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Abstract

The development and application of high-throughput molecular profiling have transformed the 

study of human diseases. The problem of handling large, complex datasets has been facilitated by 

advances in complex computational analysis. In this review the recent literature regarding the 

application of transcriptional genomic information to renal transplantation, with specific reference 

to acute rejection, acute kidney injury in allografts, chronic allograft injury and tolerance is 

discussed, as is the current published data regarding other “omics” strategies- proteomics, 

metabolomics and the micro-RNA transcriptome. These data have shed new light on our 

understanding of the pathogenesis of specific disease conditions following renal transplantation 

but their utility as a biomarker of disease has been hampered by study design and sample size. 

This review aims to highlight the opportunities and obstacles that exist with genomics and other 

related technologies in order to better understand and predict renal allograft outcome.

 Introduction

Interrogation of the genome to identify the consequences of static and dynamic genomic 

variation on allograft outcomes is being investigated actively in kidney transplantation (see 

reviews).1–4 This has been made possible by the combination of ease of access of sample 

procurement (allograft, blood or body fluid), the availability of high-throughput 

technologies, and complex computational analyses. Microarray technology has been used 

widely to study the pathogenesis of disease processes, although its translation to clinical 
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practice has been limited.5 Nonetheless, the simultaneous detection of quantitative gene 

expression and the genome-wide expression profiles (GEPs) make it possible to obtain 

cross-sectional information regarding the physiological and cellular regulatory environment 

and distinguish this from pathological events such as acute rejection and graft fibrosis. 

Owing to the limitations of histological diagnosis in renal allograft biopsies,6 application of 

these analyses have been shown to improve upon,7,8 further classify9 and precede the 

histological appearance10,11 of disease. Transcriptional information obtained serially could 

help piece together sequential events that culminate in disease phenomena such as acute 

rejection, chronic allograft injury, tolerance and graft loss. Events identified in this fashion 

can be targeted earlier with the ultimate goal of altering the course of disease. At the very 

least, gene expression changes, once quantified and validated, could be used as biomarkers 

of simultaneous or impending disease states. Heritable genomic changes in either donor or 

recipient (e.g polymorphisms) are relatively easier to map from tissue or blood, and can be 

reproduced reliably in clinical settings. When such changes correlate with allograft 

outcomes, they have the potential to translate into clinical assays although most assays fall 

well short of a validated biomarker suitable for clinical use (Figure 1).12 Aside from 

transcripts of protein coding genes, microRNAs (miRNAs) have been identified as a 

regulatory layer demonstrating transcriptional and translational control on cellular protein 

expression and phenotype,13 and recently have been investigated in transplantation.14–16 

Similarly, epigenetic changes (DNA- or histone-methylation patterns) have the potential to 

predict alterations in gene expression and correlate with specific pathogenic processes.17 In 

this paper, the current literature regarding the application of transcriptional genomic 

information to renal transplantation is reviewed with specific reference to what these studies 

bring to our understanding of acute renal allograft rejection and chronic allograft injury.

 Transcriptome assessments

Older genomic techniques confined the study of disease phenomena to one or a few 

candidate genes at a given time. These genes were selected based on biological 

plausibility 18,19 or animal experimentation and the studies were hypothesis-driven.3 With 

increased availability of high throughput technologies such as microarray and RNA-

sequencing, it is possible to simultaneously identify the differential expression patterns of 

thousands of genes that associate with a particular outcome or disease state. Further, 

computational analysis of this genome-wide expression information, and its mapping to 

experimentally identified gene-expression information within large databases (http://

www.broadinstitute.org/ or http://www.ncbi.nlm.nih.gov/geo/) can help reveal the 

cumulative signaling pathways operational in a pathologic state. This capability has given 

rise to a paradigm shift from traditional hypothesis-driven experiments toward large-scale 

hypothesis generation experiments with potential for testing through clinical trials.4

Important characteristics of commonly employed strategies to examine genomic information 

in the research settings in transplantation are summarized in Table-1. Microarrays work on 

the principle of DNA complementarity (see review).4 Reverse transcribed, amplified cDNA 

is labeled with fluorescent probes and hybridized into separate arrays. The fluorescence is 

quantified by image analysis software and the probe-IDs (corresponding to a sequence 

within a gene) are identified by their location on the predesigned platform. Data 
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normalization and elimination of transcripts below a critical abundance threshold is followed 

by comparative analysis of fold changes of transcripts between control and disease 

conditions. Microarray results are expressed as relative fold changes in reference to a 

standard set of samples. Procurement and storage, RNA extraction methods and reverse 

transcription protocols, heterogeneity of gene chip assay used, fidelity of pre-array 

amplification techniques, and inaccuracy in identifying differences in low abundance 

transcripts are all sources of variation in the interpretation of microarray results. RNA-seq 

based on high throughput sequencing technologies offers key advantages over microarrays – 

single base resolution, absolute transcript quantification, need for lower amounts of total or 

