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Abstract

The existing missing data literature does not provide a clear prescription for estimating interaction 

effects with missing data, particularly when the interaction involves a pair of continuous variables. 

In this article, we describe maximum likelihood and multiple imputation procedures for this 

common analysis problem. We outline 3 latent variable model specifications for interaction 

analyses with missing data. These models apply procedures from the latent variable interaction 

literature to analyses with a single indicator per construct (e.g., a regression analysis with scale 

scores). We also discuss multiple imputation for interaction effects, emphasizing an approach that 

applies standard imputation procedures to the product of 2 raw score predictors. We thoroughly 

describe the process of probing interaction effects with maximum likelihood and multiple 

imputation. For both missing data handling techniques, we outline centering and transformation 

strategies that researchers can implement in popular software packages, and we use a series of real 

data analyses to illustrate these methods. Finally, we use computer simulations to evaluate the 

performance of the proposed techniques.
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The last decade has seen increasing interest in “modern” missing data handling approaches 

that assume a missing at random (MAR) mechanism, whereby the probability of missing 

data on a variable y is related to other variables in the analysis model but not to the would-be 

values of y itself. Maximum likelihood estimation and multiple imputation are the principle 

MAR-based procedures in behavioral science applications, and both procedures are widely 

available in software packages. Although the missing data literature has grown rapidly in 
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recent years, many practical issues remain unresolved. For example, the literature does not 

provide a clear prescription for estimating interaction effects with missing data. 

Methodologists have outlined multiple group procedures for situations where one of the 

interacting variables is categorical and complete (Enders, 2010; Enders & Gottschall, 2011; 

Graham, 2009), but missing data handling becomes more complicated when the interaction 

involves a pair of continuous variables. The purpose of this article is to describe maximum 

likelihood and multiple imputation procedures for this common analysis problem.

The structural equation model (SEM) framework is ideally suited for maximum likelihood 

estimation because it can accommodate incomplete predictors and outcomes. To take 

advantage of this flexibility, we describe three latent variable model specifications for 

interaction analyses with missing data. These models apply procedures from the latent 

variable interaction literature (e.g., Jöreskog & Yang, 1996; Kenny & Judd, 1984; Marsh, 

Wen, & Hau, 2004, 2006) to regression models with measured variables. We also discuss 

multiple imputation for interaction effects, focusing on an approach that applies standard 

imputation procedures (e.g., data augmentation; Schafer, 1997) to the product of two raw 

score predictors.

To probe interaction effects, researchers can center predictor variables prior to analysis 

(Aiken & West, 1991) or transform estimates to the desired simple slopes (Bauer & Curran, 

2005; Hayes & Matthes, 2009; Preacher, Curran, & Bauer, 2006). Missing data can 

complicate the application of these familiar techniques, and popular software programs may 

accommodate one approach but not the other. For both missing data handling techniques, we 

describe the process of probing interaction effects, and we outline centering and 

transformation strategies that researchers can implement in popular software packages. We 

use a series of real data analyses to illustrate these methods.

Finally, we use computer simulations to study the performance of the missing data handling 

methods for interaction effects. Maximum likelihood estimation and multiple imputation 

invoke assumptions that are necessarily violated when the analysis model includes a product 

variable (e.g., multivariate normality). Previous research suggests that MAR-based methods 

can yield consistent estimates when normality is violated (e.g., Demirtas, Freels, & Yucel, 

2008; Enders, 2001; Savalei & Bentler, 2005; Yuan, 2009; Yuan & Bentler, 2010; Yuan & 

Zhang, 2012), but it is unclear whether this finding extends to interaction effects.

Motivating Example

Throughout the article, we use data from Montague, Enders, and Castro's (2005) study that 

examined whether primary school academic achievement and teacher ratings of academic 

competence are predictive of middle school reading achievement. Our analyses are based on 

a sample of N = 74 adolescents who were identified as being at risk for developing 

emotional and behavioral disorders when they were in kindergarten and first grade. Table 1 

gives maximum likelihood estimates of the descriptive statistics and correlations. Notice that 

all variables are incomplete, and the primary school reading assessment has substantial 

missingness.
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To illustrate interaction analyses with missing data, we consider a regression model where 

middle school reading achievement is predicted by teacher ratings of learning problems in 

primary school, primary school reading achievement, and their interaction, as follows:

To make the ensuing discussion as general as possible, we henceforth define primary school 

reading achievement (the focal predictor) as x and primary school learning problems (the 

moderator) as z. Using this generic notation, the regression model is

(1)

where α is the intercept, γ1 and γ2 are lower order (i.e., conditional) effects, γ3 is the 

interaction effect, and ζ is the usual regression residual.

More than a decade ago, the American Psychological Association's Task Force on Statistical 

Inference warned that complete-case analyses are “among the worst methods available for 

practical applications” (Wilkinson and the Task Force on Statistical Inference, American 

Psychological Association, Science Directorate, 1999, p. 598). Because this approach is still 

very common in published research articles, we began by analyzing the subsample of n = 20 

complete cases. The estimates were as follows: , 

, , . Two 

aspects of the complete-case analysis are worth highlighting. First, the interaction increased 

R2 by .065 but was not statistically significant (p = .087). Given the strong reliance on null 

hypothesis significance tests in the behavioral sciences (Cumming et al., 2007), we suspect 

that most researchers would not attempt to probe the interaction. Second, excluding 

incomplete cases requires the missing completely at random (MCAR) assumption, whereby 

the probability of missing data is unrelated to the analysis variables. However, the data 

provide strong evidence against the MCAR assumption; a comparison of the incomplete and 

complete cases revealed that students with missing primary school reading scores have 

significantly lower test grades in middle school, t(60) = 2.737, p = .008, d = 0.761. A large 

body of literature suggests that complete-case estimates are prone to substantial bias when 

MCAR does not hold (for a review, see Enders, 2010), so there is good reason to view these 

estimates with caution.

Latent Variable Formulation for a Manifest Variable Regression

A brief review of the SEM specification for manifest variable regression provides the 

background for understanding a latent variable interaction model for missing data. To 

simplify the presentation, we consider a manifest variable regression model with two 

predictors, x and z (i.e., Equation 1 without the interaction term). To begin, a measurement 

model links each manifest variable to a corresponding latent variable, as follows:
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(2)

where τ denotes a measurement intercept, λ is a factor loading, ξx and ξz are latent 

exogenous variables, ηy is the latent endogenous variable, and δ and ε are residuals. 

Software packages typically impose three identification constraints: (a) measurement 

intercepts set to zero, (b) factor loadings fixed to one, and (c) residuals held equal to zero. 

Collectively, these constraints define latent variables as exact duplicates of their manifest 

variable counterparts, such that the measurement models reduce to ξx = x, ξz = z, and ηy = y. 

Consequently, ξ and η are not latent variables in the conventional sense but are surrogates 

for the manifest variables.

A latent variable regression describes the associations among the manifest variables

(3)

where α is a regression intercept, γ1 and γ2 are regression coefficients for ξx and ξz, 

respectively, and ζ is a residual. In matrix form, ξ is an N by 2 matrix of latent variable 

scores, ξx and ξz, and Γ is a column vector containing the two regression slopes. The one-to-

one linkage between the latent and manifest variables implies that the coefficients have the 

same interpretation as those from a standard regression model (e.g., γ1 is the expected 

change in y for a one-unit increase in x, holding z constant). Consistent with standard 

regression models, the SEM that we consider in this article assumes that ζ follows a normal 

distribution with a zero mean and a residual variance ψ. The model also assumes that ξx and 

ξz (and thus x and z) are normally distributed with means κx and κz and a covariance matrix 

Φ. As we describe in the next section, this assumption is important for missing data 

handling.

