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The enteric nervous system (ENS)
coordinates the major functions of

the gastrointestinal tract. Its develop-
ment takes place within a constantly
changing environment which, after birth,
culminates in the establishment of a com-
plex gut microbiota. How such changes
affect ENS development and its subse-
quent function throughout life is an
emerging field of study that holds great
interest but which is inadequately
explored thus far. In this addendum, we
discuss our recent findings showing that
a component of the ENS, the enteric glial
cell network that resides in the gut lam-
ina propria, develops after birth and par-
allels the evolution of the gut microbiota.
Importantly, this network was found to
be malleable throughout life by incorpo-
rating new cells that arrive from the area
of the gut wall in a process of directional
movement which was controlled by the
lumen gut microbiota. Finally, we postu-
late on the roles of the intestinal epithe-
lium and the immune system as potential
intermediaries between gut microbiota
and ENS responses.

Introduction

The enteric nervous system (ENS) is a
vast and complex network of neurons and
glial cells that extends throughout the
length of the gastrointestinal tract and
coordinates all essential functions of the
organ. Neuronal cell bodies are exclusively
located within enteric ganglia that are
organized in 2 distinct plexi, the outer
myenteric plexus sandwiched between the

longitudinal and circular smooth muscles
and the inner submucosal plexus located
adjacent to the mucosa.1,2 Enteric glial
cells (EGCs) closely associate with neu-
rons within ganglia but are also distrib-
uted throughout the gut wall including
the wider area of the mucosa where they
form a network that extends to the tip of
villi3,4 (Fig. 1A). In addition to their role
in supporting neural circuits, EGCs have
a role in strengthening the intestinal epi-
thelial barrier5 and preventing overt gut
inflammation6 as demonstrated in experi-
mental systems. In humans, abnormalities
in the structure of the ENS and increased
cell death were detected in specimens
from necrotising enterocolitis patients, a
life-threatening inflammatory condition,7

and interestingly upregulation of disease
markers was associated with EGC activa-
tion.8 These observations suggest multiple
and diverse functions for these cells in
gut homeostasis and warrant further
investigation.

Although the organization and connec-
tivity of the ENS mainly forms during
embryogenesis it persists postnatally for
several weeks to attain a complete and
fully functional neuroglial circuit.9,10 It
was initially considered that embryonic
development was proceeding in a sterile
environment achieved by the barrier func-
tion of the placenta. However, this suppo-
sition has been challenged recently with
data demonstrating the presence of a low-
abundance, placenta-specific microbiome
in both mice and humans the profile of
which seems to be closer related to the
oral microbiome.11-13 Furthermore, the
meconium, the new-born’s first intestinal
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discharge, harbours a variable microbiome
which in some cases seems to be of intra-
uterine origin.14

Nonetheless, the gut lumen of mam-
mals is further colonised by a seed of
microorganisms acquired from the mother
during parturition.15 Although compara-
tive studies have shown significant varia-
tions in the composition of the early gut
microbiome owing to factors such as
mode of delivery15 and mother’s diet,16 a
’core’ of operational taxonomic units was
identified in all cases pointing to a rudi-
mentary microbial cluster that colonises
the intestine immediately after birth.17

This initial seed expands and evolves grad-
ually during the postnatal period to reach
a mature adult state after weaning.18-20

Maturation and adaptation of the host
immune system parallels that of gut
microbiota, and there is strong experimen-
tal evidence demonstrating the extensive
inter-dependence and cross-regulation of
the 2 processes.21,22 Therefore, after birth
the ENS is exposed to the growing com-
plexity of the gut microbiota, its products

and metabolites, as well as to a developing
immune system. How these dramatic
changes influence the postnatal stages of
ENS development is unknown. Equally
important is the question of whether and
by what mechanism changes in gut micro-
biota as a result of aging,23 diet varia-
tions,24,25 or pharmacological
interventions26 affect the function of the
mature ENS.

