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Abstract

The plasma coagulation system in mammalian blood consists of a cascade of enzyme activation 

events in which serine proteases activate the proteins (proenzymes and procofactors) in the next 

step of the cascade via limited proteolysis. The ultimate outcome is the polymerization of fibrin 

and the activation of platelets, leading to a blood clot. This process is protective, as it prevents 

excessive blood loss following injury (normal hemostasis). Unfortunately, the blood clotting 

system can also lead to unwanted blood clots inside blood vessels (pathologic thrombosis), which 

is a leading cause of disability and death in the developed world. There are two main mechanisms 

for triggering the blood clotting, termed the tissue factor pathway and the contact pathway. Only 

one of these pathways (the tissue factor pathway) functions in normal hemostasis. Both pathways, 

however, are thought to contribute to thrombosis. An emerging concept is that the contact pathway 

functions in host pathogen-defenses. This review focuses on how the initiation phase of the blood 

clotting cascade is regulated in both pathways, with a discussion of the contributions of these 

pathways to hemostasis versus thrombosis.
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Introduction

Blood is a liquid that circulates under pressure through the vasculature. Following vascular 

injury, any escaping blood must rapidly be converted into a gel (“clot”) to plug the hole and 

minimize further blood loss. The plasma portion of blood contains a collection of soluble 

proteins that act together in a cascade of enzyme activation events, culminating in the 

formation of a fibrin clot. This review addresses the mechanisms by which the blood clotting 

cascade is initiated in both hemostasis and pathologic thrombosis. Hemostasis is the normal 

process by which the clotting cascade seals up vascular damage to limit blood loss following 

injury. Thrombosis is a group of pathologic conditions in which the clotting cascade is 

triggered inside the lumen of a blood vessel, leading to the formation of a blood clot (known, 

in this case, as a “thrombus”) that can impede the flow of blood within a vessel. Severe 

thrombosis can block the flow of blood to a tissue, leading to ischemia and tissue death.
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Two major pathways exist for triggering the blood clotting cascade, known as the tissue 

factor pathway and the contact pathway. Figure 1 shows a somewhat simplified version of 

the clotting cascade, emphasizing these two mechanisms for initiating blood clotting.

The tissue factor pathway is named for the protein that triggers it—a cell-surface, integral-

membrane protein known as tissue factor (TF)(Morrissey & Broze, 2013). This way of 

triggering blood clotting is also sometimes called the Extrinsic Pathway, because it requires 

that plasma come into contact with something “extrinsic”—i.e.,TF—to trigger it. The TF 

pathway is the mechanism of triggering blood clotting that functions in normal hemostasis, 

and probably also in many types of thrombosis. Thus, when cells expressing TF are exposed 

to blood, this event immediately triggers the clotting cascade as indicated in Figure 1. This 

pathway is discussed in much greater detail below.

The contact pathway of triggering blood clotting has also been termed the “intrinsic” 

pathway, since it can be triggered without adding a source of TF to the blood or plasma. This 

pathway is actually triggered when plasma comes into contact with certain types of artificial 

surfaces. Glass test tubes, diatomaceous earth (celite) and finely ground clay are especially 

good activators of the contact pathway (Nossel, 1967). This mechanism of initiating the 

clotting cascade is indicated in Figure 1, and is discussed in greater detail below. While this 

pathway does not contribute to normal hemostasis, it is thought to participate in thrombotic 

diseases (Renné, 2013).

The extrinsic, or TF pathway

The plasma clotting cascade consists of a series of reactions involving the activation of 

zymogens (inert precursors of enzymes) via limited proteolysis. The resulting enzymes are 

catalytically active serine proteases, yet they have low inherent enzymatic activity as isolated 

proteins. Binding of a typical clotting protease to a specific protein cofactor on a suitable 

membrane surface markedly potentiates the protease’s activity, often by as much as five 

orders of magnitude or more. The protein cofactors of the blood clotting cascade also 

generally circulate in the plasma as inert procofactors that must be converted into active 

cofactors via limited proteolysis. Most blood clotting proteins (both zymogens and 

procofactors) are represented by Roman numerals, with a lower case “a” appended to the 

numeral once the protein has been proteolytically converted to the active form. For example, 

the first serine protease in the extrinsic or TF pathway of blood clotting is coagulation factor 

VIIa (fVIIa), which circulates in plasma largely in the inactive, zymogen form (fVII).