The SEM mean structure provides a mechanism for “centering” latent exogenous variables 

without transforming the raw data. In the default parameterization, fixing the measurement 

intercept to zero defines ξx as a raw score, such that κx estimates the mean of x. 

Alternatively, constraining the latent mean to zero and estimating the measurement intercept 

shifts the mean estimate to τ and defines ξx as a deviation score. Figure 1 shows the path 

diagrams of the two models. Notice that the models use different parameters to represent the 

means of x and z, but they are otherwise identical. Centering latent variables is a convenient 

strategy that we revisit with interaction models.

Maximum Likelihood Estimation With Missing Data

The maximum likelihood estimator in SEM programs uses a log likelihood function to 

quantify the discrepancy between the data and the model. Assuming a multivariate normal 

population distribution for the manifest variables, the sample log likelihood is
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(4)

where ki is a scaling factor that depends on the number of complete data points for case i, vi 

is the data vector for case i, and μi(θ) and Σi(θ) are the model-implied mean vector and 

covariance matrix, respectively. The key component of the log likelihood is a squared z-

score (Mahalanobis distance) that quantifies the standardized difference between a 

participant's score vector and the corresponding model-implied means.

(5)

The goal of estimation is to identify the parameter values that minimize the sum of the 

squared z-scores (and thus maximize the sample log likelihood). The i subscript allows the 

size and contents of the matrices to adjust across missing data patterns, such that  depends 

only on the parameters that correspond to the observed data for a particular case.

To illustrate the missing data log likelihood function, reconsider the latent variable 

regression model from the top panel of Figure 1. The relevant matrices are as follows:

where ΓΦΓ′ + ψ is the model-implied variance of y, and Φ is the covariance matrix of x and 

z. The standardized distance measure for cases with missing y values depends only on the x 
and z parameters, as follows:

Similarly, the  values for cases with missing data on x and z depend only on the y 
parameters.

Although it is not necessarily obvious from the previous equations, basing estimation on the 

observed data (as opposed to excluding incomplete data records) can improve the accuracy 

and precision of estimates and requires the more lenient MAR assumption.

An important feature of the SEM log likelihood is that all manifest variables function as 

outcomes, regardless of their role in the analysis. Returning to Figure 1, notice that ξx and ξz 

are the predictors, and x and z are dependent variables. As a consequence, the SEM 
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estimator assumes that the manifest variables are multivariate normal. This is in contrast to 

ordinary least squares regression, where predictor variables are treated as fixed (i.e., no 

distributional assumptions). Although the SEM requires stricter distributional assumptions, 

multivariate normality is important for missing data handling because it is the mechanism by 

which the estimator “imputes” missing values during optimization. As a practical matter, 

assuming multivariate normality allows for incomplete predictors and outcomes.1

A Latent Variable Interaction Model for Missing Data

The normality assumption is problematic for an interaction effect because the product of two 

random variables is nonnormal in shape (Craig, 1936; Lomnicki, 1967; Springer & 

Thompson, 1966) and because the parameters of the x and z distributions determine the 

parameters of xz product (Aiken & West, 1991; Bohrnstedt & Goldberger, 1969). 

Methodologists have developed approaches that use mixture distributions to model 

nonnormality from an interaction effect (e.g., latent moderated structural [LMS] equations; 

Kelava et al., 2011; Klein & Moosbrugger, 2000), but these models require at least two 

indicators per construct for identification. Consequently, we focus on three interaction 

models that use an incomplete product term as the sole indicator of a latent variable. These 

models are closely related to other product indicator models in the literature (e.g., Jöreskog 

& Yang, 1996; Kenny & Judd, 1984; Marsh et al., 2004, 2006), particularly that of Marsh et 

al. (2004).

To begin, a measurement model links each manifest variable to a corresponding latent 

variable. Equation 2 gives the measurement models for x, z, and y. We establish a 

measurement model for the xz product by multiplying the x and z equations, as follows:

Replacing the ξxξz product with a single latent variable and adding a residual term gives the 

measurement model for xz:

(6)

Consistent with the lower order predictors, xz has a loading of one on its corresponding 

latent variable ξxz, and the residual is fixed at zero. The product variable requires three 

additional constraints: (a) the intercept is held equal to the product of the x and z intercepts, 

(b) the cross-loading of xz on ξx is set equal to τz, and (c) the cross-loading of xz on ξz is 

fixed at τx.

The structural regression is the same as Equation 1 but replaces manifest variables with 

latent variables, as follows:

1Note that the default parameterization in Mplus (Muthén & Muthén, 1998–2012) treats predictors as fixed. Specifying the variances 
and covariances among the predictors in the MODEL command invokes a normal distribution for the predictors.
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(7)

As before, the SEM assumes that ζ follows a normal distribution with a zero mean and a 

residual variance ψ. The model further assumes that the latent exogenous variables (and thus 

the manifest predictors) are normally distributed with a mean vector κ = [κx κz κxz] and a 

covariance matrix Φ. Again, the multivariate normality assumption is important for missing 

data handling.

The variance of a product variable is a complex function of the x and z parameters (Aiken & 

West, 1991; Bohrnstedt & Goldberger, 1969). Rather than imposing complicated constraints 

on the elements in Φ, we follow Marsh et al.'s (2004) unconstrained approach by freely 

estimating the covariance matrix of the predictors. This approach has four important 

advantages. First, the resulting model is consistent with ordinary least squares regression in 

the sense that the partial regression coefficients condition on the sample estimates of the 

variances and covariances. Second, parameter estimates should be more robust to normality 

violations because the necessary constraints on Φ assume that x and z have symmetric 

distributions (Aiken & West, 1991; Bohrnstedt & Goldberger, 1969). Third, freely 

estimating the latent variable covariance matrix greatly simplifies model specification and 

computer syntax. Finally, freeing the parameters yields a saturated model that more closely 

aligns with the corresponding complete-data analysis. A disadvantage of the unconstrained 

approach is the potential loss of power that occurs when x and z are normally distributed 

(Marsh et al., 2004). However, we feel that this disadvantage is trivial because manifest 

variables are often nonnormal.

Figure 2 shows a path diagram of the latent variable interaction model. As depicted, the 

model is not identified because it includes a measurement intercept and a latent mean for 

each predictor. We subsequently describe three parameterizations of the model that impose 

different identification constraints on the mean structure. These constraints determine the 

substantive interpretation of the lower order coefficients and provide a mechanism for 

estimating various conditional effects (i.e., simple slopes).

The Default Model

Recall from a previous section that the default specification for manifest variable regression 

constrains the measurement intercepts to zero and estimates the latent variable means. 

Fixing τx and τz to zero eliminates cross-loadings from the xz measurement model (see 

Equation 6), leading to the simplified path diagram in Figure 3. To highlight the free 

parameters, we omit parameters that are fixed at zero during estimation (i.e., cross-loadings, 

measurement intercepts, residuals). We henceforth refer to Figure 3 as the “default model” 

because SEM programs allow researchers to specify this analysis without explicitly defining 

latent variables or imposing parameter constraints.2

2Specifying the default model in Mplus requires only three lines of syntax: x z xz; x z xz with x z xz; y on x z xz;
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Latent Variable Analysis 1

To illustrate an interaction analysis with missing data, we fit the default model in Figure 3 to 

the reading achievement data. Appendix A of the online supplemental materials gives the 

Mplus syntax for the analysis, and the input file is available for download at 

www.appliedmissingdata.com/papers. It is important to emphasize the analysis includes all 

74 cases and invokes the more lenient MAR assumption whereby observed scores in the 

analysis model determine missingness.

