral peak prominence correlated well between the MIC and ACC 

domains to reflect similar levels of periodicity in the voice source. The ability to derive 

vocal function measures using low-profile and confidential ACC signals has implications for 

noninvasive and noise-robust voice assessment, ambulatory monitoring of vocal health, and 

real-time biofeedback.
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Fig. 1. 
(Color online) Illustration of the positioning of microphone and accelerometer sensors on a 

subject.
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Fig. 2. 
Exemplary analysis of microphone (MIC, black) and accelerometer (ACC, gray) signals 

recorded during the production of the sustained vowel /a/. Snapshots are shown of the (A) 

time-domain waveform in linear arbitrary units (au), (B) frequency-domain average 

magnitude spectrum, and (C) power cepstrum. Glottal cycle indices i are identified and 

labeled by timing ti and amplitude ai parameters.
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Fig. 3. 
Effect of shifting identified glottal pulse timings by one period between the microphone 

(MIC) and accelerometer (ACC) waveforms for the /a/ vowel produced by a vocally healthy 

adult female. Scatter plots and Pearson’s r show the relationships between the fundamental 

frequency (f0) of each glottal cycle derived from the MIC and ACC signals (A) before and 

(B) after glottal pulse timing compensation.
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Fig. 4. 
Comparison of vocal function measures obtained from acoustic microphone (MIC) and 

neck-surface accelerometer (ACC) waveforms across all 191 subject recordings for each 

vowel type: /a/ (filled circles), /i/ (triangles), /u/ (x’s). Scatter plots are shown for the (A) 

coefficient of variation of period durations (JCV), (B) average first-difference of period 

durations (Jlocal), (C) coefficient of variation of glottal pulse amplitudes (SCV), (D) average 

first-difference of glottal pulse amplitudes (Slocal), (E) time-domain harmonics-to-noise ratio 

(HNRtime), (F) spectral-domain harmonics-to-noise ratio (HNRspec), (G) harmonic spectral 
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tilt (TL8), and (H) cepstral peak prominence (CPP). A diagonal line (dashed) through the 

origin with slope of 1 aids in visualizing any biases.
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TABLE I

Pearson‘s correlation coefficient (p < 0.001) for pairwise relationships between vocal function measures 

estimated from acoustics and neck-surface acceleration in the normal (Nl), patient (Pt), and pooled (All) 

groups.

/a/ /i/ /u/

Measure Nl Pt All Nl Pt All Nl Pt All

JCV 0.99 0.99 0.99 0.99 0.97 0.98 0.96 0.96 0.99

Jlocal 0.91 0.82 0.84 0.89 0.78 0.79 0.78 0.82 0.80

SCV 0.65 0.79 0.74 0.40 0.47 0.44 0.55 0.72 0.69

Slocal 0.25 0.35 0.33 0.15 0.27 0.24 0.22 0.39 0.35

HNRtime 0.65 0.70 0.69 0.27 0.61 0.55 0.34 0.56 0.52

HNRspec 0.48 0.40 0.40 0.28 0.19 0.21 0.14 0.29 0.26

TL8 0.52 0.59 0.57 0.05 0.30 0.23 0.45 0.46 0.46

CPP 0.90 0.90 0.90 0.90 0.87 0.88 0.89 0.82 0.84
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TABLE II

Bias of computing vocal function measures using neck-surface acceleration with acoustic measure as reference 

(p < 0.001) in the normal (Nl), patient (Pt), and pooled (All) groups.

/a/ /i/ /u/

Measure (Units) Nl Pt All Nl Pt All Nl Pt All

JCV (pp) — — — −0.02 — — — — —

Jlocal (pp) — −0.03 −0.03 −0.05 — — — −0.04 −0.05

SCV (pp) −2.05 −1.98 −2.00 — −1.87 −0.48 — — —

Slocal (pp) −1.29 −1.04 −1.11 −1.06 −0.95 −0.98 −0.48 −0.49 −0.49

HNRtime (dB) 7.30 7.20 7.23 4.31 — 4.53 — 1.42 1.36

HNRspec (dB) 11.18 10.82 10.92 9.79 9.90 9.87 9.74 9.12 9.29

TL8 (dB/oct) −6.90 −6.66 −6.72 −7.10 −6.83 −6.91 −6.69 −6.81 −6.77

CPP (dB) −1.51 −1.32 −1.37 1.33 1.38 1.36 0..58 0.87 0.79

pp = percentage points, dash (—) = zero bias
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