fractionated RNA and a large dynamic range for detection of expression levels (8000-fold 

changes).20

The NanoString® nCounter system is a new technology for molecular profiling that uses a 

novel colour-coded barcode technology, with each barcode representing a single target 

molecule.21 It enables digital counting of individual molecules without the need for 

amplification. Up to 800 transcripts can be profiled in a single reaction, and has been applied 

to samples of blood, raw cells and urine. Its role in transcriptome profiling in other 

biomedical fields such as oncology has been prominent in recent years, but only recently 

been used in the setting of renal transplantation.22,23

 Genomics of acute rejection

The pathogenesis of acute rejection (AR), cellular (ACR), antibody-mediated (ABMR) and 

mixed rejection, in renal allografts is well understood (see elegant reviews).24–26 Important 

features to emerge are the redundancy within the immune effector mechanisms mediating 

ACR, the need to discern co-existent ABMR due to its prognostic and therapeutic 

implications,27 and the paradigm of ongoing sub-clinical rejection and its impact.28–32 

These compound the complexity of developing unified genomic biomarkers for AR and 

histological diagnosis remains the gold standard.4 Variability of the transcriptional milieu of 

ACR in the allograft and/or peripheral blood is also influenced by immunosuppressive 

agents, AR severity (borderline vs grade I or II), the timing of the rejection episode, the 

type/quality of organ, associated pathology and the representativeness of the sample used for 

transcriptome analysis. Most transcriptional studies have depended on clinical or for-cause 

biopsies for developing GEPs as biomarkers and may neglect transcriptional phenomenon in 

subclinical rejections. Transcriptional studies also frequently rely on “clean” phenotypes to 

develop and validate GEPs, ie specific pathology vs healthy controls – scenarios that are 

seldom encountered in pure form in routine clinical practice, making the information 

obtained difficult to both validate and/or to apply to patient care.33 Not withstanding these 

limitations, substantial progress has been made in understanding the peripheral blood and 

allograft transcriptomes of AR in renal transplantation.5,7,9,34–38 The reader is referred to 

comprehensive reviews that have recently tabulated the studies employing genomics in renal 

allograft rejection. 4,39

Prior to the widespread application of genomics, substantial progress had been made by 

using quantitative PCR (qPCR) to interrogate tissue from rejecting renal allografts for 

immune activation genes. Interestingly IL-2 gene upregulation was not associated with 
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rejection but investigators have demonstrated significant upregulation of other cytokines 

especially IP-10, CXCR3 and CD3ε.18,19 Other markers said to be predictive of ACR 

include FOXP3, IFN-γ, T-cell receptor variable regions as well as cytotoxic T-lymphocyte 

effector molecules, such as perforin, granzyme B, Fas, and Fas ligand, and CD40 

ligand.18,19,40 Recognizing the increased allograft infiltration and subsequent urinary 

appearance of lymphocytes during ACR episodes, pre-selected immune transcripts (T-cell/

immune related) in urinary cell pellets measured by qPCR have been reported to non-

invasively differentiate ACR from non-ACR.41–50 One study used 18S-ribosomal-RNA 

normalized 3-gene signature (CD3ε, IP-10 & 18S-rRNA) to identify ACR from non-ACR 

with high accuracy.47 The gene set was less effective at differentiating ACR from ABMR 

and borderline ACR (AUC – 0.78). More recently, the same investigators described the 

ability to distinguish AR from other causes of renal allograft dysfunction using a urinary 

gene signature, and subsequently applied a further transcript profile for ACR to distinguish 

ACR from ABMR within the AR group.49 A multicenter study with qPCRs performed 

independently at 6 centers for 7 genes on the same urine samples showed significant 

correlations (R >0.938) in mRNA levels of all 7 genes suggesting the feasibility of urinary 

mRNA levels as biomarkers.50 However, urine handling and storage for accurate transcript 

assessment has limited such studies to a small number of specialized research groups.

To date, many of the genomic studies have attempted to identify GEPs that can separate 

ACR from non-ACR. This has been possible within the context of the patients studied but 

the results have not been applicable to broader populations, either because the GEPs lacked 

the required specificity and sensitivity for general use, or alternatively they have not been 

studied beyond the initial reference populations. Furthermore, sample sizes were small and 

their general applicability, much less their diagnostic utility, were not confirmed. For 

instance, Akalin et al initially used high-density oligonucleotide array (Affymetrix 

GeneChip® Hu6800) to open-endedly analyze the allograft transcriptome of patients with 

ACR. They identified a panel of 4 transcripts that were present in all patients but only 7 

patients were evaluated.5 However, the authors restricted their analysis only to those genes 

with a four fold or greater increased expression over baseline biopsies, and may have missed 

many transcripts that were changed consistently in ACR, albeit less than this threshold. 