The left panel of Table 2 gives selected parameter estimates and standard errors from the 

analysis. Because the latent variables are exact duplicates of their manifest variable 

counterparts, the structural regression coefficients have the same meaning as those from an 

ordinary least squares regression with raw score predictors. For example, the regression 

intercept is the expected value of y (middle school reading achievement) when both 

predictors equal zero. Because the model includes an interaction, the lower order regression 

slopes are also conditional effects. For example,  is the conditional effect of x on 

y when z equals zero (i.e., the influence of primary school reading achievement for students 

with a zero score on the learning problems index), and  is the conditional effect 

of z on y when x equals zero. The interaction effect ( ) suggests that the association 

between x and y (primary and middle school reading scores, respectively) becomes more 

positive as z (learning problems) increases. Unlike the earlier complete-case analysis, the 

interaction was statistically significant (p = .037). This difference can be due to sampling 

variation, an increase in power, or a decrease in nonresponse bias (or a combination of the 

three). Although not shown in the table, the elements in κ are MAR-based estimates of the 

predictor variable means, and Φ contains the variances and covariances of the predictors. 

These parameters are not part of a standard regression model and result from assuming a 

normal distribution for the predictors.

Following a significant interaction, researchers typically examine the influence of the focal 

predictor and different values of the moderator. In this example, the lower order conditional 

effects are nonsensical because x and z cannot take on values of zero. Centering predictors 

prior to analysis (Aiken & West, 1991) or transforming estimates following the analysis 

(Bauer & Curran, 2005; Hayes & Matthes, 2009; Preacher et al., 2006) produce conditional 

effects that are interpretable within the range of the data. Because the default model does not 

provide a mechanism for centering latent variables, researchers would need to center the 

incomplete predictors (e.g., at MAR-based mean estimates) prior to estimating the model.

Transforming estimates is convenient with the default model because specialized software 

tools for probing complete-data interactions effects (e.g., Preacher et al., 2006) can perform 

the necessary computations. The simple slope for the regression of y on x (the focal 

predictor), conditional on a particular value of z (the moderator) is

(8)

and the corresponding standard error is
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(9)

where zc is the target value of the moderator, and var( from •) and cov(•) are elements the 

parameter covariance matrix. Referencing the ratio of the simple slope to its standard error 

(i.e., a z statistic) to a standard normal distribution gives a significance test for the 

conditional effect.

To illustrate the transformation procedure, consider the conditional effect of x on y at the 

mean of z (i.e., the influence of primary school reading for a student with average learning 

problems). Substituting the appropriate coefficients and the mean of z into Equation 8 gives 

the simple slope:

As a second example, consider the conditional effect of x on y at one standard deviation 

above the mean of z (i.e., the influence of primary school reading for a student with 

substantial learning problems). The simple slope is

where the terms in parentheses define a score value at one standard deviation above the 

mean (the square root of  is an MAR-based estimate of the z standard deviation). As a 

final example, the simple slope of x on y at one standard deviation below the mean of z is

The Mplus program in the online supplemental materials uses the MODEL CONSTRAINT 

command to compute the conditional effects and their standard errors, and specialized 

software tools for probing complete-data interactions effects can also perform these 

computations (see Preacher et al., 2006).

Interaction Models With Centered Latent Variables

Recall from an earlier section that constraining the latent means to zero and estimating the 

measurement intercepts defines latent variables as deviation scores, effectively “centering” 

the exogenous variables. Centering latent variables is convenient because it requires little 

effort and yields lower order effects that are interpretable within the range of the data. 

Moreover, the centered model provides a mechanism for estimating and testing conditional 

effects without the need for transformations.

For the lower order latent variables, constraining κx and κz to zero shifts the predictor means 

to the intercepts and defines ξx and ξz as deviation scores. Estimating τx and τz activates two 
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cross-loadings in the xz measurement model (see Equation 6) and requires three additional 

constraints: (a) the influence of ξx on xz is set equal to τz, (b) the influence of ξz on xz is set 

equal to τx, and (c) the xz measurement intercept is fixed at the product of τx and τz. 

Centering ξxz is inappropriate because the mean of a product variable does not equal zero, 

even when the x and z means are zero. Bohrnstedt and Goldberger (1969) have shown that 

the expected value (i.e., mean) of a product variable equals the covariance between x and z 
plus the product of the x and z means, as follows:

(10)

Because the xz measurement intercept absorbs the product of the x and z means, Equation 

10 implies that κxz should equal the covariance between x and z. Although constraining the 

latent mean would simplify the model, estimating κxz maintains consistency with a 

complete-data regression analysis in the sense that the latent variable model perfectly 

reproduces the sample moments. Note that κxz will not necessarily equal the covariance 

between ξx and ξz because the model treats κxz and φξx ξz as a unique parameters.

Figure 4 shows a path diagram of the interaction model with ξx and ξz in deviation score 

format. To highlight the free parameters, we omit parameters that are fixed at zero during 

estimation. We henceforth refer to Figure 4 as the “free mean model” because it treats κxz as 

a free parameter during estimation. Note that default and free mean models are equivalent 

parameterizations of the general model from Figure 2. The following algebraic 

transformations relate the parameters from the two models:

where the (D) and (FM) superscripts denote the default and free mean models, respectively.

Latent Variable Analysis 2

To illustrate an analysis with centered latent variables, we fit the free mean model in Figure 

4 to the reading achievement data. Appendix B of the online supplemental materials gives 

the Mplus syntax for the analysis, and the input file is available for download at 

www.appliedmissingdata.com/papers. The middle panel of Table 2 gives selected parameter 

estimates and standard errors from the analysis. Because ξx and ξz are deviation scores, the 

structural regression coefficients have the same meaning as those from an ordinary least 

squares regression with centered predictors. For example,  is the conditional effect 

of x on y when z is at the mean (i.e., the influence of primary school reading for a student 

Enders et al. Page 10

Psychol Methods. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.appliedmissingdata.com/papers


with average learning problems). Similarly,  is the conditional effect of z on y 

when x is at its mean. Finally, the interaction effect  suggests that the association 

between x and y (primary and middle school reading scores, respectively) becomes more 

positive as z (learning problems) increases. Again, note that the interaction effect is 

statistically significant (p = .037).

The free mean model yields lower order coefficients that are interpretable within the range 

of the data, and the transformations in Equations 8 and 9 can generate additional conditional 

effects. For example, the simple slope of x on y at one standard deviation above the mean of 

z (i.e., the influence of primary school reading for a student with substantial learning 

problems) is as follows:

Similarly, the conditional effect of x on y at one standard deviation below the mean of z is

Notice that these estimates are identical to the transformed estimates from the default model. 

This result is expected because the two models are equivalent (i.e., an algebraic 

transformation relates the two sets of parameters).

The literature recommends using meaningful values of zc (e.g., a diagnostic cutoff, the mean 

of a normative group) to probe interaction effects whenever possible (Cohen, Cohen, West, 

& Aiken, 2003, p. 269; West, Aiken, Wu, & Taylor, 2007). Because the free mean model 

expresses the latent predictors in deviation score format, the target value of zc should be a 

deviation score. A slight modification to Equation 8 gives the appropriate transformation

(11)

where  is an MAR-based estimate of the z mean.

The Constrained Mean Model

The final latent variable model reverses the constraint on the xz mean structure by freely 

estimating the measurement intercept and constraining the latent mean equal to the 

covariance between ξx and ξz. (i.e., κxz =φξx ξz). Under this setup, the xz measurement 

model becomes

(12)

where τxz is a free intercept parameter. We henceforth refer to this as the constrained mean 
model because κxz is now a fixed parameter. Figure 5 shows a path diagram of the model. 

The free mean and constrained mean models are identical in the sense that they (a) generate 

the same model-implied mean vector and covariance matrix, (b) perfectly reproduce the 
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sample moments, and (c) produce estimates with the same substantive interpretation. 

However, the two models do not necessarily produce the same parameter estimates.

