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Initiated by the activation of various nociceptors, pain is a
reaction to specific stimulus modalities. The m-opioid receptor
(MOR) agonists, including morphine, remain the most potent
analgesics to treat patients with moderate to severe pain.
However, the utility of MOR agonists is limited by the adverse
effects associated with the use of these drugs, including
analgesic tolerance and physical dependence. A strong
connection has been suggested between the expression of
the transient receptor potential vanilloid type 1 (TRPV1) ion
channel and the development of inflammatory hyperalgesia.
TRPV1 is important for thermal nociception induction, and is
mainly expressed on sensory neurons. Recent reports suggest
that opioid or TRPV1 receptor agonist exposure has
contrasting consequences for anti-nociception, tolerance and
dependence. Chronic morphine exposure modulates TRPV1
activation and induces the anti-nociception effects of
morphine. The regulation of many downstream targets of
TRPV1 plays a critical role in this process, including calcitonin
gene-related peptide (CGRP) and substance P (SP). Additional
factors also include capsaicin treatment blocking the anti-
nociception effects of morphine in rats, as well as opioid
modulation of TRPV1 responses through the cAMP-
dependent PKA pathway and MAPK signaling pathways. Here,
we review new insights concerning the mechanism
underlying MOR-TRPV1 crosstalk and signaling pathways and
discuss the potential mechanisms of morphine-induced anti-
nociception, tolerance and dependence associated with the
TRPV1 signaling pathway and highlight how understanding
these mechanisms might help find therapeutic targets for the
treatment of morphine induced antinociception, tolerance
and dependence.

Introduction

The m-opioid receptor (MOR) agonists are the class of analge-
sics most widely used to treat moderate and severe chronic pain.
This class of analgesics includes morphine, the prototypical
MOR agonist, which produces its analgesic effect at clinically rel-
evant doses primarily through the G-protein coupled receptor
MOR. It has been reported that most clinical opioids act on
MOR. In particular, MOR expressed in the superficial dorsal
horn of the spinal cord1,2 is essential for the analgesic effects of
MOR agonists.3,4

Chronic morphine administration inevitably results in the
development of high tolerance. This propensity of morphine
treated patients to develop tolerance, and the related loss of anal-
gesic effectiveness, limits the use of morphine for chronic pain
conditions. In addition, prolonged morphine use can lead to
physical dependence, defined as a need for continuing drug use
to prevent the symptoms of withdrawal. Although the mecha-
nisms underlying morphine tolerance are not fully understood,
many studies have reported that repeated morphine exposure
opposes the analgesic effects of morphine by increasing the
expression and release of chemokines, pro-inflammatory cyto-
kines,5 and pronociceptive neurotransmitters in the spinal cord6

and DRG.7 It has been reported that sustained morphine admin-
istration results in numerous pronociceptive changes, including
increased capsaicin evoked release and elevated concentrations of
pronociceptive neurotransmitters within the spinal dorsal
horn.8,9 A prominent feature of opioid-induced hyperalgesia is
enhanced responsiveness to noxious thermal stimulation, suggest-
ing that transient receptor potential vanilloid type 1 (TRPV1)
channels may be an important element of this response.10

TRPV1 is a nonselective cation (Ca2C) channel that is
involved in a variety of nociceptive processes11 and can be acti-
vated by multiple stimuli, including acidic pH (� 5.9), noxious
heat (>42�C), endocannabinoids, endogenous lipids, and capsai-
cin.12-15 TRPV1 is widely distributed in the sensory terminals of

*Correspondence to: Baojin Hua; Email: huabaojin2008@126.com; Wei Hou;
Email: houwei1500@126.com
Submitted: 03/02/2015; Revised: 06/27/2015; Accepted: 06/30/2015
http://dx.doi.org/10.1080/19336950.2015.1069450

www.tandfonline.com 235Channels

Channels 9:5, 235--243; September/October 2015; © 2015 Taylor & Francis Group, LLC
REVIEW



central and peripheral neurons.16-18 The effects of TRPV1 on
thermal hyperalgesia and mechanical allodynia have been demon-
strated in various diseases.14,19 Additionally, TRPV1 receptors
are present in regions of the brain that regulate the transmission
and modulation of pain.20 Chronic morphine administration
increases TRPV1 expression in the spinal cord, DRG, and sciatic
nerve.10,21 In morphine resistant bone cancer pain, TRPV1
receptors are up-regulated in DRG neurons.22 In these patients,
morphine may induce the expression of the TRPV1 receptor
through the activation of the mitogen-activated protein kinase
signaling pathway, including up-stream TRPV1 regulators.21