Sarwal and colleagues used DNA microarrays in a systematic study of gene-expression 

patterns in biopsy samples from normal and dysfunctional renal allografts.9 By unsupervised 

hierarchical clustering, they identified four clusters of gene expression patterns, which 

generally corresponded to the histologically identified categories. An important finding of 

this study was that the gene expression pattern of the 26 ACR biopsies were classifiable into 

a further three clusters which were not differentiated by light microscopy, which as the 

authors suggest may reflect unidentified distinct mechanisms in the molecular pathogenesis 

of rejection and may be predictive of outcome. Again this early study lacked power and has 

not been corroborated by other investigators. Using gene array profiles obtained from renal 

transplant biopsies, Flechner et al also confirmed that it was possible to separate stable 

function with no rejection from graft dysfunction due to ACR and graft dysfunction not 

related to ACR.34 While AR and non-AR GEPs in PBMCS clustered separately from those 

of stable transplant recipients, there was very little overlap with GEPs identified within the 

allograft, which were associated with immune/inflammation mechanisms.
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More recent studies have improved upon the design and technical problems that had 

prevented the development of this technology as a biomarker for AR. These problems 

include the lack of large cohorts to make firm conclusions, poor study design with a lack of 

prospective and systematic patient follow-up, heterogeneity across platforms and most 

significantly the lack of corroboration of findings in separate validation cohorts. Li et al used 

a novel approach of high throughput transcriptional profiling of total RNA from peripheral 

blood validated across 3 microarray platforms, followed by further selection by biological 

relevance and RTPCR validation, to identify a specific 5 gene-set that correlated well with 

AR/no AR status on simultaneously procured allograft biopsies.38 The 5-gene, qPCR-based, 

logistic regression model was built using samples from a single center, and validated in an 

independent multicenter cohort that included AR episodes from transplantation to 3 years of 

follow-up, of varying severity. Of note, the 5-gene set was ultimately selected based on a 

biological candidate gene approach ie genes with enrichment in cell–specific immune 

responses in AR, and not in an unbiased manner. Hence, the most differentially expressed 

genes by magnitude may not have been selected in the final panel. This gene set also did not 

distinguish ACR from ABMR, and a subsequent biopsy would be required in order to make 

treatment decisions. Based upon this and other publications,51,52 the same group of 

researchers has subsequently developed a 17-gene qPCR based assay (kidney solid organ 

response test (kSORT) assay) from peripheral blood of both adult and pediatric recipients 

that diagnosed AR with an AUC of 0.94 in the development cohort (n=143), and was 

validated with an AUC of 0.95 in a separate validation cohort (n=124).53 Prospective studies 

using this panel are ongoing. Reeve et al studied 403 allograft biopsies (divided into 

development and validation cohorts) and compared transcriptional profiles of histologically 

confirmed ACR (with/without ABMR lesions) to biopsies with other diagnosis in a 

supervised manner.7 They generated a T-cell mediated rejection score (TCMR-score) using 

the top 20 differentially regulated transcripts in each iteration. A median TCMR-score >0.1 

identified pathologist-recognized ACR lesions with an accuracy of 89%. The strength of the 

TCMR-score was that it provided additive information to histology and allowed for accurate 

reclassification of ACR/non-ACR lesions, especially where there existed variation between 

pathologists such as when defining borderline changes of rejection (B-ACR). The major 

limitations of the TCMR-score were the absence of an external validation cohort, which 

limited generalizability of these findings, and the lack of a cohort with subclinical ACR (ie 

protocol biopsies).

Clinical and histological studies have identified that graft outcome for B-ACR is not as 

benign as originally thought with worse histological and functional 1 to 2 year outcomes 

than biopsies with non ACR.29–31,54 Larger transcriptional datasets of blood and allograft 

samples on exclusive or predominant B-ACR lesions, could help clarify whether this 

histological readout represents a dichotomy, a continuum or a distinct entity.

The development of a diagnostic GEP for AR has been further complicated by the difficulty 

to differentiate ACR, ABMR and mixed AR. Acute ABMR is diagnosed with histologic 

evidence of acute tissue injury (microvascular or endothelial injury and/or ATN), with 

evidence of current/recent antibody interaction with vascular endothelium (linear C4d 

staining in the peritubular capillaries), and serologic evidence of donor-specific antibodies 

(DSAs) (HLA or other antigens). In the recent Banff classification, ABMR has been 
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subdivided to include biopsies that contain only one or two of these features.55 To date, the 

most detailed genomic evaluation of ABMR has been the INTERCOM cohort study, which 

contained 300 biopsies. Upon review, 41% of these biopsies had features of ABMR, that 

were not initially diagnosed by histology.56 Using an ABMR-transcriptome score developed 

by the same group these biopsies were diagnosed with an accuracy of 85%.36 Derived from 

403 indication biopsies, allografts with high ABMR-scores had a significant over-expression 

of endothelium-associated transcripts and correlated strongly with the presence of DSA in 

the serum. The ABMR score discriminated ABMR cases from both ACR and other causes 

of microvascular injury. In response to these data, the Banff working group has added 

“increased expression of gene transcripts in the biopsy tissue indicative of endothelial injury, 

if thoroughly validated” as an ABMR diagnostic criteria under evidence of antibody-

endothelium interaction.55 In both studies high ABMR scores had prognostic import and 

correlated independently with allograft loss.