Latent Variable Analysis 3

We fit the constrained mean model in Figure 5 to the reading achievement data. Appendix C 

of the online supplemental materials gives the Mplus syntax for the analysis, and the input 

file is available for download at www.appliedmissingdata.com/papers. The right panel of 

Table 2 gives selected parameter estimates and standard errors from the analysis. As seen in 

the table, the free mean and constrained mean models produced identical regression slopes 

but slightly different intercept coefficients (  vs. ). This disparity owes to 

differences in the latent mean estimates; the free mean model produced , 

whereas the constrained mean model produced . Despite the numeric 

differences, the two models produce identical substantive interpretations, and the process of 

estimating simple slopes is the same. The syntax in Appendix C of the online supplemental 

materials includes code to estimate the simple effect of x at one standard deviation above 

and below the z mean.

An Alternate Approach to Probing Interaction Effects

Throughout the analysis examples we used the transformation in Equations 8 and 9 to 

estimate and test simple slopes. This option is convenient with Mplus because the MODEL 

CONSTRAINT command can define simple slopes as additional parameters, the values of 

which are determined by the interaction model parameters. However, not all SEM software 

packages offer this functionality. Although specialized web-based software tools (Preacher 

et al., 2006) can also perform these computations, culling the necessary information from 

the computer output can be time-consuming and error-prone.

Following the centering-based approach to estimating simple slopes (Aiken & West, 1991), 

constraining κz (and possibly κx) to values other than zero provides a mechanism for 

estimating and testing conditional effects. For example, constraining κz to negative one 

times the square root of φξz centers ξz at a value one standard deviation above the z mean, 

giving a γ1 coefficient that estimates the conditional effect of x on y at a high value of z. 

Similarly, constraining κz to the square root of φξz centers ξz at one standard deviation below 

the z mean, such that γ1 estimates the simple slope of x for a low value of z. This method is 

flexible and can be implementing in any commercial SEM program. Appendix D of the 

online supplemental materials provides additional details on this approach.

Multiple Imputation

Multiple imputation is a second MAR-based procedure for treating incomplete interaction 

effects. Multiple imputation consists of three steps: an imputation phase, an analysis phase, 

and a pooling phase. The imputation phase generates multiple copies of the data set, each of 

which contains unique estimates of the missing values. This phase typically employs an 

iterative algorithm (e.g., data augmentation; Schafer, 1997) that repeatedly cycles between 

an imputation step (I-step) and a posterior step (P-step). The I-step uses a regression model 

to draw imputations from a multivariate normal distribution, and the subsequent P-step 
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draws a new covariance matrix and mean vector from a distribution of plausible parameter 

values (i.e., a posterior distribution). These parameter values carry forward to the next I-step 

where they are the building blocks for a new regression model and new imputations. In the 

analysis phase, researchers use standard software to analyze each imputed data set, and the 

subsequent pooling phase combines the estimates and standard errors into a single set of 

results. Many popular software programs now provide facilities that automate this process.

Imputing Product Terms

Product terms add complexity to imputation-based missing data handling. For one, the 

imputation phase must incorporate the interaction effect or its subsequent estimate will be 

biased toward zero (Enders, 2010; Enders & Gottschall, 2011; Graham, 2009; Schafer, 

1997). von Hippel (2009) investigated three possible approaches to imputing an incomplete 

interaction term. The impute-then-transform method fills in x, z, and y and subsequently 

computes the xz product from the imputed x and z values. Executing the imputation phase 

without the interaction attenuates the resulting point estimate because the imputations are 

consistent with an additive model that includes only lower order effects. The so-called 

passive imputation method includes xz in the imputation process but subsequently replaces it 

with the product of the imputed x and z values prior to analysis. Passive imputation is a 

variation of impute-then-transform and produces similar biases. Finally, the transform-then-

impute method includes xz in the imputation process and uses the filled-in product term in 

the subsequent analysis phase. Because the xz imputations are drawn from a normal 

distribution with a unique mean and variance, the imputed values do not equal the product of 

the x and z imputations. Nevertheless, von Hippel showed that transform-then-impute is the 

only method capable of reproducing the population parameters. Consequently, we focus on 

this approach for the remainder of the article, and we extend von Hippel's work by outlining 

centering procedures and methods for probing interactive effects with multiply imputed data.

Consistent with maximum likelihood estimation, multiple imputation requires distributional 

assumptions for the incomplete variables, typically multivariate normality. As noted 

previously, product variables are at odds with this assumption. To illustrate the issue, 

consider the I-step for a case with missing values on x and xz. Using the covariance matrix 

and mean vector from the preceding P-step, the imputation algorithm estimates a regression 

model where z and y (the complete variables) predict x and xz (the incomplete variables). 

The regression parameters define a bivariate normal distribution of plausible replacement 

scores that is centered at a pair of predicted values and has a covariance matrix equal to the 

residual covariance matrix from the regression analysis. More formally, the imputations at I-

step (t + 1) are drawn from the following probability distribution:

(13)

where  and  represent the imputations, θ(t) denotes the parameters from the 

preceding P-step, ~ N is the bivariate normal distribution, X contains the complete predictors 

(z, y, and a unit vector for the intercept), β(t) is a matrix of regression coefficients, and 

 is the residual covariance matrix. Drawing imputations from Equation 13 is 
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potentially problematic because a product variable is nonnormal in shape and because the 

regression parameters do not explicitly model the deterministic features of the xz 
distribution. Whether these issues pose a problem for the resulting parameter estimates is an 

open question that we investigate later in the article.

Multiple Imputation Analysis 1

To illustrate a multiple imputation analysis, we applied Schafer's (1997) data augmentation 

algorithm to the reading achievement data. To begin, we used the MI procedure in SAS to 

generate 50 imputed data sets. Following the transform-then-impute approach (von Hippel, 

2009), the imputation phase included the product of primary school reading scores and 

learning problems ratings. Although researchers often center predictors prior to computing 

the product term, we used raw score variables for the analysis. After generating the 

imputations, we used the REG procedure to fit the model from Equation 1 to each data set, 

and we subsequently used the MIANALYZE procedure to pool the estimates and standard 

errors. Appendix E of the online supplemental materials gives the SAS syntax for the 

analysis, and the input file is available for download at www.appliedmissingdata.com/

papers.

The left panel of Table 3 gives selected parameter estimates and standard errors from the 

analysis. Because imputation is on the raw score metric, the regression coefficients have the 

same meaning as those from an ordinary least squares regression with raw score predictors. 

For example,  is the conditional effect of x on y when z equals zero (i.e., the 

influence of primary school reading scores for students with a zero score on the learning 

problems index), and  is the conditional effect of z on y when x equals zero. 

The interaction effect ( ) suggests that the association between x and y (primary and 

middle school reading scores, respectively) becomes more positive as z (learning problems) 

increases. Unlike the earlier complete-case analysis, the interaction was statistically 

significant (p = .025). This difference owes to an increase in power, a decrease in 

nonresponse bias, or both.

Consistent with the latent variable model, researchers can use centering or transformations 

to probe the interaction effect. We describe the transformation procedure here and take up 

centering in the next section. Following Rubin's (1987) pooling rules, the multiple 

imputation estimate of a simple slope is the arithmetic average of the conditional effects 

from the m data sets, as follows:

(14)

We omit the pooling equations for the standard error because we anticipate that most 

researchers will not perform the computations by hand.

To illustrate the transformation procedure, we computed the conditional effect of x on y at 

the mean of z (i.e., the influence of primary school reading for a student with average 

learning problems). Substituting the appropriate coefficients and the mean of z into Equation 

14 gives the simple slope:
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As a second example, consider the conditional effect of x on y at one standard deviation 

above the mean of z (i.e., the influence of primary school reading for a student with 

substantial learning problems). The simple slope is

Finally, the simple slope at one standard deviation below the mean is

Note that these estimates are quite similar to those from the latent variable analyses.