Development of the EGC Network
in the Mucosa Correlates with

Maturation of the Gut Microbiota

Formation of the ENS plexi is com-
plete by the time of birth although in the
mouse a relatively small number of enteric
neurons and (many more) glial cells are
added during the first postnatal weeks.9

Nonetheless, by the time of birth, the
mucosa has been invaded by neuronal
processes with almost all the villi scoring
positive for neuronal markers.27 In con-
trast, EGCs although present in the gut

wall, are not observed in the lamina prop-
ria.27 To determine the time of appear-
ance of mucosal EGCs, we examined ilea
from animals at different postnatal stages
and up to adulthood. This analysis
revealed that full colonisation of the
mucosa by EGCs occurs step-wise, ini-
tially during the suckling period and then
after weaning to reach levels observed in
the adult. Therefore, generation of the
mucosal EGC network is a gradual process
that parallels the maturation of the gut
microbiota (and of the immune system) as
it changes from the predominant species
of the suckling period such as Lactobacilli,
to species prominent in adults such as Bac-
teroidetes and Firmicutes.19

Mucosal EGCs are Replenished
Throughout Life

In contrast to several constituent gut
tissues (such as the epithelial cell layer, the
villus vasculature, and the mucosal
immune system) which are highly

Figure 1. The gut microbiota control the influx of EGCs in to the lamina propria. (A) The entire EGC network visualised following expression of the
reporter protein in Sox10::CreERT2;Rosa26-tdTomato transgenic line. (B) Schematic depiction of the directional movement of EGCs from the gut wall
located plexi toward the lamina propria.

www.tandfonline.com 399Gut Microbes



dynamic, the ENS has been portrayed as a
rigid network that forms during develop-
ment but remains unchanged thereafter.
By employing Cre-LoxP-based genetic
marking and fate mapping in adult ani-
mals, we have recently challenged this
view and demonstrated that similar to
other gut tissues the EGC network in the
lamina propria does not remain
unchanged but renews continuously.
Adult mice carrying inducible Cre recom-
binase transgenes under the control of the
glia-specific Sox10 or GFAP regulatory
elements and the Cre-dependent Rosa26-
Confetti reporter (Sox10::CreERT2;
Rosa26-Confetti and GFAP::CreERT2;
Rosa26-Confetti respectively) were
injected with tamoxifen to activate Cre
and induce expression of the reporter.
Recombination of the Rosa26-Confetti
cassette resulted in the stochastic expres-
sion of one out of 4 possible fluorescent
proteins28 producing a mosaic of color
-labeled EGCs. We noticed that shortly
after induction (2–4 d post-induction) the
majority of labeled EGCs were located in
the area of the gut wall at the level of the
plexi and very few colored cells were seen
within the lamina propria. However,
when animals were examined 2 weeks after
induction there was a strong increase in
the number of colored EGCs in the villi
indicating that some cells that were ini-
tially labeled in the gut wall, or their
progeny, migrated toward the lamina
propria. Furthermore, the multicolour
property of the Confetti reporter
allowed us to demonstrate that the pop-
ulation of EGCs invading each villus
was not clonal but instead originated
from multiple independently labeled
glial cells. Although the level of cell
labeling differed between the 2 Cre
drivers with Sox10::CreERT2 being con-
siderably more efficient, both transgenic
lines produced the same result establish-
ing the directional movement of EGCs
along the serosa-lumen axis which led
us to investigate the role of indigenous
lumen microbiota in this process
(Fig. 1B). It should be noted that while
expression of the GFAP locus was
shown to be modulated by environmen-
tal cues such as tissue inflammation,29

to our knowledge, the same has not
been reported for the Sox10 locus.