 Genomics of acute kidney injury in transplant

Information regarding the molecular phenotype of AKI is difficult to procure as most 

episodes are self- limited and performance of native kidney biopsies for AKI episodes are 

not clinically indicated. Kidney transplants experience AKI and are ideally positioned to 

study the GEP of AKI.57 cDNA microarrays were used to study GEP of 14 living-donor 

kidneys, 15 deceased donor kidneys with immediate function and 14 deceased donor kidneys 

with AKI (defined by dialysis in first week). GEPs of LD-kidneys were observed to cluster 

separately from deceased donor kidneys (132 genes). Further, 48 transcripts related to cell 

cycle regulation, cell growth/metabolism, and signal transduction were significantly 

differentially regulated in AKI-allografts compared to those with immediate function.58 In a 

separate study, the same authors compared GEPs of AKI allografts with carefully selected 

pristine 6-week protocol biopsies, and identified 394 transcripts that were differentially 

expressed in AKI.37 Using the geometric mean of the fold increase in the top 30 

differentially regulated genes (compared with control nephrectomies), they devised an 

IRRAT (injury-repair-response-associated-transcript) score that correlated inversely with 

renal function at the time, and directly with eGFR improvement thereafter. IRRAT score was 

also significantly associated with DGF, deceased donor status, and interstitial inflammation 

but not histology. IRRAT scores have since been observed to be elevated in both ACR and 

ABMR suggesting the non-specific nature of this injury response signature.7,36 Of note, AKI 

related GEPs identified by different groups in transplantation have shown significant 

overlaps with both mouse orthologs identified in ischemia-reperfusion models,57,59 and with 

each other suggesting molecular homogeneity in this injury response.37,58,60

 Genomics of chronic allograft injury (CAI)

Despite the significant improvement in acute rejection rates over the last two decades, this 

has not translated into improved long- term graft survival. Chronic allograft injury remains a 

major cause of long-term graft loss, and represents an irreversible pattern of injury resulting 

from a number of immunological (acute and chronic rejection, HLA mismatch, donor 

specific antibodies), and non-immunological factors (donor age, ischemia/reperfusion injury, 

infection, CNI toxicity). 61,62 There are differing opinions as to whether allograft loss is 
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multifactorial, as some recent observational studies suggest that most cases of allograft loss 

can be attributed to a single disease entity 63,64 whilst other published findings suggests 

otherwise.65 Interstitial fibrosis and tubular atrophy (IF/TA) are the histopathologic 

hallmarks of CAI. It has subsequently been recognised that concurrent interstitial 

inflammation and IFTA changes on biopsy identifies recipients at greatest risk of graft 

loss.66,67 Despite greater understanding of the factors contributing to CAI/IFTA, the precise 

pathophysiological mechanisms are not fully understood. Consequently, the development of 

targeted therapeutic strategies has been limited. As with subclinical rejection, the presence 

of IFTA - a histologic diagnosis, predates the measured decline in renal function. The need 

for earlier detection to allow for timely therapeutic intervention has provided the impetus for 

numerous genome, transcriptome, and proteomic studies in the search for potential non-

invasive, predictive biomarkers in CAI.

The application of microarray technology to evaluate the differential gene expression in CAI 

first emerged a decade ago.11 Since then, a number of studies utilizing microarrays have 

been published to characterize the genome and transcriptome profiles of allografts with 

IFTA although most have involved small cohorts of patients and non-prospective in design, 

amongst other limitations. The concept that early transcript changes may predate the 

subsequent histological phenotype of CAI has been an appealing hypothesis. Scherer et al68 

concluded that transcriptome changes precede the observed histologic changes of IFTA, 

after profiling the gene expression of 3-month post transplant biopsies of 20 patients, and 

compared those that developed IFTA at 6 months versus those who did not. Using 

oligonucleotide microarray, differential transcript expression between the progressors and 

non- progressors was identified, with genes pertinent to T and B cell activation, the immune 

response profibrotic processes or in epithelial-to-mesenchymal transition featuring 

prominently in the progressor group. In contrast, a larger study of a retrospectively selected 

group of 107 allograft recipients who had their biopsy microarray data summarized into 

pathogenesis- based transcripts sets, found that the molecular phenotype in early (6-week 

post transplant) transcript expression mainly reflected the injury-repair responses to 

implantation stresses, without strong correlation to 6 month IFTA or renal function at 24 

months.69 Naesens and colleagues also profiled the gene expression of 6 month biopsies 

from ‘progressors’ and ‘non-progressors’ in a pediatric cohort.70 These groups were defined 

based on 24- month CADI scores and 6 month protocol biopsies were interrogated. As a 