The enzyme that actually triggers the TF pathway of blood clotting thus consists of two 

subunits: the catalytic subunit is the trypsin-like serine protease, fVIIa, and the positively-

acting regulatory subunit (“protein cofactor”) is the cell-surface protein, TF. The complex 

between TF and fVIIa (TF:VIIa) is anchored to the cell surface, because TF is an integral 

membrane protein (Morrissey & Broze, 2013). Free fVIIa is a very weak enzyme, but the 

TF:VIIa complex is an extremely potent activator of coagulation. Once formed, the TF:VIIa 

complex activates two downstream substrates in the coagulation cascade via limited 

proteolysis: factor IX (fIX) is converted to fIXa, and fX is converted to fXa (Figure 1). Both 

of these active enzymes must assemble on suitable membrane surfaces together with their 
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own protein cofactors (fVIIIa in the case of fIXa; or fVa in the case of fXa) in order to 

propagate the clotting cascade. This ultimately leads to a large burst of thrombin, the last 

serine protease in the clotting cascade. Thrombin efficiently processes fibrinogen into fibrin 

via limited proteolysis, which in turn spontaneously assembles into a fibrin clot. Thrombin is 

also a potent activator of platelets, further contributing to the formation of a protective 

hemostatic plug (in normal hemostasis) or a thrombus (in pathologic activation of clotting).

TF

TF, also sometimes known as thromboplastin (perhaps more correctly, tissue 
thromboplastin), coagulation factor III, or CD142, is a glycosylated, integral-membrane 

protein of about 46 kDa, consisting of a single polypeptide chain of 261 or 263 amino acids 

(the two forms are nearly equal in expression) (Morrissey et al., 1987; Spicer et al., 1987; 

Scarpati et al., 1987). Membrane anchoring of TF via its single membrane-spanning domain 

is essential for full procoagulant activity (Paborsky et al., 1991). TF is unusual among the 

protein cofactors of the plasma clotting cascade in that it is an integral membrane protein, 

and also that it is does not require proteolysis for activity.

TF is abundant in adventitial cells surrounding all blood vessels larger than capillaries, in 

keratinocytes in the skin, and in a variety of epithelial layers such as organ capsules (Drake 

et al., 1989a; Wilcox et al., 1989; Fleck et al., 1990). This pattern of expression is consistent 

with the role of TF as a protective “hemostatic envelope” surrounding the vasculature, organ 

structures, and the organism in its entirety (Drake et al., 1989a). Further, there is especially 

abundant TF at anatomic sites where hemorrhage is likely to result in disastrous 

consequences, such as kidney and brain (Drake et al., 1989a; Fleck et al., 1990). TF 

expression is quite low in skeletal muscle and synovial tissues (Drake et al., 1989a; Fleck et 
al., 1990). Interestingly, these are two anatomic sites of spontaneous bleeding in hemophilic 

patients (who lack either fVIII or fIX). A plausible explanation for bleeding at these sites is 

that activation of fIX by the TF:VIIa complex provides an additional amplification step, 

compared with direct activation of fX (see Figure 1). This may explain why hemophilic 

patients do not tend to bleed excessively from superficial cuts in the skin (which has high 

levels of TF, allowing for direct, abundant activation of fX by TF:VIIa). On the other hand, 

sites such as skeletal muscle and joints, where TF levels are low, may require the additional 

amplification of the clot-initiating signal gained from activating fIX by TF:VIIa. The newly-

generated fIXa then assembles with fVIIIa to generate larger quantities of fXa than could be 

generated directly by low levels of TF:VIIa alone.

In cross-sections of normal blood vessels, TF is readily detectable only in the adventitial 

cells that make up the outermost layers of the vessel wall (Drake et al., 1989a; Wilcox et al., 
1989; Fleck et al., 1990). Circulating blood cells, as well as the endothelial cells that line the 

blood vessels, do not usually express TF (as detected by antibody staining). However, certain 

inflammatory mediators (Geczy, 1994; Camerer et al., 1996) or hypoxia (Yan et al., 1999) 

can stimulate cultured peripheral blood monocytes and endothelial cells to express 

significant amounts of TF. Other blood cell types such as neutrophils, eosinophils and 

platelets have been reported to express TF under some circumstances (Camera et al., 2012; 

Moosbauer et al., 2007; Todoroki et al., 1998; Giesen et al., 1999), although this is 
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somewhat controversial (Østerud, 2012). Induced expression of TF in the vasculature by 

inflammatory mediators may play important roles in thrombotic diseases.

Urine and plasma may contain low levels of TF antigen, although the source of this “blood-

borne” TF is a matter of some controversy (Giesen et al., 1999). An alternatively-spliced, 

soluble form of TF has been described (Bogdanov et al., 2003), and microparticles shed 

from activated leucocytes likely contribute to blood-borne TF (Sabatier et al., 2002).