The Gut Microbiota Regulates the
Influx of EGCs in to the Lamina

Propria

To explore the potential role of lumi-
nal microbiota in driving the influx of
EGCs in to the lamina propria, we com-
pared adult mice maintained under sterile
(germ-free) conditions to those raised in a
specific pathogen-free (SPF; conventional)
environment. The number of EGCs and
the extent of the network they form were
severely reduced in villi from germ-free
mice. Importantly, when germ-free mice
were conventionalised by the introduction
of gut microbiota and examined 4 weeks
later, a robust increase in the number and
complexity of the mucosal EGC network
was observed which was similar to that
seen in conventionally raised animals.
These findings highlight the plasticity and
dynamic character of the mucosal EGC
network in adult animals and reveal a key
role for lumen microbiota in driving the
influx of EGCs from the peripheral neuro-
glia plexi to the lamina propria.

To establish whether the continuous
flow of EGCs is maintained by the pres-
ence of the microbiota, tamoxifen-
induced Sox10::CreERT2;Rosa26-Con-
fetti mice were treated with a cocktail of
broad-spectrum antibiotics which results
in a dramatic reduction in the diversity
and volume of the microbiome, and the
fate of labeled cells was compared to those
from untreated littermates. In antibiotic-
treated animals the flux of labeled EGCs
in to villi was strongly diminished indicat-
ing that the continuous movement of
EGCs along the serosa-lumen axis requires
the steady supply of signals originating
from the lumen microbiota.

Potential Mechanisms of
Communication between Gut

Microbiota and EGCs

The finding that the gut microbiota
can regulate a component of the ENS at
the fundamental level of structural organi-
zation and possibly connectivity opens a
new avenue of investigation in gut physi-
ology, and perhaps identifies the first step
in understanding the mechanistic process
that underpins the gut-brain axis.30

Within this context an important question
emerging is the effective mechanism(s) via
which gut microbiota stimulates the influx
of EGCs in to the lamina propria. Here
we provide some possible explanations
and potential directions for future
research, although at this point in time
they represent only speculation (Fig. 2).
The mechanisms discussed below are not
mutually exclusive and could operate in
concert.

One possibility is that EGCs are
equipped with the required molecular
apparatuses, for example expressing
appropriate pattern recognition receptors
such as TLRs, and thus capable of directly
detecting and responding to the micro-
biota. Expression of certain members of
the TLR family in the ENS has been
documented31 and furthermore, at least in
an experimental setting, EGCs could par-
ticipate in immune regulation in vivo.32

Interestingly, TLR4 signaling was found
to influence gastrointestinal motility,33

while TLR2 regulated intestinal inflam-
mation in part by controlling the integrity
of the ENS.34 In this scenario, elements of
the microbiota will have to penetrate
through the mucus layer and the epithelial
barrier, and possibly in significant volume,
in order to reach the mucosa if they are to
be detected by the EGCs (Fig. 2A).
Although this possibility cannot be
excluded, it would seem more plausible in
situations where there is a transient breach
of the intestinal barrier such as during
pathogenic infection or inflammation
(Fig. 2D), or possibly in certain chronic
conditions associated with reduced
strength of the intestinal barrier (leaky gut
syndrome), which however are only
poorly defined at present.35 Alternatively,
there could be an active transport by the
intestinal epithelium of certain micro-
biota-derived components so that they are
presented to host cells residing in the lam-
ina propria including EGCs. Further-
more, EGCs might respond to products,
such as short chain fatty acids (SCFAs),
generated by the metabolic activity of the
microbiota (Fig. 2A). SCFAs (primarily
butyric acid) were recently shown to play
key role in the development of colonic T
regulatory cells36-38 and it is conceivable
that might play an equally important role
in the regulation of the ENS. Enteric
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neurons express SCFA receptors39 and
exogenous supply of butyrate was shown
to regulate enteric neuron activity and to
control motility.40 Further exploration of
this area could reveal important insights
in to the mechanism of ENS response to
the microbiome but also to changes in
diet.