point of difference from other studies, only recipients with minimal or no chronic damage at 

implantation and no interval acute rejection episodes were included. This well- designed 

albeit highly selective study with small numbers, made a concerted effort to remove likely 

confounders of the molecular signature and study end point. In addition, the profiling of 

stable 6 month grafts seemed reasonable time point of study given that these should be 

devoid of the early inflammatory transcripts. 92 probe sets were significantly overexpressed 

in the ‘progressor’ group, not only in immunity related but non-immune biological 

functions, and shed light on the mechanistic pathways. Risk stratification for CAI based on 

an earlier molecular phenotype seems plausible. The disparities in these studies highlight 

inter-centre difference in time points of biopsy acquisition, even for ‘protocol’ samples, and 

study follow up, reinforcing the need for multicenter studies to produce more robust 

conclusions.
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Other investigators have utilized gene arrays to interrogate protocol biopsies within the first 

year of transplantation.71,72 They showed that a combination of immunological and tissue 

remodeling gene patterns preceded the onset of fibrosis but specific gene pathways 

associated with expected biological process such as EMT and the TFG-β pathway were 

missing. The identification of macrophage-related genes in the 12 month protocol biopsies 

demonstrating the most fibrosis was of interest and led to a third study where the role of 

macrophages in renal transplant fibrosis was examined.73 In this study of 46 patients, two 

unexpected features were identified. Firstly the overwhelming majority of infiltrating 

macrophages were identified as M2 phenotype by immunohistochemistry. Paradoxically the 

gene expression patterns from arrays performed on their 12 month protocol biopsies 

demonstrated an alloimmune gene expression pattern with upregulation of interferon-gamma 

response genes in those grafts with progressive fibrosis despite there being no history of 

rejection and no evidence of it on histology. Whilst the study did show that there was a 

strong association of macrophages with fibrosis it did not clarify their role in the process. 

However it does highlight the importance of an ongoing subclinical alloimmune response as 

a driver of fibrosis in the first 12 months after transplant, even in those grafts where there 

was no histological evidence of it. In addition to immune related events, renal parenchymal 

factors have been identified as having an impact on renal graft fibrosis. In the prospective 

multicentre Genomics of Chronic Allograft Rejection (GoCAR) study expression of the 

SHROOM3 gene, which is found in tubular cells and podocytes in the kidney and encodes 

an actin- binding protein, in allografts at 3 months post transplant or the presence of the 

SHROOM3 risk allele in the donor, was associated with increased allograft fibrosis at 1 

year.74

There have been few meta-analyses of genomic studies in chronic allograft injury,75–78 

There are difficulties in undertaking such analyses as there are many confounders including 

the timing and reasons for the biopsy (protocol or for cause biopsies), the timing of clinical 

and histological follow up and the type of genomic platform used. One of the earlier meta-

analysis76 utilized a novel non-parametric approach for combining data from multiple 

independent microarray studies, and pooled two published datasets comprising 40 transplant 

biopsies samples (27 with CAI and the remainder with normal histology).79,80 Both studies 

used Affymetrix microarray GeneChips, which eliminated cross-platform confounders. 

Amongst the identified differentially expressed genes for CAI, there was an over-

representation of six KEGG pathways including oxidative phosphorylation, ATP synthesis, 

citrate cycle, reductive carboxylate cycle, methionine metabolism.76 More recently a meta-

analysis of separate data sets were undertaken to evaluate the role of growth factors and 

integrin pathways in CAI.78 Three data sets were pooled and all were hydridized on 

Affymetrix arrays. Although the results were of interest with regard to the pathogenesis of 

CAI they were not robust in differentiating between mild, moderate and severe CAN/IFTA. 

IGF1 was the only growth factor pathway that was differentially expressed with progressive 

IFTA severity. Hepatocyte growth factor (HGF) and fibroblast growth factor (FGF) signaling 

pathways were significantly upregulated in early CAN/IFTA (Banff 0 vs 1) and were 

expressed in moderate/severe CAN/IFTA (Banff 0 vs Banff 2, 3). However, they were not 

able to differentiate between mild CAN/IFTA (Banff 1) and moderate and severe grades 

(Banff 2 and 3 respectively).
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Studies in CAI that have put forth a limited gene set with potential as a non-invasive 

diagnostic biomarker panel have been limited. Of note, one such study aimed to build a 

multi-gene prediction model around vimentin, chosen based on other published work.81 In 

this cross-sectional investigation, indication or protocol biopsies of 114 patients were 

classified as having IFTA or normal histology, and urinary cell RNA was extracted from 

urine collected at the time of biopsy. Samples were divided prior to analysis at a 2:1 ratio 

into a discovery (76 patients, 32 with allograft fibrosis and 44 with normal histology) and 

validation set (38 patients, 16 with fibrosis and 22 normal histology). The levels of 22 

selected mRNAs were measured using their pre-amplification enhanced kinetic quantitative 