FVII/VIIa

Zymogen fVII is a glycosylated protein of approximately 50 kDa, consisting of a single 

polypeptide chain of 406 amino acids (Radcliffe & Nemerson, 1975; Kisiel & Davie, 1975; 

Broze & Majerus, 1980). FVII is synthesized in the liver and circulates in plasma at a 

concentration of about 10 nM (Fair, 1983). When initially synthesized inside the 

endoplasmic reticulum of hepatocytes, fVII contains a signal peptide and a propeptide 

(removed intracellularly) that mediate, respectively, secretion and a specific type of post-

translational modification (γ-carboxylation) of all the glutamate residues within about 45 

amino acids of the N-terminus of the mature protein. Like other related vitamin-K dependent 

coagulation proteins, fVII contains an N-terminal γ-carboxyglutamate–rich domain (GLA 

domain). The fVII GLA domain contains ten γ-carboxyglutamate (Gla) residues that are 

essential for the clotting activity of this protein. The GLA domain confers reversible, Ca2+-

dependent binding of fVII to membranes containing negatively charged phospholipids such 

as phosphatidylserine or phosphatidic acid (Neuenschwander & Morrissey, 1994; Tavoosi et 
al., 2013).

FVII, like all the coagulation serine proteases, circulates in the plasma chiefly as an inert 

zymogen. Unlike most other plasma serine proteases, however, fVII also circulates in its 

active enzymatic form (fVIIa). Zymogen fVII is converted to its enzymatic form, fVIIa, by 

proteolysis of a single peptide bond, resulting in two disulfide-linked polypeptide chains. 

The light chain, approximately 20 kDa, has 152 amino acids and contains the GLA domain 

and two epidermal growth factor (EGF)-like domains. The heavy chain, approximately 30 

kDa, has 254 amino acids and contains the trypsin-like serine protease domain.

The active forms of most coagulation serine proteases have extremely short plasma half-lives 

(measured in seconds to minutes) because plasma contains high concentrations of protease 

inhibitors. However, free fVIIa is not susceptible to most plasma protease inhibitors (Kondo 

& Kisiel, 1987). It consequently circulates with a half-life of approximately 2 hours, similar 

to the approximately 5-hour half-life of zymogen fVII (Seligsohn et al., 1979a). 

Approximately 1% of the fVII in plasma circulates in the activated form in normal humans 

(Morrissey et al., 1993).

The precise source of circulating fVIIa in vivo is not clear. Proteases that are able to activate 

fVII in vitro include fIXa, fXa, fXIIa, thrombin, plasmin, fVII–activating protease, and the 

TF:VIIa complex (Nemerson & Repke, 1985; Römisch, 2002; Rao & Rapaport, 1988; 

Radcliffe & Nemerson, 1975; Kisiel et al., 1977; Seligsohn et al., 1979b; Masys et al., 1982; 

Tsujioka et al., 1999; Yamamoto et al., 1992; Neuenschwander et al., 1993). Interestingly, 

patients deficient in fIX (hemophilia B) have approximately a tenfold reduction in plasma 
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fVIIa levels (Wildgoose et al., 1992). This suggests that fIX (presumably, as fIXa) 

contributes substantially to activation of fVII in vivo. FVIIa concentrations increase during 

the post-prandial period, in a fIX-dependent manner (Miller et al., 1996), especially after 

fatty meals (Lefevre et al., 2004; Miller, 1998). This suggests that generation of circulating 

fVIIa may involve both fIXa and lipoproteins.

The TF:VIIa complex in hemostasis

TF binds either fVII or fVIIa with high affinity, resulting in a 1:1 complex on the cell 

surface. Once fVII binds to TF, it is rapidly converted to fVIIa by limited proteolysis 

(Nemerson & Repke, 1985). There are consequently two ways to form the TF:VIIa complex: 

through direct capture of fVIIa by TF, or by capture of fVII and subsequent conversion to 

fVIIa.

Free fVIIa activates its substrates (fVII, fIX, or fX) extremely slowly, but assembling the 

TF:VIIa complex on a suitable phospholipid membrane enhances the activity of fVIIa by at 

least five orders of magnitude (Nemerson & Gentry, 1986; Bom & Bertina, 1990; Komiyama 

et al., 1990). Negatively charged phospholipids, most particularly phosphatidylserine, are 

required for binding of the substrates, fIX or fX, to the phospholipid surface. Quiescent, 

intact cells expressing TF on their surfaces have much lower procoagulant activity than do 

damaged or activated cells (Maynard et al., 1977). TF on a quiescent cell is not fully active 

until the membrane properties of the cell are altered (Drake et al., 1989f; Bach & Rifkin, 

1990). This process, sometimes called decryption of “encrypted” cell-surface TF, is 

incompletely understood. “Decryption” of TF is, at least in part, due to exposure of 

negatively charged phospholipids on the outer leaflet of the plasma membrane, resulting in 

expression of efficient binding sites for the substrates of the TF:VIIa complex. Additional 

proposed mechanisms for encryption/decryption of cell-surface TF include: association with 

caveolae where lipid composition is altered (Sevinsky et al., 1996; Mulder et al., 1996); 

dimerization or oligomerization of TF with reduced enzymatic activity (Bach & Moldow, 

1997); and reduction or oxidation of a specific disulfide bond in TF that is required for 

cofactor function (Ahamed et al., 2006) (Versteeg & Ruf, 2011).