Post-Imputation Centering

The transformation approach to probing an interaction effect is difficult to implement 

without flexible pooling software (e.g., the SPSS pooling facility does not accommodate the 

procedure). In a complete-data analysis, centering provides an alternate mechanism for 

implementing the pick-a-point approach to estimating simple slopes (Aiken & West, 1991). 

For example, if a researcher wants to compute the simple slope of y on x at zc, the steps are 

as follows: (a) center z at zc, (b) compute the xz product term, and (c) estimate the 

regression model. This process defines γ1 as the conditional influence of x on y at zc. 

Because the imputation phase must include the product variable, performing steps (a) and 

(b) prior to imputation is a natural choice. This sequence works well when zc does not 

depend on the data (e.g., zc is a clinically meaningful score value).

In the absence of meaningful cutoffs, researchers often examine conditional effects at 

different points in the z distribution. In this situation, centering prior to imputation is 

unwieldy because it requires new imputations for each simple slope. To avoid this problem, 

we developed a post-imputation centering approach that consists of the following steps: (a) 

compute the xz product by multiplying the raw x and z variables, (b) perform imputation, (c) 

rescale the predictor variables and the product term to deviation score format, (d) estimate 

the regression model, and (e) pool the estimates and standard errors. This procedure can 

generate any number of conditional effects from a single collection of imputed data sets. 

Further, the procedure is easy to implement in general-use software packages such as SPSS 

and SAS. The reminder of this section describes the rescaling procedure for step (c).

The centering expressions for lower order predictors are
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(15)

where  and  are the centered variables from data set i, x(i) and z(i) are the 

corresponding raw scores, and  and  are the centering constants that correspond to the 

desired conditional effects. The centering expression for the interaction is based on the 

algebraic expansion of the product of two deviation scores

where subtracting the collection of terms in brackets converts the raw score product to a 

metric that is consistent the lower order predictors. Applying this idea to multiple imputation 

gives the following centering expression the product variable:

(16)

It is important to emphasize that xz(i) is the imputed product term rather than the product of 

the imputed x and z variables.

Multiple Imputation Analysis 2

To illustrate post-imputation centering, we reanalyzed the imputed data sets from the 

previous analysis example. To provide a comparison to the centered latent variable models, 

we began by using Equations 15 and 16 to rescale the imputations to a centered solution 

where x and z are deviations from the mean (i.e.,  and ). Appendix F of the 

online supplemental materials gives the SAS and SPSS syntax for the analysis, and the input 

files are available at www.appliedmissingdata.com/papers.

The middle panel of Table 3 gives selected parameter estimates and standard errors from the 

analysis. The regression coefficients have the same meaning as those from an ordinary least 

squares regression with centered predictors. For example,  is the conditional effect 

of x on y when z is at the mean (i.e., the influence of primary school reading for a student 

with average learning problems), and  is the conditional effect of z on y when x 

is at its mean. Finally, the interaction effect ( ) suggests that the association between 

x and y (elementary and high school reading scores, respectively) becomes more positive as 

z (learning problems) increases.

Next, we rescaled the predictors to obtain the conditional effect of x on y at one standard 

deviation above mean of z (i.e., the influence of primary school reading for a student with 

substantial learning problems). To estimate this simple slope, we used  to 

rescale z and xz and reanalyzed the data. The resulting estimate was . Finally, 

repeating this process using  gives the simple slope at one standard deviation 
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below the mean of z, the estimate of which was . Notice that post-imputation 

centering and transformation (Equation 14) produced identical estimates of the conditional 

effects (standard errors were also the same). At an intuitive level, the two procedures should 

be equivalent because the use the same imputations and the same values of  and . 

Recall that, in the latent variable framework, the default and free mean models were 

similarly equivalent.

Constrained Mean Centering

In the SEM framework, we described two centered models that use a latent variable (ξxz) to 

represent the deviation score version of xz. In the context of multiple imputation, each 

is essentially a different realization of ξxz, and the mean of  is analogous to the κxz 

latent mean from the centered models. These linkages suggest a modification to post-

imputation centering that parallels the difference between the free mean and constrained 

mean latent variable models.

Returning to Equation 10, notice that the expected value (i.e., mean) of a deviation score 

product equals the covariance between x and z. In the latent variable framework, the κxz 

latent mean can be freely estimated (the free mean model) or held equal to this covariance 

(the constrained mean model). The centering expression from Equation 16 is consistent with 

free mean model in the sense that  is not constrained to a particular value and captures 

the portion of the xz mean that remains after subtracting out the product of the x and z 
means. For this reason, we henceforth refer to Equation 16 as free mean centering. We 

modified post-imputation centering by subtracting the estimate of the product variable mean 

and replacing it with the components of the expected value expression in Equation 10, as 

follows:

(17)

Although not obvious from the equation, the bracketed terms implement a “constraint” that 

forces  equal to the covariance between x and z in data set i. In line with our previous 

terminology, we henceforth refer to Equation 17 as constrained mean centering.

Multiple Imputation Analysis 3

To illustrate constrained mean centering, we reanalyzed the imputed data sets from the 

previous analysis examples. To provide a comparison to the previous analyses, we used 

Equations 15 and 17 to rescale the imputations to a centered solution where x and z are 

deviations from the mean (i.e.,  and ). Appendix G of the online 

supplemental materials gives the SAS and SPSS syntax for the analysis, and the input files 

are available at www.appliedmissingdata.com/papers. As seen in right panel of Table 3, free 

mean and constrained mean centering produced identical regression slopes but slightly 

different intercept coefficients (  vs. ). This disparity owes to the fact that 

the analyses produced different estimates of the product term mean; free mean centering 

produced , whereas the constrained mean estimate was . 
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Despite these numeric differences, the choice of centering approach does not affect the 

substantive interpretation of the estimates, and it does not alter the process of probing simple 

slopes. Appendix G of the online supplemental materials includes code to estimate the 

simple effect of x at one standard deviation above and below the z mean.

Simulation Studies

We used Monte Carlo computer simulations to evaluate the performance of the maximum 

likelihood estimation and multiple imputation. Although there is no reason to expect 

differences between the two approaches, we know of no published simulations that have 

investigated the issue of incomplete interactive effects. Previous research suggests that 

MAR-based methods can yield consistent estimates when normality is violated (e.g., 

Demirtas et al., 2008; Enders, 2001; Savalei & Bentler, 2005; Yuan, 2009; Yuan & Bentler, 

2010; Yuan & Zhang, 2012), but it is unclear whether this finding extends to interactions. 

Further, von Hippel's (2009) analytic work has limited generalizability because it examined 

imputation from a known (rather than estimated) population covariance matrix. The 

simulation syntax is available upon request.

The regression model from Equation 1 served as the data-generating population model for 

the simulations. Because we did not expect the manipulated factors to exert complicated 

non-linear effects, we chose to minimize the complexity of the design while still examining 

a range of conditions that encompasses the variety of substantive research applications. 

Specifically, we introduced three distribution shapes for x and z (normal, kurtotic, skewed 

and kurtotic), three interaction effect size values (zero, small, and large increment in R2), 

four sample size conditions (Ns between 50 and 5,000), two missing data mechanisms 

(MCAR and MAR), and four missing data handling methods (the free and constrained mean 

latent variable models, and multiple imputation with free and constrained mean centering). 

Note that we chose not to manipulate the missing data rate because this factor tends to 

produce predictable and uninteresting findings (e.g., as the missing data rate increases, so do 

the negative consequences of missing data). Rather, we imposed a constant 20% missing 

data rate on one of the predictors (and thus the interaction). We chose this rather extreme 

value because we felt that it would clearly expose any problems with the missing data 

handling approaches. The remainder of this section describes the simulation conditions in 

more detail.