PCR assay. Following adjustments only 2 mRNAs were found to be predictive of fibrosis, 

resulting in a 4- gene model comprised of vimentin, NKCC2, E-cadherin and 18S rRNA, 

which yielded a composite score that was highly associated with IF/TA. The gene set 

performed well in the validation cohort with an AUC of 0.89 (p<0.0001); specificity was 

77.3% and sensitivity 87.5% for diagnosis of IFTA at the composite score cut-point (same as 

discovery set) of 4.5. However the timing of biopsies was heterogeneous, and results are 

potentially confounded by a statistically significant difference between the time to biopsy in 

the fibrosis and non-fibrosis groups. These results require confirmation in a more uniform 

study protocol. Further, whether this profile is predictive rather than diagnostic of fibrosis 

remains to be determined.

Recently studies examining the genome, transcriptome and/or proteome profile on the same 

biological samples in an integrated manner using high-throughput technologies have 

emerged. Kurian and colleagues82 used DNA microarrays along with tandem mass 

spectrometry to evaluate the gene and protein expression in the PBMCs of patients with 

biopsy proven IF/TA of varying severity. The aim was to identify diagnostic biomarkers of 

IF/TA in the peripheral blood. This proof-of-concept study identified transcript and protein 

signatures, which appeared to accurately stratify patients into the different IF/TA grades. 

However, as the authors identified, the patients were pooled from two independent sets, and 

were clinically heterogeneous with variation in the timing of sample collection and methods 

of transcript purification. In a separate study83 the proteome and genome expression was 

performed in parallel on allograft tissue from the same patients in the aforementioned study. 

Multiple sets of genes were mapped to different functional pathways, with levels appearing 

to correlate with histologic severity of IF/TA. These studies show that genomics has the 

ability to shed light on the pathogenesis of CAI whilst holding potential as an assay that is 

diagnostic and/or predictive of future fibrosis. However to date the utility of the findings is 

limited by small sample size, lack of homogeneity of the study population and were mostly 

non- prospective in design. Therefore carefully coordinated collaborative efforts between 

centers will be required to allow for robust validation settings.

 Genomics of tolerance

The first study published on gene expression profiling in operationally tolerant renal graft 

recipients using microarray came from Brouard and colleagues.84 A subset of patients in 

their study was stratified into three clinical phenotypes: tolerant patients without 

immunosuppression for at least 2 years, chronic rejection and age-matched controls. Using a 

customized cDNA microarray platform (Lymphochip), a ‘tolerant footprint’ of 49 genes was 
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identified from PBMCs. Thirty-three of these differentiated operationally tolerant from 

chronic rejection with 99% specificity and 86% sensitivity. There was under-expression of 

co-stimulatory genes and Th1/Th2 related cytokines in the tolerant group. In addition, 27% 

of these genes were regulated by TGF-β. In a later study from the same group, 20 of these 

were selected and formed a gene set which the authors proposed could potentially identify 

those patients at ‘minimal risk’ of rejection, where reduction of immunosuppression could 

be considered.85 In a cohort of 144 patients who were at least 5 years post-transplant with 

stable graft function, 3.5% displayed a tolerance profile in the peripheral blood based on this 

20-gene set. However, these findings were not obtained in parallel with kidney biopsies to 

verify the absence of immune reactivity and to date no study has been published that tests 

their hypothesis.

The bias towards B cells in the tolerant state was also identified by multicenter studies by 

Newell86 and Sagoo.87 The patients in the tolerance cohort from each study were from the 

US Immune Tolerance Network (25 patients) and the European Indices of Tolerance 

consortium (11 patients). The two studies used samples from each other’s cohort for 

validation of their findings. Newell and colleagues used microarray for whole blood gene 

profiling, and found 30 genes over-expressed by at least two fold in 19 operationally tolerant 

patients (more than 12 months off immunosuppression) versus patients with stable graft 

function with ongoing triple immunosuppression. Twenty two of these genes were B-cell 

specific. However, this GEP could not differentiate between tolerant patients and healthy 

(non-transplanted) controls. Further analysis identified a three-gene signature that was able 

to distinguish operationally tolerant patients from those with stable function on 

immunosuppression with 100% sensitivity and 83% specificity in a test set of 12 patients 

divided equally into the two groups. The expansion of B-cell transcripts was not only 

identified in the blood, but also in the urine sediment, which exhibited upregulation of CD20 

mRNA in the tolerant group. Using a different microarray platform Sagoo and colleagues 

was able to distinguish operationally tolerant recipients from chronic rejection, stable 

patients on immunosuppression and normal controls.87 Again a predominance of B-cell 

related genes and associated molecular pathways were identified in their tolerance footprint. 

However, it is possible that the strong representation of B cells in the aforementioned studies 

may reflect the absence of immunosuppression, rather than the state of tolerance per se. 