Regulation of the TF:VIIa complex

The TF:VIIa complex is primarily inhibited by the plasma serine protease inhibitor, tissue 

factor pathway inhibitor (TFPI), which has two isoforms in humans: TFPIα (32 kDa) and 

TFPIβ (22 kDa) (Piro & Broze, 2005). TFPI is a Kunitz-type inhibitor, with the Kunitz-2 

domain mediating binding and inhibition of fXa, and the Kunitz-1 domain required for 

inhibition of fVIIa in the TF:VIIa complex (Girard et al., 1989). The majority of TFPI in 
vivo is associated with the microvascular endothelium (Bajaj et al., 1999), but a small 

amount of TFPI circulates in the plasma at a concentration of around ~1.6 nM. Most (~80%) 

circulating TFPI is lipoprotein-bound (Novotny et al., 1989; Sandset et al., 1991; Hansen et 
al., 1994). TFPI is also expressed by megakaryocytes, stored in platelets, and secreted upon 

platelet activation (Novotny et al., 1988; Maroney et al., 2007). A substantial fraction of the 

TFPI produced by endothelial cells remains at the cell surface, associates with caveolae, and 

is released by phosphatidylinositol-specific phospholipase C. Thrombin and shear increase 
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the expression and release of TFPI in vitro (Lupu et al., 1995; Lupu et al., 1999; Hansen et 
al., 2000; Grabowski et al., 1993; Westmuckett et al., 2000; Zhang et al., 2003; Piro & 

Broze, 2004; Chouhan et al., 1999), and the administration of heparin causes a rapid 

increase in the circulating levels of total TFPI in plasma in vivo (Sandset et al., 1988; 

Novotny et al., 1991; Walenga et al., 2002; Naumnik et al., 2011).

TFPI regulates coagulation via direct inhibition of fXa, and via fXa-dependent feedback-

inhibition of TF:VIIa. The TFPIβ isoform is a weaker inhibitor of fXa than is TFPIα (Chang 

et al., 1999). Protein S substantially enhances the inhibition of fXa by TFPIα (Hackeng et 
al., 2006). Heparin and other polyanions accelerate fXa inhibition by TFPIα in a template-

dependent manner (Huang et al., 1993; Wesselschmidt et al., 1993). FXa-dependent 

inhibition of TF:VIIa by TFPI involves the formation of a quaternary complex consisting of 

TFPI, fVIIa, TF, and fXa. TFPI-mediated regulation of coagulation is critically important, as 

evidenced by the effects of disruption of this protein in mouse models, where TFPI-deficient 

mice die in utero from a consumptive coagulopathy (Huang et al., 1997), but can be rescued 

by concomitant fVII or TF deficiency (Chan et al., 1997; Pedersen et al., 2005). 

Antithrombin, in the presence of heparin, is also able to inhibit the TF:VIIa complex (Rao et 
al., 1993; Lawson et al., 1993).

TF:VIIa in disease

While the TF:VIIa complex is the crucial trigger for hemostatic responses in vivo, excessive 

initiation of coagulation via the extrinsic pathway can lead to thrombosis, consumptive 

coagulopathy, or inflammation. Increased complex formation can be the result of loss of 

vascular wall integrity, increased TF expression, or increased levels (or activity) of fVII/

fVIIa.

Atherosclerotic plaques contain significant levels of TF, generally associated with 

monocytes/foam cells and smooth muscle cells (Wilcox et al., 1989; Tipping et al., 1989; 

Ichikawa et al., 1996; Marmur et al., 1996; Thiruvikraman et al., 1996). TF antigen may also 

be found in the acellular core of atheromas, most likely from necrotic cells. Plaque TF is 

functional and can bind fVIIa (Marmur et al., 1996; Thiruvikraman et al., 1996). In 

atherosclerosis, the blood is separated from TF by only a thin monolayer of endothelial cells. 

Myocardial infarction is thought to be triggered by rupture of an atherosclerotic plaque in a 

coronary artery (Forrester et al., 1987), with the consequent exposure of TF to fVII/fVIIa 

within the blood. If this coagulation activation is extensive enough to form an occlusive 

thrombosis within the coronary vessel, myocardial infarction ensues.

TF expression can also be increased with malignancy, potentially leading to cancer-

associated thrombosis (also known as Trousseau syndrome)(Thaler et al., 2012). The 

neoplastic cell itself can express TF, or tumor TF can be associated with infiltrating activated 

monocytes or stromal cells.