Blocking TRPV1 receptors via intrathecal administration of
SB366971 significantly attenuated morphine tolerance in rats.21

Similarly, the destruction of TRPV1 receptor-expressing sensory
neurons by resiniferatoxin, an ultrapotent capsaicin analog,
blocked morphine tolerance.23 In accordance with the results of
previous studies, a recent report indicated blocking TRPV1
receptors with capsazepine (2.5 mg kg¡1) inhibited morphine
tolerance induced by 5 days of morphine treatment.24 The
results of these studies suggest that sustained opioid exposure also
enhances TRPV1 receptor function in the periphery and plays an
additional and essential role in sustained morphine induced ther-
mal and tactile hypersensitivity.

Activation of MOR leads to dissociation of the inhibitory
Gi/o-protein complex into Ga- and Gbg-subunits, which then
have an important impact on downstream signaling path-
ways.25-27 Opioids reduce adenylyl cyclase (AC) activity through
Gai-subunits. AC catalyzes adenosine triphosphate (ATP) con-
version to cyclic adenosine monophosphate (cAMP) ,28 and this
modulates the activation of protein kinase A (PKA) or cyclic
nucleotide-gated ion channels. Morphine induces expression of
the TRPV1 receptor via TRPV1 up-stream regulator activation
in the mitogen-activated protein kinase (MAPK) signaling path-
way.21 Current evidence emphasizes the importance of TRPV1
in morphine tolerance, dependence and morphine-induced
antinociception.10,29,30

Here, we review the current knowledge concerning these phe-
nomena, focusing on morphine-induced TRPV1 activation. Fur-
thermore, we highlight evidence characterizing downstream
TRPV1 signaling molecules and their role in morphine tolerance,
dependence and morphine-induced antinociception (Fig. 1).

TRPV1 localization and function
TRPV1 is predominantly expressed in unmyelinated neurons

and in both the central and peripheral sensory terminals of pri-
mary sensory neurons.17,18 In the central nervous system (CNS),
TRPV1 is located in regions that modulate nociception20,31 and
control autonomic functions.32 TRPV1 receptor is an important
integrator of various types of pain stimuli in vivo. Therefore, the
properties of polymodal nociceptors might be explained by
TRPV1responsiveness to various noxious stimuli. Chimeric and
site-directed mutation studies of the TRPV1 channel have dem-
onstrated that the phosphorylation of unique amino acid sites
regulates the response of the channel to various stimuli, including
capsaicin.33-35 Correspondingly, TRPV1 dephosphorylation can
cause pharmacological desensitization of the channel.36,37

TRPV1 appears to be critical for the transmission of noxious
stimuli by nociceptive peripheral neurons and the development
of inflammatory hyperalgesia.12,14,19,38 Accordingly, axonal
transport of TRPV1 mRNA and TRPV1 protein expression are
significantly increased in inflamed tissues.39,40 TRPV1 knock-
down mice develop less thermal hyperalgesia14 and TRPV1
antagonists reverse inflammatory thermal hyperalgesia.41 Various
factors modulate the response of TRPV1 to inflammatory stim-
uli, including growth factors, neurotransmitters, peptides or
small proteins, lipids, chemokines and cytokines.38 TRPV1
receptor activation by chemokines and cytokines may lead to
nociceptive effects that reverse the antinociceptive effects of mor-
phine.38 Furthermore, while capsaicin treatment inhibits mor-
phine induced antinociception in rats,42 capsaicin-induced
thermal allodynia is alleviated by MOR activation in the central
and peripheral nervous systems of rhesus monkeys.43,44