Newell was unable to identify any of the three genes in their predictive set in Sagoo’s 

platform, questioning the robustness of the findings. 86 More recently, Baron and 

colleagues88 compared the gene lists derived from the five tolerance-related blood 

transcriptomic studies, and were unable to identify a gene signature to differentiate tolerant 

subjects from stable controls on immunosuppression.84,86,87,89,90 To enhance the study 

power, the microarray data from the 96 operationally tolerant patients were integrated into 

one dataset. The authors made efforts to overcome systematic biases derived from merging 

microarray data obtained from different platforms by renormalization and standardization of 

the data prior to integration, and only the 1846 consensus genes were retained for analysis. 

Their meta-analysis identified a robust differential gene signature when compared to 

subjects who were stable on immunosuppression. The most discriminating gene clusters 

were linked to B-cells, monocytes and CD4 T cells at various stages of differentiation. 

Following cross validation, a selection of the 20 top-ranked genes with the majority 
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overexpressed in tolerance and pertaining to B cells was revalidated in an independent 

cohort of 18 new tolerance samples of which 6 were new cases, with 91.7% accuracy 

(94.4% sensitivity, 90% specificity, 85% PPV and 96.4% NPV). This meta-analysis 

reaffirms the prominent role of B cells in the tolerant state as identified in earlier studies, but 

whether their strong presence is causative or consequent remains unanswered.

 Other ‘omics: Proteomics, Transcriptomics and Metabolomics

A number of other biomic disciplines have emerged in the last decade. These disciplines, 

including proteomics, transcriptomics and metabolomics refer to the high throughput 

application to profile the proteome, transcriptome, and metabolome respectively.

Proteomics is the large-scale study of proteins. Previously, profiling of the proteome was 

limited by its complexity, but has gained significant momentum with technological 

advancements, particularly in relation to mass spectrometry (MS). Identification and 

quantitative strategies using MS have been aided by improvements in protein separation 

methods, both gel based (eg 2-dimensional differential in-gel electrophoresis (2D-DIGE)) 

and non-gel based (eg high performance liquid chromatography (HPLC)) whilst a range of 

isotope-based labelling methods allow for relative and absolute protein quantification. Urine 

has been frequently utilized in both non-targetted and targetted proteomic studies of the 

renal allograft, as has peripheral blood. 48,91–98

Earlier studies utilising mass spectrometry-based technology in urine proteomic profiling 

identified protein signals that were present in subjects with acute rejection, but did not 

further characterise the protein associated with these signals.99,100 In a proof of principle 

study,100 SELDI-TOF-MS was used to discover urine protein peaks associated with acute 

cellular rejection. A follow up study revealed that these were protein derivatives of non-

tryptic cleaved forms of β-2 microglobulin.101 However, a multicenter study did not identify 

a statistically significant correlation of intact or cleaved β-2 microglobulin in urine in the 

presence of AR.48 This prospective targeted observational study conducted through the 

Clinical Trials in Organ Transplantation-01 (CTOT-1) protocol, aimed to evaluate and 

validate a panel of candidate urinary mRNA and protein biomarkers chosen from other 

published work for diagnosing and predicting acute rejection. These included CCR1, CCR5, 

CXCR3, CCL5 (RANTES), CXCL9, CXCL10, IL-8, perforin and granzyme B which were 

studied in this cohort of 280 adult and pediatric first transplant recipients. The most robust 

findings were for CXCL9, both its urinary mRNA and protein yielded PPVs of 61–67% for 

AR, but more impressively were the NPVs of 83% and 92% respectively. In addition, low 

urinary CXCL9 protein at 6 months identified those at low risk of subsequent AR. These 

findings suggest that urinary CXCL9 protein could aid clinical decision-making by ruling 

out AR in those with renal function impairment, and identify patients at low risk of 

subsequent AR where tapering of immunosuppression could therefore be considered. Other 

studies have applied a variety of proteomic techniques to identify protein expression in an 

unbiased high-throughput manner in allograft rejection, before utilizing targeted ELISA for 

validation of biomarker panels. 93,97,102 However as with the majority of promising 

proteomic studies to date, multicenter prospective trials are required to validate these 

candidate markers before meaningful conclusions can be made.
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Transcriptomics is the study of the RNA transcripts encoded by the genome. Whilst much 

of the work in the last decade has been in mRNA evaluation, studies in miRNA expression 

profiling in the setting of renal transplantation, has increased exponentially in recent years. 

MiRNA are small, non-coding RNAs, which regulate gene expression of target mRNAs. 

Similar to genome and mRNA profiling, large scale sequencing of miRNAs has been 

dominated by microarray applications. One of the advantages of this technology is that there 

are far fewer miRNA than genes and hence the computational analysis is simpler and there 

remains the possibility that a more robust marker could be identified as a predictor of either 

AR or IF/TA. Scian and Mas103,104 have elegantly summarised miRNA profiling studies of 

the renal allograft in their reviews. To date no conclusive patterns of miRNA expression 

have been associated with AR14,105,106 or IF/TA.16,107,108

Metabolomics relates to the global profiling of small molecule (<1500 Da) metabolites. 