Another potential mechanism could
involve the intestinal epithelium as the
intervening cell type which by responding
to the microbiota or its metabolic prod-
ucts produces mediators that act upon
EGCs (Fig. 2B). The response of the
intestinal epithelium to the gut microbiota
has been documented and shown to
involve TLR signaling.41,42 In addition, a
recent report demonstrates the effect of
butyric acid which via stabilization of the
hypoxia-inducible transcription factor
strengthens epithelial cell tight junctions
and the intestinal barrier.43 Nonetheless,
validation of this theory will have to await
the identification of mediators produced
by the intestinal epithelium in the pres-
ence of microbiota which can act upon
EGCs and in particular mediators with
chemotactic action.

A third possibility is the involvement of
the immune system which has evolved to
recognize and respond to foreign material
and is abundant in the intestine owing to
the presence of the luminal microflora.44

In this scenario, components of the gut
microbiota are recognized by immune
cells, predominantly in the area of the
lamina propria which is adjacent to the
lumen, resulting in the production of
mediators that attract EGCs from the gut
wall (Fig. 2C). Recent work identified a
mechanism of cross-regulation between
the ENS and the immune system where
enteric neurons of the myenteric plexus
produce CSF1 to attract macrophages
which in turn produce BMP2 to support
the operation of enteric neurons.45 Impor-
tantly, this cross-communication is regu-
lated by the presence of the indigenous
microbiota as in its absence the number of
macrophages is severely reduced. Further-
more, Schwann cells, glial cells of the
peripheral nervous system, have the capac-
ity to respond to the activation of immune
cells following traumatic injury by mobi-
lising and readjusting their position to
form tracks that allow neuronal process

regeneration.46 Also, astrocytes respond to
factors produced from activated immune
cells following injury in the central ner-
vous system.47 Collectively, these results
make the case for a detailed study to delin-
eate the molecular basis of the immune-
ENS system cross-communication.

The mucosa is the part of the gut that
is most amenable to microbiota insult
especially when there is abrupt epithelial
barrier breach (infection by pathogens,
excessive immune response) or chronic
barrier leakiness (leaky gut). It is conceiv-
able that the EGC movement in to the
mucosa might reflect a defense mechanism
the purpose of which is to protect resident
neuronal processes from damage and to
contribute to the strengthening of the
intestinal barrier preventing detrimental
dissemination of microorganisms away
from the intestinal canal. Consistent with
this supposition are reports demonstrating
the positive role of mucosal EGCs in
strengthening the intestinal barrier48,49

and the fact that their ablation in an
experimental setting results in the loss of
intestinal homeostasis and severe inflam-
mation in the small intestine.6

Figure 2. Possible mechanisms underpinning the stimulation of EGCs by the gut microbiota. (A) Components or metabolites of the microbiota can gain
access to the lamina propria and interact directly with EGCs. (B) Recognition of microbiota by the intestinal epithelium and production of soluble factors
capable of attracting EGCs in to the villi. (C) Identification of microbiota by immune cells residing in the lamina propria and production of factors that
attract EGCs. (D) Compromised integrity of the intestinal barrier leading to activation of immune cells and production of factors that act on EGCs.
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Nonetheless, EGCs might perform addi-
tional functions in the lamina propria
which will be important to identify in
future research.

In recent years, a number of laborato-
ries have demonstrated the modulatory
effects the gut microbiota has on the phys-
iological function of host systems, includ-
ing the central nervous system in a process
termed "the gut-brain axis".50-52 Mecha-
nistically, this process will most likely turn
out to be complex and multidimensional.
Nonetheless it is reasonable to assume that
the ENS, owing to its physical proximity,
is the nervous system best poised to
respond to the gut microbiota and to relay
important information. Recent work dem-
onstrating the involvement of gut-brain
neural circuits in mediating the beneficial
effect of microbiota-produced metabo-
lites,53 and on the other hand, the pro-
posed link between gut dysbiosis and
certain central nervous system diseases
such as autism spectrum disorders,54,55

highlight the importance of fully under-
standing how the ENS communicates and
responds to the gut microbiota and its
products. This area of research promises
to reveal important aspects of gut physiol-
ogy and potentially novel therapeutic
opportunities for certain diseases.
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