Sample Size

We implemented four sample size conditions, N = 50, 200, 400, and 5,000. In Jaccard and 

Wan's (1995) review of published multiple regression applications, the 75th percentile of the 

sample size distribution was approximately 400, and the median value was roughly 175. 

Consequently, we believe that our sample size conditions are fairly representative of 

published research studies, particularly in the field of psychology. We implemented the N = 

5,000 condition to study the large-sample properties of the missing data methods.
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Distribution Shape

Because behavioral science data rarely satisfy multivariate normality (Micceri, 1989), we 

varied the distribution of the lower order predictors. We opted to investigate three 

distributional conditions (normal, kurtotic-only, skewed and kurtotic). In the normal 

distribution condition, both x and z had skewness and excess kurtosis values of zero. The 

kurtosis-only condition had skewness and kurtosis values equal to 0 and 4, respectively, and 

the skewed condition had skewness and kurtosis values of 2 and 6, respectively. Previous 

simulation studies have characterized the latter values as relatively extreme (Curran, West, & 

Finch, 1996). We used Fleishman's power method (Fleishman, 1978; Vale & Maurelli, 1983) 

to impose the desired distribution shapes for x and z. The power method tends to produce 

skewness and kurtosis estimates that are less extreme than the target values, particularly at 

smaller sample sizes. Our simulation checks indicated that skewness and kurtosis estimates 

were substantially lower than the target values in the N = 50 condition and improved as 

sample size increased. This trend is consistent with our previous experiences with this 

approach (e.g., Enders, 2001).

Population Parameters and Data Generation

Table 4 summarizes the data generation parameters. For all simulations, we arbitrarily set 

the predictor means to μx = 12 and μz = 25, respectively, and we fixed the predictor variances 

to . For simplicity, we fixed the correlation between x and z at ρx·z = .30, 

corresponding with Cohen's definition of a medium effect size (Cohen, 1988). Again, we did 

not manipulate the mean and the variance of the product term because x and z determine 

these parameters.

Because the interaction effect was our primary focus, we implemented three effect size 

increments for this variable ( , and .05). To begin, we arbitrarily chose to have the 

lower order terms explain 30% of the variance when the interaction term was omitted from 

the model. For simplicity, we imposed equality constraints on the lower order regression 

slopes, such that γ1 = γ2 = 5. We arbitrarily set the intercept coefficient to the same value. 

For the non-zero effect size conditions, we specified a γ3 coefficient and a residual variance 

that incremented the total R2 by either .01 or .05. Chaplin (1991) reviewed the literature and 

found that interactions in field studies typically account for one to three percent of the 

variance in the outcome. Thus, , represents a relatively small interaction effect, and 

, represents a large effect. Methodological reviews also suggest that the total R2 

values from our simulations are representative of interaction effects from published research 

studies (Jaccard & Wan, 1995).

Our method for deriving the population value for the interaction coefficient warrants a brief 

discussion. As explained previously, the x and z distributions determine the distribution of 

the product. When x and z are symmetrically distributed (as in the normal and the kurtosis-

only conditions), well-known expressions define the covariance between x (or z) and the xz 
product (Aiken & West, 1991, pp. 180–181; Bohrnstedt & Goldberger, 1969). Consequently, 

the value of γ3 is fully determined after specifying the effect size and the other regression 

model parameters. However, when one or both of the component distributions is asymmetric 
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(e.g., the nonnormal condition with non-zero skewness), it is no longer possible to 

analytically derive γ3 because the covariances between the lower order terms and the product 

term are a complex function of skewness. Consequently, we implemented a simulation that 

iteratively auditioned values for the interaction coefficient in the skewed condition (N = 

1,000,000 in each artificial data set). We saved the coefficients and the R2 values from this 

simulation and subsequently chose the γ3 value that produced the desired increment in R2.

After specifying the population parameters, we used the IML procedure in SAS 9.2 (SAS 

Institute, 2008) to generate 2,000 artificial data sets within each between-subjects design 

cell. The data generation procedure utilized the following steps. First, we generated the 

predictor variable scores from a standard normal distribution with a mean of zero and a 

variance of one. Second, we imposed the desired variances and covariance on x and z. Third, 

we used the Fleishman's (1978) power method to introduce skewness and kurtosis. Fourth, 

we generated the interaction term by multiplying x and z. Fifth, we generated a vector of 

residual terms from a normal distribution with a mean of zero and a variance equal to the 

residual variance from the population regression model. Sixth, we generated the y values by 

substituting the variables from previous steps into the population regression model. The 

preceding steps produced artificial data sets with predictors in deviation score format. In the 

final step, we imposed a mean structure by adding the desired means to x and z and 

recomputing the interaction term.

Missing Data Mechanisms

We implemented two missing data mechanisms: MCAR and MAR. In the MCAR condition, 

we generated a vector of uniform random numbers and subsequently deleted x (and thus xz) 

scores for cases in the lower quintile of the random number distribution. In the MAR 

condition, the probability of missing data was related to the values of z. We first divided the 

z distribution into quintiles and then used a uniform random number to randomly delete 75% 

of the x values from within the first (i.e., lowest) z quintile, 15% of the x values from within 

the second z quintile, and 10% of the x values from within the third z quintile (i.e., the 

probability of missingness is highest for low values of z). To explore the impact of 

missingness in the long tail of the skewed distribution, we used a similar procedure to delete 

x for high values of z. Because there was no reason to believe that the pattern of missingness 

would matter in the symmetric distribution conditions, we reversed the missingness 

probabilities only in skewed design cells with an MAR mechanism. The MCAR and MAR 

deletion mechanisms produced a 20% missing data rate on x and xz. Although there is no 

way to speak to the generalizability of our deletion mechanism, the lack of previous research 

provides a rationale for studying an ideal situation where the cause of missingness is part of 

the analysis model. Further, a mechanism where missingness is a function of an observed 

predictor variable is optimal for complete-case analysis, a method that we use to benchmark 

the performance of maximum likelihood and multiple imputation. Finally, as noted 

previously, we chose not to manipulate the missing data rate because this factor tends to 

produce predictable results. Instead, we chose a single missing data rate and a selection 

mechanism that we felt was extreme enough to expose potential problems.
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Missing Data Handling

For each replication, we used Mplus to estimate the free mean and constrained mean 

interaction models (we did not include the default model because it is equivalent to the free 

mean model). Note that we used normal-theory (as opposed to robust) standard errors for all 

analyses because we believed that most substantive researchers would choose this option 

when implementing multiple imputation in SAS or SPSS. This ensured that the maximum 

likelihood and multiple imputation analyses invoked comparable assumptions.

We used the MI procedure in SAS to generate 20 imputed data sets for each replication. The 

imputation phase included the four analysis variables, all of which were in raw score format. 

After exploring the convergence behavior of data augmentation in a number of test data sets, 

we implemented a single data augmentation chain with 300 burn-in iterations and 300 

between-imputation iterations (i.e., the first imputed data file was saved after 300 

computational cycles and subsequent data sets were saved every 300 iterations thereafter). 

Prior to analyzing the filled-in data sets, we centered the lower order predictors at their 

means and rescaled the interaction using free mean and constrained mean centering 

(Equations 16 and 17, respectively). Finally, we used the REG to estimate the regression 

model and used the MIANALYZE procedure to combine the resulting estimates and their 

standard errors.

A large body of methodological literature has discounted complete-case analyses and other 

ad hoc missing data handling approaches (for a review, see Enders, 2010). Although deletion 

is generally a bad idea, complete-case analysis is known to produce valid estimates in 

regression models where missingness on a predictor depends on the observed values of 

another predictor (Little, 1992). Consequently, we included this approach in our simulations 

because it provides a useful benchmark for evaluating maximum likelihood and multiple 

imputation, and because it approach is still very common in published research articles.