During sepsis, TF is expressed on monocytes, but is also expressed by endothelial cells in 

some areas, such as the splenic microvasculature (Drake et al., 1993). In primate models, 

coagulopathies associated with sepsis and septic shock are mediated by TF, and TF:VIIa 

contributes directly to mortality in sepsis (Taylor et al., 1991; Taylor, 1996).
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Epidemiologic studies have indicated that elevated plasma fVII may be a risk factor for 

thrombotic disease (Meade et al., 1986; Balleisen et al., 1987; Ruddock & Meade, 1994). 

Elevated plasma fVII coagulant activity (fVII:C) or elevated levels of circulating fVIIa have 

also been described with angina pectoris, transient ischemic attacks, diabetes, uremia, and 

peripheral vascular disease (Broadhurst et al., 1990; Carvalho de Sousa et al., 1988; 

Cortellaro et al., 1992; Hoffman et al., 1988; Hoffman et al., 1989; Kario et al., 1993; Kario 

et al., 1994; Kario et al., 1995; Orlando et al., 1987; Suzuki et al., 1991). In contrast, some 

studies have failed to find a relationship between fVII levels and thrombotic disease (Hultin, 

1991; Grant, 2003). Population studies have reported that fVII levels are unrelated to the 

degree of carotid artery thickness or other manifestations of vascular disease (Folsom et al., 
1993; Koster et al., 1994; Moor et al., 1995; Sosef et al., 1994; Vaziri et al., 1992). Results 

have been mixed with regard to a potential correlation between fVIIa levels and the risk of 

thrombotic disease (Kalaria et al., 2000) (Danielsen et al., 1998; Cooper et al., 2000).

The contact pathway

The contact pathway of coagulation is initiated by activation of factor XII (fXII) in a process 

that also involves high-molecular-weight kininogen (HK) and plasma prekallikrein (PK). 

Contact of blood with an artificial surface leads to a change in the conformation of fXII, 

resulting in the generation of small amounts of active factor XII (fXIIa) (Silverberg et al., 
1980; Tankersley & Finlayson, 1984). This enzyme then activates PK to kallikrein. Further 

reciprocal activation of fXII by kallikrein, and PK by fXIIa, results in a positive feedback 

loop (Müller et al., 2011). The fXIIa that is generated then activates its downstream 

substrate, fXI, to fXIa (Figure 1). Limited proteolysis of fIX to fIXa by fXIa then allows for 

formation of the “intrinsic tenase” complex (i.e., the cell-surface complex of fIXa and 

fVIIIa), which in turn activates fX to fXa. The final common pathway of blood clotting then 

leads to thrombin generation and a blood clot.

Despite its important role in clot formation in vitro, contact activation appears to have no 

contribution to hemostasis in vivo. This conclusions comes from the fact that mice and 

humans lacking fXII have no bleeding tendencies (Renné et al., 2012). Rather, one of the 

functions of the contact pathway in vivo appears to be the generation of bradykinin, a vital 

inflammatory mediator that is produced when kallikrein cleaves HK. This small peptide is 

the ligand for the kinin B2 receptor on endothelial cells. Binding of bradykinin to its 

receptor results in vasodilation, increased vascular permeability, pain, and neutrophil 

chemotaxis. Components of the contact system also contribute to fibrinolysis, and inhibit 

thrombin-induced platelet activation, angiogenesis, and adhesive interactions (Renné, 2013).

FXII/XIIa

FXII is an approximately 80 kDa protein consisting of a single polypeptide chain of 596 

amino acids (Renné, 2013). It is synthesized in the liver and circulates in plasma at a 

concentration of around 375 nM. FXII is activated via limited proteolysis by kallikrein, 

plasmin, and fXIIa (autoactivation), resulting in a two-chain molecule (αfXIIa) consisting of 

a 353 amino acid heavy chain and a 243 amino acid light chain, which contains the serine 

protease domain.
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PK/kallikrein

PK is also made in the liver. Prekallikrein contains 609 amino acids, but due to variable 

glycosylation may have a molecular weight of either 85kDa and/or 88 kDa (Mandle & 

Kaplan, 1977). It circulates in plasma at a concentration of around 490 nM, with 75% bound 

to HK (Mandle & Kaplan, 1977). Prekallikrein is activated via limited proteolysis by fXIIa, 

resulting in a two-chain enzyme (kallikrein) consisting of a 371 amino acid heavy chain and 

a 248 amino acid light chain, which contains the serine protease domain.