Recently, a significant increase in TRPV1 immunoreactivity
was demonstrated in the spinal cords, dorsal root ganglion
(DRG) neurons and sciatic nerves of morphine-tolerant rats
given daily intraperitoneal injections of 10 mg/kg morphine.
Tolerance to morphine and tolerance-induced thermal hyperalge-
sia in the rats was suppressed by a 30 mg dose of the selective
TRPV1 antagonist SB366791.21 Additionally, Niiyama et al.10

reported data indicating that TRPV1 antagonists acutely enhance
morphine analgesia. In agreement with previous data from
studies investigating rats,21,23 Nguyen’s research on mice also
indicated that TRPV1 antagonists effectively prevent the devel-
opment of morphine tolerance. Furthermore, our data first
demonstrated that TRPV1 antagonists significantly reduced
withdrawal symptoms in morphine-dependent mice.24

MOR and TRPV1 interaction
TRPV1 and MOR co-localize in DRG neurons and the spinal

cord.4,21 TRPV1 can be both sensitized and upregulated during
inflammation13 and plays an essential role in the development of
inflammation associated thermal hyperalgesia.45 A substantial
increase in TRPV1 and MOR positive DRG neurons is caused
by induced paw inflammation.46-48 Jeannette Endres-Becker
et al. demonstrated that TRPV1 activity could be regulated by
MOR ligands.49 TRPV1’s contribution to inflammatory hyperal-
gesia has been established through observations indicating that
TRPV1 antagonists dose-dependently reverse both thermal and
mechanical inflammatory hyperalgesia.41,50 In addition, thermal
inflammatory hyperalgesia is significantly reduced in TRPV1
knock-out mice.14

Jeannette Endres-Becker et al. also found a significant mor-
phine-induced decrease in capsaicin-mediated TRPV1 activity in
DRG neurons from complete Freund’s adjuvant treated ani-
mals.49 Therefore, it has been well established that TRPV1
expression plays an important role in the development of in-
flammation-induced hyperalgesia.14,45,46 Inflammation and
morphine-induced hypesensitivity share many common charac-
teristics, including hyperalgesia, allodynia and similar pronoci-
ceptive neuroadaptive changes.

MOR are presynaptically expressed on the terminals of
primary afferent neurons51-53 and on the postsynaptic neurons in
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the dorsal horn of the spinal
cord.54,55 The primary afferent
neurons and the spinal cord partici-
pate in pain transmission and mod-
ulation and are the primary sites for
the analgesic activity of MOR ago-
nists.3,4,52,56,57 Treatment of adult
rats with the capsaicin analog resini-
feratoxin (RTX), a potent TRPV1
agonist, destroys TRPV1-expressing
DRG and impairs thermal nocicep-
tion in adult rats.4 Although RTX
induces a significant reduction in
presynaptic MOR, it potentiates
and prolongs the analgesic effect
produced by systemic or intrathecal
injection of MOR agonists, inc-
luding morphine and [D-Ala,2

N-Me-Phe,4 Gly-ol5]-enkephalin
(DAMGO).4 Additionally, TRPV1
antagonists have been demonstrated
to decrease mechanical nociception
in acute and chronic pain mod-
els.50,58 The reduction of TRPV1-
expressing sensory neurons induced
by RTX attenuates the development
of morphine analgesic tolerance59

and alters the presynaptic effects of
the MOR agonist in the spinal
cord.60 Furthermore, the thermal
hyperalgesia and mechanical allody-
nia that are normally induced by
chronic morphine administration
were absent in mice lacking TRPV1
expression.10 These effects were also
opposed by treatment with the
TRPV1 antagonist AMG0347 (3 mg/kg).10 These results suggest
that TRPV1 channels are involved in the development of the
thermal hypersensitivity associated with tissue inflammation.
MOR and TRPV1 expression in primary afferent neurons and
the activity of TRPV1 in DRG neurons can be inhibited by
MOR. This inhibition is increased after thermal and mechanical
inflammation. Furthermore, the effect of presynaptic MOR on
TRPV1-expressing sensory neurons is particularly sensitive to
down-regulation by m opioid agonists during opioid tolerance
development.