Outcome Variables

For the zero effect size conditions, we examined the Type I error rates for the interaction 

coefficient. For the non-zero effect size conditions, we examined standardized bias, mean 

squared error, and confidence interval coverage. We computed standardized bias by dividing 

raw bias (the difference between an average estimate and the population parameter) by the 

standard deviation (i.e., empirical standard error) of the complete-data estimates within a 

particular design cell. This metric expresses bias in standard error units (Collins, Schafer, & 

Kam, 2001). We augmented standardized bias with the mean squared error (i.e., the average 

squared difference between an estimate and the population parameter). Because the mean 

squared error is the sum of sampling variance and squared bias, it quantifies the overall 

accuracy of an estimate.

Finally, we assessed confidence interval coverage by computing the proportion of 

replications where the 95% confidence interval contained the true population parameter. If 

parameter estimates and standard errors are accurate, confidence interval coverage for a .05 

alpha level should equal 95%. In contrast, if the standard errors are too small, confidence 

intervals will not capture the population parameter as frequently as they should, and 
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coverage rates will drop below 95%. From a practical standpoint, coverage provides a 

benchmark for assessing the accuracy of the standard error estimates because it directly 

related to Type I error inflation (e.g., a 90% coverage value suggests a twofold increase in 

Type I errors, an 85% coverage value reflects a threefold increase, and so on).

Results

To begin, we examined the design cells where the population interaction equaled zero (i.e., 

the analysis model included an interaction effect when the population model did not). The 

primary concern was whether γ3 exhibited excessive Type I errors. In the N = 50 condition, 

maximum likelihood estimation produced slightly elevated Type I error rates (e.g., values 

close to .07 were typical), but values were otherwise quite close to the nominal .05 rate. This 

was true for MCAR and MAR mechanisms. Turning to confidence interval coverage, all 

methods produced accurate coverage values for γ1 and γ2. Complete-case analysis and 

multiple imputation produced somewhat lower coverage rates for the intercept coefficient, 

with most values ranging between .90 and .92. In the MAR simulation, complete-case 

analysis produced coverage values as low as .50 in the large sample condition. Maximum 

likelihood produced error rates close to the nominal level.

Parameter Recovery

Next, we examined parameter recovery in the design cells where the population interaction 

was non-zero. To examine the quality of the data generation, we examined raw and standard 

bias of the complete-data estimates. As expected, these estimates exhibited no systematic 

biases.

Estimates were uniformly accurate in the MCAR conditions; across all design cells and all 

missing data handling methods, the largest standardized bias value was approximately .06 

(6% of a complete-data standard error unit), and the average standardized bias value was .

002. This result is consistent with previous research and statistical theory (Rubin, 1976). 

Mean squared error (MSE) values from the MCAR simulations generally favored the MAR-

based analyses, particularly when the interaction effect was small in magnitude. For the α 

and γ2 coefficients (the regression intercept and the slope of the complete predictor, 

respectively), the complete-case MSE values were typically 15%–20% larger than those of 

the maximum likelihood and multiple imputation. Because MSE is inversely related to 

sample size, these differences indicate that a 15%–20% increase in the complete-case 

sample size is needed to achieve the same precision as an MAR-based approach. The 

complete-case MSE values for γ1 (the incomplete predictor) were typically 5% larger, and 

MSE values for the interaction effect were virtually identical across methods. In the 

nonnormal conditions with a large interaction effect, MSE differences were less pronounced 

but still favored MAR-based estimation (e.g., the complete-case MSE values for the γ2 

coefficient was typically 5% larger than maximum likelihood and multiple imputation). 

Table 5 uses MSE ratios from the N = 200 condition to illustrate these trends. The MSE ratio 

is the fraction of the missing data MSE to the complete-data MSE, such that values closer to 

unity denote better overall accuracy (e.g., a ratio of 1.20 indicates that the MSE for a 

missing data handling approach is 20% larger than that of the complete-data estimator). As 
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seen in the table, the MSE ratios for the MAR-based approaches were virtually always lower 

than those of complete-case analysis, which owes to the fact that maximum likelihood and 

multiple imputation have less sampling variation.

Turning to the MAR mechanism, the combination of effect size and distribution shape had a 

complex influence on parameter recovery. Table 6 uses standardized bias values from the N 
= 200 condition to illustrate these results. Following Collins et al. (2001), we highlight bias 

values that exceed .40 (i.e., 40% of a complete-data standard error unit) in absolute value. 

As seen in the table, complete-case analysis produced severely biased estimates of the 

intercept coefficient. In the large effect size conditions, the γ1 coefficient (the slope of the 

incomplete predictor) also exhibited substantial biases. The MAR-based approaches also 

produced estimates with bias values exceeding .40, but the nature of this bias was somewhat 

idiosyncratic and dependent on distribution shape (e.g., symmetric distributions produced 

bias in the γ2 coefficient, whereas the positively skewed distribution with missingness in the 

upper tail produced bias in γ1).

Table 7 presents the corresponding MSE ratios from the N = 200 condition. Recall that MSE 
ratios reflect the fraction of the missing data MSE to the complete-data MSE, such that 

values closer to unity reflect greater overall accuracy. As seen in the table, the MSE ratios 

generally favored MAR-based estimation (i.e., MSE ratios were lower for these approaches), 

even for coefficients with larger bias values in Table 6 (e.g., the γ2 estimate from the kurtotic 

condition). It is interesting that the complete-case estimates of γ3 were somewhat more 

accurate in the positively skewed condition with missingness in the upper tail. Because this 

parameter exhibited minimal bias (see Table 6), the accuracy advantage is largely due to a 

smaller sampling variance. The same finding holds for γ1 coefficient, but only in the small 

effect size condition. The table uses bold typeface to highlight MSE ratios that favor 

complete-case analysis.

Coverage

Finally, we examined confidence interval coverage. In the MCAR simulation, the vast 

majority of coverage values were quite close to the nominal 95% level. Coverage values for 

the regression slopes typically ranged between 93% and 95% and did not vary across 

conditions. Complete-case analysis and multiple imputation produced somewhat lower 

coverage values for the intercept coefficient (e.g., values close to 90% were typical), 

whereas maximum likelihood values for γ0 were again close to the 95% level. We suspect 

that this discrepancy occurred because the maximum likelihood analyses treat the predictors 

as random variables with a distribution, whereas the ordinary least squares analyses treat 

predictors as fixed. The MAR coverage rates followed a similar pattern, except that the 

complete-case coverage values were quite low in some cases. Table 8 uses coverage values 

from the N = 200 condition to illustrate these results. For comparison purposes, we also 

include coverage values from the complete-data estimates.

Discussion

The existing missing data literature does not provide a clear prescription for estimating 

interaction effects with missing data, particularly when the interaction involves a pair of 
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continuous variables. This article describes maximum likelihood and multiple imputation 

procedures for this common analysis problem. To this end, we outlined three latent variable 

model specifications for interaction analyses with missing data. These models apply 

procedures from the latent variable interaction literature—in particular, Marsh et al. (2004)

—to analyses with a single indicator per construct (e.g., a regression analysis with scale 

scores). We also discussed multiple imputation for interaction effects, emphasizing an 

approach that applies standard imputation procedures (e.g., data augmentation; Schafer, 

1997) to the product of two raw score predictors. A real data analysis and Monte Carlo 

simulations showed that maximum likelihood and multiple imputation produced remarkably 

similar estimates, even with relatively small samples. This result agrees with existing 

literature that demonstrates the equivalency of these two approaches (Collins et al., 2001; 

Schafer, 2003) and suggests that the choice of analytic method is largely one of personal 

preference (although maximum likelihood is arguably easier to implement for researchers 

who are facile with SEM software).