HK

HK is a 120 kDa protein with a plasma concentration of about 670 nM. Granulocytes, 

platelets and endothelial cells contain HK, but plasma HK is most likely synthesized in the 

liver. HK binds to cell surfaces in a zinc-dependent manner. The major contribution of HK to 

the contact pathway is facilitation of substrate presentation to fXIIa (Renné, 2013). HK is 

required for efficient formation of kallikrein in surface-activated plasma (Griffin & 

Cochrane, 1976)

Activators of the contact pathway in vitro and ex vivo

Exposure of blood to an artificial surface invariably results in some activation of fXII to 

fXIIa. In fact, fXII activation is the mechanism by which clotting is initiated when blood is 

collected into glass tubes. Because activation of fXII is not calcium dependent, collection of 

blood into common anticoagulants that are metal-ion chelators (e.g., EDTA or citrate) does 

not block the formation of fXIIa. For typical clotting tests, however, this is not a problem 

since only low levels of fXIIa are generated in blood collection tubes in the absence of an 

added contact activator, and these low levels of fXIIa are continuously inhibited by the 

protease inhibitors in plasma.

Activation of fXII initiates clotting in the commonly used diagnostic plasma clotting test 

known as the activated partial thromboplastin time (aPTT). In this test, plasma fXII, PK, and 

HK assemble onto artificial surfaces such as finely dispersed kaolin, diatomaceous earth 

(celite), or ellagic acid. The fXIIa is generated via fXII autoactivation and via kallikrein-

mediated reciprocal activation of fXII. The generated fXIIa initiates the coagulation cascade 

via activation of its downstream substrate fXI. Note that, despite having a markedly 

prolonged aPTT, individuals with fXII deficiency have no tendency for either spontaneous or 

trauma-induced bleeding (Renné et al., 2012).

Ex vivo activation of the contact pathway also occurs during hemodialysis, cardiopulmonary 

bypass, and extracorporeal membrane oxygenation (ECMO), where blood comes into 

contact with artificial surfaces. Anticoagulant therapy (e.g., with citrate or heparin) is 

required to maintain blood flow through the extracorporeal circuit, because fXIIa generation 

results in cleavage of downstream enzymes. Note that neither of these anticoagulants 

prevents contact activation, but rather inhibits the activity of downstream coagulation 

enzymes. Recently, a blocking antibody to fXIIa has shown utility in stopping unwanted 

blood clotting during extracorporeal membrane oxygenation without the usual bleeding risk 

associated with conventional anticoagulants (Larsson et al., 2014).
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Activators of the contact pathway in vivo

Several candidate activators of the contact pathway have been proposed, but the precise 

(patho)physiologic activators in vivo have not been definitively identified. Suggested 

naturally occurring activators include specific proteins on mammalian cell surfaces 

(Schmaier, 2008), extracellular nucleic acids (Kannemeier et al., 2007), inorganic 

polyphosphate (polyP) (Müller et al., 2009) misfolded proteins (Maas et al., 2008), 

glycosaminoglycans (Brunnée et al., 1997; Hojima et al., 1984), and bacterial surface 

proteins (Herwald et al., 1998; Nickel & Renné, 2012).

Contact activation occurs on the surface of endothelial cells in vitro in a zinc-dependent 

manner (Joseph et al., 2001). Endothelial cell binding sites for HK and fXII that have been 

identified include the C1q receptor, cytokeratin 1, and the urokinase plasminogen activator 

receptor (Kaplan & Ghebrehiwet, 2010).

Nucleic acids are released from cells due to apoptosis, necrosis, or extrusion of nuclear 

material by activated neutrophils—a process termed neutrophil extracellular traps, or NETs 

(Martinod & Wagner, 2014). Extracellular nucleic acids can bind to either fXII or fXI, and 

in vitro studies indicate that they are capable of enhancing fXII activation (Geddings & 

Mackman, 2014; Kannemeier et al., 2007). The potency of nucleic acids as contact 

activators in vitro is somewhat weak, being some two orders of magnitude lower than that of 

kaolin on a weight basis (Kannemeier et al., 2007). Nevertheless, this mechanism for 

triggering blood clotting may be quite significant, as animal models employing 

administration of either exogenous RNA or RNase support a possible role for RNA as a 

contact activator in vivo (Kannemeier et al., 2007).

PolyP

Inorganic polyP is an intensely anionic, linear polymer of orthophosphate units linked by 

high-energy phosphoanhydride bonds. PolyP is widespread in biology, with polymer sizes 

ranging from a few phosphates up to hundreds or even thousands of phosphates in length, 

depending on the organism and type of cell (Ault-Riché et al., 1998; Brown & Kornberg, 

2004). PolyP has mostly been studied in prokaryotes and unicellular eukaryotes, but roles 

for polyP in mammalian systems are rapidly emerging. Microorganisms store polyP in 

granules (Docampo & Moreno, 2011), which typically contain very long-chain polyP, 

ranging in length from hundreds to thousands of phosphate units (Kornberg et al., 1999). 