MOR Sensitizes TRPV1 via b-Arrestin2
The scaffolding protein PKA-anchoring protein 150

(AKAP150) mediates TRPV1 phosphorylation by protein kin-
ases A and C.61-64 A role for anchoring and scaffolding proteins
in the mediation of efficient downstream signaling cascades by
organizing specific proteins and enzymes near their respective
substrates has been established.65,66 b-arrestins, regarded as criti-
cal scaffold proteins,67 can form scaffolding complexes with a
wide variety of proteins to regulate the strength and duration of

diverse signaling pathways, such as Src kinase and phosphodies-
terase 4D (PDE4D).68-71 Of particular interest, b-arrestins selec-
tively associate with PDE4D to locally modulate subcellular
cyclic AMP availability and subsequently activate PKA.70,72,73

Other research has presented evidence that b-arrestins contribute
to ligand-activated b2 -adrenergic receptors by scaffolding
PDE4D isoforms that hydrolyze cAMP to regulate PKA activity
and consequent receptor sensitivity.72

b-arrestin molecules were originally identified as important
mediators of metabotropic receptor desensitization that govern
internalization of G-protein coupled receptors (GPCRs) follow-
ing agonist exposure.74-76 Extensive research by numerous groups
has revealed the contributions of b-arrestins to multiple physio-
logical functions and processes.67,77,78 Recent research has dem-
onstrated that b-arrestins are novel regulators that can regulate
the function of several TRP channels and desensitize ionotropic
receptors.11,77,79 Por ED et al. provided the first evidence that
b-arrestin2 regulates TRPV1 receptor through its role as a scaf-
folding protein.11 Regulation of TRPV1 by b-arrestin2 induces
PKA phosphorylation and effectively desensitizes the ionotropic

Figure 1. Signal transduction of TRPV1 activation in morphine induced antinociception, tolerance and
dependence. By acting on m- opioid receptors (MOR), primarily through Gai-subunits, morphine reduces
adenylyl cyclase (AC) activity. AC catalyzes the conversion of adenosine triphosphate (ATP) to cyclic adeno-
sine monophosphate (cAMP), which regulates protein kinase A (PKA) or cyclic-nucleotide-gated ion chan-
nels. TRPV1 activation results in sensitization of TRPV1 responses through a b- arrestin2 and PKA-
dependent manner. Decreased association of b-arrestin2 and constitutive phosphorylation of TRPV1 may
underlie enhanced pain perception and hyperalgesia. Chronic administration of morphine activates the
MAPK pathway, including ERK, p38 and JNK. This possibly occurs via protein kinase A (PKA), protein kinase
C (PKC) and phosphatidylinositol 3-kinase (PI3K). The nuclear translocation of phosphorylated MAPK results
in the phosphorylation of transcription factors, such as CREB and c-Jun. This leads to TRPV1 activation
through modulation of neurotransmitters such as glutamate, CGRP and SP released from DRG neurons and
further contributes to the antinociception, tolerance and dependence associated thermal hyperalgesia.
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receptor, which is implicated in a variety of inflammatory and
pain conditions.11 Por ED et al. also reported that b-arrestin2
inhibited TRPV1 induced PKA phosphorylation, consequen-
tially reducing receptor response to agonist-mediated
stimulation.11

b-arrestin2 desensitizes TRPV1 in sensory neurons.11 MOR
agonists, such as morphine and DAMGO, sequester b-arrestin2,
reduce TRPV1/b-arrestin2 interactions and increase TRPV1
activity in peripheral sensory neurons.30 Previous studies showed
that endogenous b-arrestin2 is required for the development of
morphine tolerance,80,81 and mice lacking b-arrestin2 demon-
strate increased sensitivity to the antinociceptive effects of mor-
phine.82 Furthermore, hyperalgesia may rebound due to
overactive PKA and result in phosphorylation and sensitization
of TRPV1 during the process of patients ceasing opioid ther-
apy.29 Hence, Rowan et al. speculate that the development of
opioid induced hyperalgesia (OIH) is due to chronic ligand treat-
ment recruiting b-arrestin2 away from TRPV1 in sensory
neurons.30

cAMP/PKA
The MOR agonist morphine has well documented anti-

inflammatory effects when injected directly into inflamed tissues
in both animal models and human studies.83-86 Activation of
TRPV1 by capsaicin induces hyperalgesia that can be inhibited
by peripherally applied MOR agonists, such as morphine.87-89

Opioid withdrawal symptoms are associated with cAMP activity
and increased concentrations of AC, PKA and the transcription
factor cAMP response element binding protein.90 Phosphoryla-
tion mediated by cAMP/PKA can both sensitize TRPV1 and
protect it from desensitization.33,91,92 Vetter I et al. reported that
the anti-inflammatory action of peripheral opioids is mediated
by the interaction of MOR and PKA-sensitized TRPV1.92-95