The methods that we outline in this article allow the researcher to freely estimate the product 

term mean (the free mean latent variable model and free mean centering) or partially 

constrain its value (the constrained mean latent variable model and constrained mean 

centering). Our results show that these two approaches produce different estimates of the 

intercept coefficient when the mechanism is MAR. It is difficult to recommend one method 

over the other based on their mean squared errors. Considered as a whole, the constrained 

mean approaches produced smaller MSE values in a majority of design cells, but the exact 

pattern of results was a complex function sample size, distribution shape, and effect size. We 

tentatively recommend a constrained mean approach (latent variable model or post-

imputation centering), acknowledging that there are situations where the free mean 

approaches will provide a lower MSE (e.g., positively skewed predictors with missingness in 

the upper tail). Note that the choice of centering method matters only when estimating 

effects that involve the intercept.

Because the methodological literature has largely discounted complete-case analyses, it may 

come as a surprise that maximum likelihood and multiple imputation generally provided 

only a modest improvement over deletion. It is important to note that complete-case analyses 

are known to produce valid estimates of regression slopes when (a) missingness on a 

predictor depends the observed values of another predictor, and (b) the incomplete predictor 

is linearly related to the observed predictor (Little, 1992). Our simulation design was 

optimal for complete-case analysis because both conditions were met. Based on the extant 

literature, we do not expect deletion to perform as well under different MAR configurations 

(e.g., missingness due to auxiliary variables not in the regression model).

Our study raises a number of avenues for future research. First, our simulation results 

underscore the need for additional analytic work. In models with linearly related variables, 

Yuan (2009) and Yuan and Bentler (2010) showed that normal-theory missing data handling 

methods yield consistent estimates under an MAR mechanism when normality is violated. 

However, the standardized bias values from our simulations suggest that this property may 

not extend to non-linear models. Second, Yuan and Zhang (2012) recently outlined a two-

stage missing data handling approach that first obtains robust M-estimates of the mean 
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vector and the covariance matrix and subsequently uses the moments as input data for a 

structural equation model. Because the two-step approach down-weights outliers in the 

initial step, it may reduce bias when the mechanism is MAR. Finally, we did not investigate 

the performance of other common nonlinear effects (e.g., polynomials). For example, it is 

straightforward to extend the approaches in this article to quadratic effects because a 

quadratic term is simply the interaction between a variable and itself. Appendix H of the 

online supplemental materials describes the latent variable specification and post-imputation 

centering expression for quadratic regression models. Future simulation or analytic work 

could evaluate these approaches.

As with any Monte Carlo study, characteristics of our computer simulations may limit their 

generalizability. Although we attempted to choose conditions that would expose potential 

problems with the methods (e.g., a large proportion of missing data, relatively extreme 

distribution shapes, a strong selection mechanism), a number of limitations are worth 

considering. For example, we investigated an MAR mechanism where the propensity for 

missing data on one predictor was monotonically related to the values of the other predictor. 

Future studies could examine more complicated dropout mechanisms, perhaps with non-

linear associations (e.g., “convex” or “sinister” processes; Collins et al., 2001). Non-

ignorable (i.e., not missing not at random [NMAR]) mechanisms are another possibility that 

we did not consider. Future studies could also explore different distributional conditions. 

The lower order distributions exert a complex influence on the product term's distribution 

(Aroian, 1947; Aroian, Taneja, & Cornwell, 1978; MacKinnon, 2008), and thoroughly 

manipulating these distributions could produce a number of interesting product term 

distributions. Our simulations suggest that the type of MAR mechanism and distribution 

shape (e.g., missingness in the upper vs. lower tail of a skewed distribution) may exert a 

complicated influence on parameter recovery. Future studies should attempt to clarify this 

issue.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Two latent variable specifications for a manifest regression model. The triangles denote a 

unit vector, and the directional arrows originating from the triangles represent mean 

structure parameters (e.g., structural regression intercept, latent mean, or measurement 

intercept). Parameters constrained to zero (e.g., the δ and ε residuals) are omitted from the 

diagrams. The top diagram represents a model with the measurement intercepts constrained 

to zero, and the bottom diagram is a model with the latent means constrained to zero.
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Figure 2. 
A latent variable interaction model. The triangles denote a unit vector, and the directional 

arrows originating from the triangles represent mean structure parameters (e.g., structural 

regression intercept, latent mean, or measurement intercept). Measurement model residuals 

are omitted from the diagram because these parameters are constrained to zero. As depicted, 

the model is not identified because it includes a measurement intercept and a latent mean for 

each predictor. The models that we describe in this article impose different mean structure 

constraints.
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Figure 3. 
The default interaction model. The triangles denote a unit vector, and the directional arrows 

originating from the triangles represent mean structure parameters (e.g., regression intercept 

or latent means). The diagram omits all parameters that are fixed at zero during estimation 

(i.e., cross-loadings, measurement intercepts, residuals). Constraining the measurement 

intercepts eliminates cross-loadings, leading to a simplified model specification.

Enders et al. Page 30

Psychol Methods. Author manuscript; available in PMC 2016 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
The free mean interaction model. The triangles denote a unit vector, and the directional 

arrows originating from the triangles represent mean structure parameters (e.g., regression 

intercept or latent means). The diagram omits all parameters that are fixed at zero during 

estimation (i.e., cross-loadings, measurement intercepts, residuals). The model estimates the 

κxz latent mean and constrains the xz measurement intercept equal to the product of τx and 

τz.
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Figure 5. 
The constrained mean model. The triangles denote a unit vector, and the directional arrows 

originating from the triangles represent mean structure parameters (e.g., regression intercept 

or latent means). The diagram omits all parameters that are fixed at zero during estimation 

(i.e., cross-loadings, measurement intercepts, residuals). The model estimates the xz 
measurement intercept and constrains the κxz latent mean to the covariance between x and z 
(i.e., κxz =ϕξxξz).
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Table 1

Descriptive Statistics From the Reading Achievement Data (N = 74)

Variable 1 2 3

1. Primary school reading (x) 1.00

2. Primary school learning problems (z) –0.22 1.00

3. Middle school reading (y) 0.77 –0.47 1.00

        M 8.95 5.38 8.42

        SD 1.78 1.16 1.64

    % missing 67.57 1.35 16.22
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Table 2

Parameter Estimates From the Latent Variable Analyses

Default model Free mean Constrained mean

Effect Estimate SE Estimate SE Estimate SE

Intercept (α) 15.858 5.425 8.483 0.229 8.517 0.219

Primary school reading (γ1) –0.466 0.549 0.671 0.092 0.671 0.092

Primary school learning problems (γ2) –2.490 0.996 –0.596 0.158 –0.596 0.158

Interaction (γ3) 0.212 0.101 0.212 0.101 0.212 0.101
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Table 3

Parameter Estimates From the Multiple Imputation Analyses

Raw score Free mean Constrained mean

Effect Estimate SE Estimate SE Estimate SE

Intercept (α) 16.942 5.069 8.498 0.158 8.519 0.135

Primary school reading (γ1) –0.569 0.503 0.630 0.105 0.630 0.105

Primary school learning problems (γ2) –2.615 0.922 –0.623 0.163 –0.623 0.163

Interaction (γ3) 0.223 0.092 0.223 0.092 0.223 0.092
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Table 4

Population Parameters for the Simulation Studies

Symmetric x and z Skewed x and z

Parameter RΔ
2 = .01 RΔ

2 = .05 RΔ
2 = .01 RΔ

2 = .05

α 5.000 5.000 5.000 5.000

γ1 = γ2 5.000 5.000 5.000 5.000

γ 3 0.705 1.576 0.642 1.628

σε
2 598.000 563.333 714.000 859.000

Note. The symmetric columns include the normal and kurtosis-only conditions.
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