Mammalian cellular compartments that contain polyP include platelet dense granules (Ruiz 

et al., 2004), a subset of mast cell granules (Moreno-Sanchez et al., 2012), lysosomes 

(Pisoni & Lindley, 1992), mitochondria, and nuclei (Kumble & Kornberg, 1995). Upon 

activation, platelets and mast cells release polyP of about 60–100 units in length (Ruiz et al., 
2004; Moreno-Sanchez et al., 2012). Tissue extracts from mammalian heart, liver, lung and 

kidneys contain heterogeneous polyP of 50 to 800 phosphate units long, while brain polyP is 

longer, at about 800 phosphates long (Kumble & Kornberg, 1995).

PolyP binds with high affinity to certain proteins of the contact pathway of blood clotting 

(Smith et al., 2006; Choi et al., 2010; Smith et al., 2010), and is a very strong activator of the 

contact pathway in vitro in both plasma and purified protein systems (Smith et al., 2006; 
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Müller et al., 2009). Contact activation by polyP is profoundly dependent on polymer length, 

with optimal activity requiring very long polyP polymers (Smith et al., 2010) which, on a 

weight basis, have potencies greater than that of the artificial activator, kaolin. Platelet-

derived polyP, which is much shorter in length, is able to weakly activate contact factors, but 

is markedly less potent than long-chain polyP (Smith et al., 2010). PolyP activates the 

contact pathway in vivo in mouse models as evidenced by development of cutaneous 

vascular leakage that is bradykinin- and fXII-dependent (Müller et al., 2009; Smith et al., 
2012).

Misfolded protein

Aggregated amyloid β peptide (Aβ) is known to activate fXII in vitro (Shibayama et al., 
1999), and patients with Alzheimer’s disease have evidence indicating increased in vivo 
generation of fXIIa, particularly in the central nervous system (Bergamaschini et al., 1998; 

Bergamaschini et al., 2001). Amorphous aggregates of Aβ and large amyloid fibrils are also 

both present in patients with systemic amyloidosis, who also experience increased in vivo 
activation of both fXII and PK (Maas et al., 2008). The generation of kallikrein by misfolded 

protein aggregates is dependent on fXII, but does not result in increased activation of fXI. 

Interestingly, the activation of the contact pathway by misfolded proteins does not appear to 

be procoagulant, suggesting that kallikrein-kinin pathway is regulated differently than the 

intrinsic pathway of coagulation in vivo (Maas et al., 2008).

Glycosaminoglycans

Heparin has been long known to be capable of supporting autoactivation of fXII in vitro 
(Silverberg & Diehl, 1987; Noga et al., 1999). Heparin released from allergen-activated mast 

cells initiates fXIIa-mediated activation of plasma PK to kallikrein, but without activating 

fXI (Brunnée et al., 1997). More recent evidence suggests that glycosaminoglycans can 

contribute to pathologic activation of the contact system in vivo. In particular, contamination 

of pharmaceutical heparin with an over-sulfated chondroitin sulfate led to serious adverse 

effects in patients receiving heparin therapy, from excessive contact activation (Kishimoto et 
al., 2008). Activation of fXII and kallikrein, and cleavage of HK, all occur in patients with 

anaphylaxis, and are accompanied by increased levels of heparin (Sala-Cunill et al., 2014).

Regulation of the contact pathway

The plasma protease inhibitor, C1-inhibitor, is a crucial regulator of the contact pathway, 

inhibiting fXIIa, kallikrein, and fXIa, as well as several members of the complement 

cascade. Inhibitory activity is potently enhanced by the binding of glycosaminoglycans. C1-

inhibitor is a member of the serpin superfamily (Zeerleder, 2011). It is a heavily 

glycosylated protein of 478 amino acids, with an apparent molecular weight of about 104 

kDa and a normal circulating plasma concentration of approximately 1.8 µM. Since C1-

inhibitor is an acute phase protein, the plasma concentration can be markedly higher with 

inflammatory conditions (Zeerleder, 2011).
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The contact pathway in disease

The contact pathway (perhaps better termed the plasma kallikrein-kinin system), although 

dispensable for normal hemostasis, is thought to play important roles in host-responses to 

pathogens and regulation of inflammatory pathways, topics outside the scope of this article 

but reviewed in detail recently by others (Renné et al., 2012; Schmaier, 2008; Schmaier & 

McCrae, 2007). Activation of the contact pathway in vivo leads to release of the vasoactive 

peptide bradykinin. The importance of this pathway is clearly indicated by the clinical 

manifestations in patients with hereditary angioedema. These individuals experience 

intermittent episodes of edema and pain due to dysregulation of the contact pathway, usually 

caused by deficiency of C1 inhibitor (Walford & Zuraw, 2014). Contact activation also 

occurs in sepsis and other infectious causes of systemic inflammatory response syndrome 

(Karlsrud et al., 1996b; Karlsrud et al., 1996a), in which continued generation of fXIIa and 

kallikrein can deplete zymogen levels (Kaufman et al., 1991).