Phosphorylation of TRPV1 by numerous kinases, such as
cAMP-dependent PKA, can regulate the function of the recep-
tor.91,96,97 cAMP levels are elevated in inflamed tissues98,99 and
the cAMP/PKA pathway appears to be important for inflamma-
tory nociception. Thus, the cAMP/PKA pathway leads to the
development of inflammatory hyperalgesia induced by pro-
inflammatory regulators, including prostaglandin E2
(PGE2).99,100 In a variety of cell systems, including DRG neu-
rons, accumulating evidence indicates that TRPV1 is modulated
by PKA.33,101102 For instance, activated PKA increases TRPV1
phosphorylation and channel sensitivity.103 Furthermore, PKA-
mediated phosphorylation was demonstrated both to contribute
to thermal-activated TRPV1 currents102 and to counteract
Ca2Cdependent desensitization.91

Previous experiments have shown that stimulation with capsa-
icin can reduce TRPV1 phosphorylation, and that PKA can re-
phosphorylate and subsequently re-sensitize TRPV1.33 Law et al.
reported that MOR-mediated a decrease in intracellular cAMP
levels,28 controlling PKA activity and decreasing TRPV1 channel
activity. In accordance with this conclusion, pretreatment of
DRG neurons with the potent cell-permeable cAMP analog 8-
Br-cAMP reversed opioid mediated inhibition at TRPV1.49

Thus, opioid induced modulation of TRPV1 responses may

occur in inflamed tissues where cAMP levels are elevated100

through inhibition of AC and the subsequent inhibition of
TRPV1 responses via Gi/o proteins by cAMP-dependent
PKA.92,93 TRPV1 can also be inhibited via MOR-mediated inhi-
bition of AC activity and decreased cAMP levels.29

Morphine can inhibit capsaicin responses when the cAMP
pathway is activated. This occurs through opioid-modulation of
adenylate cyclase and, therefore, indirectly through PKA-
mediated TRPV1 sensitization. As TRPV1 is expressed peri-
pherally39,40 and PKA-mediated sensitization occurs in these
peripheral nociceptors via inflammatory mediators,99 non-central
opioid receptor targeting under inflammatory conditions may
prevent peripheral sensitization and contribute to analgesia.

MAPK
The MAPK family transduces a diverse group of extracellular

stimuli into a wide variety of intracellular responses by inducing
transcriptional, translational and post-translational modifications
of target proteins.104-106 The MAPK family includes extracellular
signal-regulated protein kinase (ERK), P38-mitogen activated
protein kinase (P38 MAPK) and c-Jun N-terminal kinase
(JNK),107,108 MAPK is a key regulator of cell proliferation, dif-
ferentiation, survival, learning and memory, and evidence indi-
cates that MAPK may be a key factor in pain hypersensitivity.104-106

It has been reported that treatment with multiple MAPK inhibi-
tors reduces inflammatory and neuropathic pain without affect-
ing the subject’s perception of basal pain.38,94,95,104,106,109-113

The involvement of similar cellular and molecular mechanisms
has been demonstrated in the development of morphine toler-
ance and pathological pain.114,115 Because the same treatments
that block pathological pain also attenuate opioid tolerance, the
abnormal pain associated with the prolonged opioid usage is a
key element affecting the behavioral symptoms characteristic of
opioid tolerance.116,117

In DRG neurons, chronic morphine administration leads to
increased p38, ERK and JNK phosphorylation.21,118 Intrathecal
selective MAPK inhibitor injections inhibit MAPK phosphoryla-
tion in DRG neurons by opposing p38, ERK and JNK phos-
phorylation. Chronic morphine administration has been
reported to activate MAPK and lead to morphine tolerance.
Hyperalgesia associated TRPV1 is considered a target of this
mechanism.21