Since the genome, transcriptome and proteome can undergo further changes after 

translation, the metabolome reflects the downstream products of these processes. There have 

been advances in separation techniques, such as capillary electrophoresis and ultra-high 

pressure liquid chromatography (UPLC) systems, and improvements in analytic approaches, 

being mass spectrometry- based methods and high-resolution nuclear magnetic resonance 

(NMR) spectroscopy. This has enabled the simultaneous study of dozens of small molecule 

metabolites in tissue and biological fluids. Whilst the use of non-targeted metabolomic 

approaches in the study of renal diseases and drug metabolism have been well 

documented,109–111 studies demonstrating its potential role in monitoring kidney transplants 

are limited. It has been used to identify borderline tubulitis and acute TCMR in pediatric 

renal transplant recipients.112 Smaller studies have also been published evaluating the 

differential urinary and serum metabolomic profile in adult allograft recipients with AR 

using mass spectrometry based methods,113,114 and NMR spectroscopy was used to profile 

the urine metabolome in patients with IFTA versus IFTA with inflammation in the DeKAF 

study. 115

 Future directions

The human genome project was the catalyst for what is now recognised as the ‘Omics 

revolution. Molecular profiling strategies have evolved at an unprecedented rate as a 

response to the demand for high throughput technology. This has been accompanied by 

significant advancements in mass spectrometry-based techniques in the field of proteomics, 

which has further contributed to our understanding of the biological complexities of the 

allograft recipient. These profiling strategies have the power, not only to shed light on the 

mechanistic pathways of disease, but also to identify potential diagnostic and predictive 

biological markers, as well as lead on to the development of therapeutic targets. However, it 

is also important to recognise the potential limitations of such tools. Beyond this, the major 

challenge of validating such biomarkers remains. There is a pressing need for multicentre 

collaboration to allow for large-scale, prospective studies, with better study design and 

comparative histological evaluation at defined time points. Only then can such discoveries 

transition from the bench to potentially become diagnostic and prognostic clinical tools, and 

ultimately achieve the common goal of improving graft longevity and patient survival.
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 ABBREVIATIONS

GEP genome-wide expression profiles

ABMR antibody mediated rejection

ACR acute cellular rejection

AR acute rejection

CAI chronic allograft injury

CAN chronic allograft nephropathy

DSA donor specific antibodies

IF/TA interstitial fibrosis/tubular atrophy

miRNA microRNA

MS mass spectrometry

PBMC peripheral blood mononuclear cells

qPCR quantitative polymerase chain reaction

TCMR T-cell mediated rejection
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Figure 1. 
Steps required to translate research findings predictive of a clinical outcome into a validated 

biomarker suitable for clinical use. Adapted from Willis and Lord. Nature Reviews 
Immunology. May 2015;15(5):323–32912.
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Table 1

Summary of advantages and disadvantages of current transcriptome assessment technologies

Advantages Disadvantages

QUANTITATIVE RT-PCR • Established ‘gold standard’ of 
quantitative expression 
profiling

• High sensitivity

• High dynamic range

• High reproducibility

• Low throughput- limited 
number of genes/transcripts 
can be evaluated in a single 
experiment-often used for 
validation.

• Larger amounts of sample 
required compared to other 
methods

• Depends on fidelity of 
“housekeeping genes”

MICROARRAY • Well established method

• Widely available

• Medium to high throughput- 
thousands of genes/transcripts 
can be profiled in a single 
experiment

• High reproducibility (at mid 
to high expression range)

• Publicly available databases 
on thousands of microarray 
studies

• Relatively low cost

• Reference genome required 
ie determines relative and not 
absolute expression

• Only detects sequences 
complementary to those on 
the array

• Lower dynamic range

• Lower specificity and 
sensitivity compared to other 
techniques

• Analysis can be difficult 
comparing datasets from 
different microarray 
platforms

NEXT GENERATION SEQUENCING • High throughput- entire 
transcriptome can be profiled 
in a single experiment

• Can identify novel transcripts

• Direct digital counting

• High dynamic range

• High sensitivity

• High reproducibility

• Comparatively more 
expensive per sample

• Sequence-specific biases

• Complex /time-consuming 
computational data analysis

NANOSTRING® nCOUNTER 
ANALYSIS SYSTEM

• Medium throughput- up to 
800 genes/transcripts in a 
single experiment

• Direct digital counting

• No reverse transcription or 
RNA amplification step, 
therefore reducing technical 
biases

• High sensitivity and 
specificity

• High dynamic range

• High reproducibility

• Paraffin embedded tissues can 
be used

• High upfront costs of code 
sets and consumables

• Prior knowledge of genes 
required

• Not ideal for non-targeted 
gene discovery studies-fewer 
genes/transcripts per 
experiment compared to 
NGS and/or microarray
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Advantages Disadvantages

• Rapid turnaround time (from 
sample processing to data 
acquisition)
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