Although the contact pathway is not required for normal hemostasis, recent evidence 

indicates that it contributes to thrombotic disorders. Deficiency of fXII is protective against 

thrombus formation in both arteries and veins in animal models (Gailani & Renné, 2007; 

Müller & Renné, 2008), and increased plasma fXII, fXI, or kallikrein activity is associated 

with atherosclerosis (Colhoun et al., 2002) or myocardial infarction (Grundt et al., 2004; 

Doggen et al., 2006; Merlo et al., 2002). Individuals with severe fXI deficiency have reduced 

risk of stroke (Salomon et al., 2008). In animal models of thrombosis, fXII deficiency 

decreases formation of arterial thrombi (Renné et al., 2005) and protects the animals from 

ischemic brain injury (Kleinschnitz et al., 2006). Activation of the contact pathway in vivo 
via intravenous administration of RNA (Kannemeier et al., 2007), or polyP (Müller et al., 
2009) triggers pulmonary embolism in animal models. And finally, inhibitors of polyP are 

antithrombotic in arterial and venous thrombosis models in mice, with reduced bleeding 

side-effects compared to heparin (Smith et al., 2012; Jain et al., 2012; Travers et al., 2014).

Concluding remarks

As our understanding of the myriad processes involved in the initiation of coagulation in 

mammalian blood continues to grow, so does our understanding of the complex relationship 

between hemostasis and pathological thrombosis. Under the original assumption that these 

processes were inseparable, it made sense to target the most important enzymes in the final 

common pathway of blood coagulation. This includes fXa and thrombin (targeted with 

heparin and the new direct oral anticoagulants), and GLA-domain containing proteins in 

general (targeted by warfarin). Classical anticoagulant drugs are some of the most widely 

prescribed medications today, even with the knowledge that they necessitate straddling a 

sharp line between too much anticoagulation (risk of bleeding) and to little anticoagulation 

(risk of thrombosis). Recent advances in our understanding of the role of the contact 

pathway in thrombosis has led to the intriguing possibility that drugs that inhibit initiation of 

the contact pathway may be effective antithrombotics with little or no bleeding side effects.

For example, a novel human monoclonal antibody targeting the active site of fXIIa 

developed via phage display has recently been shown to inhibit venous and arterial 
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thrombosis during both experimental injury and extracorporeal circulation (ECMO) in 

animal models (Larsson et al., 2014). This antibody was just as effective as heparin without 

the concurrent risk of bleeding, and the fact that it specifically targets fXIIa rather than both 

the activated and zymogen forms of this enzyme means that it can be effective at much lower 

doses than inhibitors that bind to the zymogen and inhibit activation. Another exciting 

anticoagulant therapy based on inhibiting the contact (and thrombin-feedback) pathway 

relies on using antisense oligonucleotides to inhibit the biosynthesis of fXI. This method has 

shown to be safe and effective in rabbits (Yau et al., 2014), primates (Crosby et al., 2013), 

and even humans (Büller et al., 2015). These oligonucleotides specifically target fXI mRNA 

and cause its degradation, leading to a dose-dependent decrease in fXI levels and resulting in 

decreased risk of thrombosis with less risk of bleeding compared to conventional 

therapeutics.

Inhibition of the contact pathway as a method of anticoagulation not only carries less risk of 

bleeding than current therapeutics, it also has the potential to reduce the often damaging 

connections (mediated by the fXIIa/kallikrein/bradykinin pathway) between coagulation and 

inflammation in human disease. Such novel anticoagulation approaches therefore have the 

potential to expand the health benefits of antithrombotic therapy to a much wider set of 

patients (who would otherwise be at severe risk of bleeding from conventional therapeutics) 

in a safer and more effective manner than is currently possible. Though research in human 

blood coagulation has a long and successful history, novel research in the mechanisms of 

thrombosis and hemostasis continues to reveal surprising and exciting insights into human 

biology that have the potential to save lives.
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Figure 1. 
Overview of the blood clotting cascade. The plasma clotting system is initiated in two 

distinct mechanisms: the Tissue Factor (TF) Pathway and the Contact Pathway. The TF 

pathway is triggered when the cell-surface complex of TF and fVIIa (TF:VIIa) activates fIX 

and/or fX by limited proteolysis. The contact pathway is triggered when fXII, PK and HK 

assemble on a suitable surface or polymer. This results in the reciprocal activation of fXII to 

fXIIa by kallikrein, and PK to kallikrein by fXIIa. The resulting generation of fXIIa 

activates fXI to fXIa, which then converts fIX to fIXa. Both pathways converge at the 

production of fXa. This final common pathway results in the generation of a burst of 

thrombin, which converts fibrinogen to fibrin and activates platelets (among many other 

actions of thrombin that, for simplicity, are not shown here).
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