ERK/MAPK
Significant recent advances indicate that morphine modulates

ERK phosphorylation in cultured neuronal cells and in vivo.119

Morphine induced ERK activation was first described in recom-
binant Chinese hamster ovary (CHO) cells that were stably trans-
fected with MOR.120 ERK activation was observed at 4 minutes
and then, after 8 minutes, activation levels gradually decreased,
recovering to basal activity levels after one hour of morphine
treatment.120 In C6 glioma cells stably expressing MOR and
COS-7 cells transiently transfected with MOR, the ERK cascade
can be strongly activated by the application of the MOR agonist
DAMGO.121 Human neuroblastoma SK-N-SH cells endoge-
nously express MOR, and rapid ERK phosphorylation was
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observed in these cells after acute morphine incubation.122,123 It
is particularly interesting that prolonged morphine usage attenu-
ated ERK phosphorylation.124 In SH-SY5Y cells, morphine with-
drawal also attenuated ERK phosphorylation.124 Accordingly,
following either acute or chronic morphine incubation, MOR
activation modulated ERK activity.124 It was demonstrated in
vivo that long-term morphine administration in mice caused p-
ERK elevation in the frontal cortex, hippocampus and stria-
tum.125 In contrast, chronic morphine treatment led to decreased
p-ERK levels in various tissues, including mouse126 and rat127

nucleus accumbens, mouse central amygdala126 and the cerebral
cortex, median eminence and hypothalamic nuclei of humans
and rats.122,128

Additionally, morphine withdrawal was attenuated and with-
drawal-induced allodynia was decreased after antisense oligonu-
cleotide knockdown of spinal ERK and phosphorylation
reduction using intrathecal MAPK kinase inhibitor U0126.129

Phosphatidylinositol 3-kinase (PI3K) and ERK can be activated
in DRG neurons by intradermal injections of capsaicin and nerve
growth factor (NGF).130 In primary sensory neurons, PI3K acts
through TRPV1 sensitization to activate ERK and mediate
inflammatory heat hyperalgesia.130 In light of these findings, it
seems likely that PI3K induced heat hyperalgesia is regulated by
TRPV1 activity in an extracellular ERK-dependent manner.130

P38 and JNK
Compared with ERK, fewer studies investigating the roles of

p38 and JNK in morphine-induced tolerance and dependence at
the supra spinal level have been conducted. It has been suggested
that NGF increases TRPV1 in inflamed skin and DRG neurons
through MAPK activation.46 Intrathecal administration of
SB203580, a p38 specific inhibitor, significantly attenuated mor-
phine analgesia tolerance.131 Additionally, it has been reported
that p-p38immunoreactive cells increased significantly in rats
receiving intrathecal administration of 15 mg morphine.131

Few studies have reported the role of JNK in morphine-
induced anti-nociception and tolerance. c-Jun is downstream of
JNK. It has been reported that during morphine withdrawal,
increasing c-Jun levels affect some of the morphine withdrawal
symptoms in the rat locus coeruleus132 and cortex.133 Addition-
ally, 9 days of subcutaneous morphine injections (10 mg/kg)
resulted in elevated levels of the JNK family member JNK3 in
the rat frontal cortex. However, this treatment did not result in
increased JNK3 in the thalamus, hippocampus or locus coeru-
leus.134 Accumulating in vivo and in vitro evidence indicates that
increases in phosphorylated JNK (p-JNK) are induced by
repeated morphine treatment in rat DRG neurons.21,118

SP and CGRP
Recent evidence suggests that long-term morphine exposure

may contribute to morphine induced tolerance and dependence by
regulating downstream targets of TRPV1, such as SP and CGRP.
A combination of increased SP and CGRP expression in the sen-
sory primary afferents and increased capsaicin-evoked release of SP
and CGRP in the spinal dorsal horn have been described in both
inflammation andmorphine induced hyperalgesia.6,8,135

Chronic morphine exposure also causes physical depen-
dence that manifests as withdrawal symptoms. SP and CGRP
may influence morphine withdrawal symptoms, and high
levels of SP and CGRP have been reported in animals exhib-
iting opioid withdrawal symptoms.136-138 Acute intrathecal
treatment with SP or CGRP antagonists attenuates morphine
withdrawal symptoms.137 CGRP-deficient mice show reduced
withdrawal-associated jumping,139 and SP knockout mice
have decreased morphine reward and withdrawal.140

TRPV1 receptors co-localize with substance P (SP) and Calci-
tonin gene-related peptide (CGRP) in the primary sensory neu-
rons, spinal cord, and DRG neurons.141 Capsaicin induces the
release of SP and CGRP, whereas a TRPV1 antagonist capsaze-
pine reverses these activities.141-143 Capsaicin causes SP and
CGRP releases, whereas capsazepine reverses these activities. Acti-
vation of TRPV1 has been demonstrated to induce glutamate
release,144 and glutamatergic synaptic transmission can be inhib-
ited in rats by the TRPV1 antagonist SB366791 in the spinal dor-
sal horn after peripheral inflammation.145 Additionally, TRPV1
activation induces the central and peripheral endings of neurons
associated with the neurogenic inflammatory response and noci-
ceptive transmission to release peptide neurotransmitters, includ-
ing CGRP and SP.146-148 However, it has been reported that
capsaicin-induced SP release is reduced by opioids.149,150 Addi-
tionally, it has been reported that opioids inhibit neurogenic
inflammation by reducing SP released from peripheral afferent
terminals.149,150 Prolonged morphine usage enhances the release
of CGRP induced by capsaicin.135 Neurotransmitter modulation
through chronic opioid exposure activates TRPV1 and causes opi-
oid associated tolerance and thermal hyperalgesia.21 In vitro and
in vivo experiments in DRG neurons suggest that chronic mor-
phine induced increases in CGRP and SP are the result of
increased MAPK and cAMP response element-binding protein
(CREB) phosphorylation.118 Chronic morphine exposure also
provokes the manifestation of physical dependence and the resul-
tant withdrawal symptoms. Extensive evidence indicates that neu-
ropeptides may play an essential role in the manifestation of
morphine withdrawal symptoms. Animals with opioid withdrawal
symptoms exhibit elevation of both the neuropeptides
SP136,138,151 and CGRP.136,137 Furthermore, acute intrathecal
administration of SP or CGRP antagonists reduces the symptoms
of morphine withdrawal. SP knockout mice exhibit diminished
morphine reward and withdrawal responses,140 and CGRP-
knockdown mice exhibit reduced withdrawal-induced jump-
ing.139 Therefore, systemic TRPV1 receptors blockade by capsaze-
pine may reduce withdrawal symptoms by preventing SP and
CGRP releases in morphine-dependent mice. Chronic morphine
activates TRPV1. In turn, TRPV1 modulates neurotransmitters
such as glutamate, CGRP, and SP, and contributes to morphine
tolerance and the associated thermal hyperalgesia.

Conclusions

Morphine is primarily used to treat patients experiencing
moderate or severe pain. Unfortunately, the adverse effects of
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morphine limit its use. These detrimental effects, which include
the development of analgesic tolerance and physical dependence,
develop rapidly in response to chronic morphine usage in labora-
tory animals and human patients. Subjects also develop physical
morphine dependence and exhibit withdrawal symptoms after
the cessation of treatment.3,4,152

In this review, we describe a compelling body of evidence
from a number of laboratories indicating that TRPV1 activation
in the central and peripheral nervous system is partly responsible
for morphine induced anti-nociception, and the development of
morphine tolerance and dependence. TRPV1 is crucial for the
transduction of noxious chemical and thermal stimuli and its
activity can be modulated by numerous mediators, including
growth factors, neurotransmitters, peptides, small proteins, lip-
ids, chemokines, and cytokines. It has been suggested that the
expression of nerve growth factor leads to increased TRPV1 levels
in DRG neurons and inflamed skin through the activation of p38
MAPK. Furthermore, MAPK may regulate TRPV1 activity in an
extracellular signal-regulated protein kinase (ERK)-dependent
manner. These studies imply that TRPV1 is not solely a thermo-
receptor; instead, its activity appears to be modulated by various
molecules that act through distinct pathways. A number of

interrelated signaling pathways, such as cAMP/PKA and MAPK,
are involved in this process and research on these pathways is
helping to define the mechanisms governing analgesic tolerance
and opioid dependence. Growing evidence indicates that, if used
in conjunction with morphine treatment, TRPV1 antagonists
could improve management of chronic and severe morphine-
resistant pain by reducing morphine induced tolerance and phys-
ical dependence. TRPV1 antagonists might also be useful for
managing and reducing morphine withdrawal syndromes. Fur-
ther investigation of TRPV1 antagonists might uncover thera-
peutic-targets for the treatment of morphine-induced
antinociception, tolerance and dependence.
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