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Abstract

Deriving statistical models to predict one variable from one or more other variables, or predictive 

modeling, is an important activity in obesity and nutrition research. To determine the quality of the 

model, it is necessary to quantify and report the predictive validity of the derived models. 

Conducting validation of the predictive measures provides essential information to the research 

community about the model. Unfortunately, many articles fail to account for the nearly inevitable 

reduction in predictive ability that occurs when a model derived on one dataset is applied to a new 

dataset. Under some circumstances, the predictive validity can be reduced to nearly zero. In this 

overview, we explain why reductions in predictive validity occur, define the metrics commonly 

used to estimate the predictive validity of a model (e.g., R2, mean squared error, sensitivity, 

specificity, receiver operating characteristic, concordance index), and describe methods to estimate 

the predictive validity (e.g., cross-validation, bootstrap, adjusted and shrunken R2). We emphasize 

that methods for estimating the expected reduction in predictive ability of a model in new samples 

are available and this expected reduction should always be reported when new predictive models 

are introduced.
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INTRODUCTION

Deriving statistical functions from data to predict another variable is a widely used and 

important activity in science in general. Classic examples include prediction equations for 

resting metabolic rate
1
 and the prediction of health outcomes, such as the risk of having a 

heart attack
2
. In this article, we use the word prediction to refer to either the true future 

prediction of an unobserved event or variable that has not yet occurred (e.g., time of death of 

a currently living individual) or the estimation of an event or variable that has already 

occurred but has not yet been observed (e.g., body fat of an individual on whom only 

anthropometric variables have been measured); we collectively refer to models that predict 

as predictive modeling. Any such model aims to predict the value of a response variable by 

using as input values the measured predictor variables. Studies that rely on predictive 

modeling typically apply regression and its extensions. To determine the quality of the 

model, it is necessary to quantify and report the predictive validity of the derived models. 

Some examples of studies that have used predictive models in obesity and nutrition research 

and that have measured the quality of the predictions (rightmost column) are summarized in 

Table 1.

Many techniques exist for deriving predictive modeling functions, and we will not provide a 

thorough review here. For in-depth overviews, there are many books on this topic, e.g., Kuhn 

& Johnson
16

. Instead, we will focus on an aspect of predictive modeling that is frequently 

neglected or apparently not fully understood in nutrition and obesity research, namely, the 

estimation of validity shrinkage. In brief, validity shrinkage refers to the fact that a 

predictive model derived from a finite sample in a manner that maximizes its predictive 

validity within that sample will almost assuredly not predict as well on the overall 

population from which the sample was drawn, on a fresh sample from the same population, 

or on a new sample from a different population
17

. For example, a model that predicts energy 

expenditure from accelerometry data may have phenomenal accuracy in a sample data set, 

yet in another data set, the accuracy may decline radically (see, for example, Schmid et 

al.
18

). This phenomenon can occur regardless of how well the model predicts the values in 

the sample from which it was derived. Validity shrinkage must be evaluated when a 

predictive model is developed, because it is not only the in-sample data (data values used to 

fit the model) but also the out-of-sample data (data values not used for the model fit) and 

their respective ability to predict that are of interest to the research and applied communities.

In other words, as will be described more fully below, the true test of a model’s predictive 

capacity is when the model is tested on an independent dataset that was not used to develop 

the model. That is, there are two datasets: a training set (on which the model is derived) and 

a validation set (an independent testing set on which the model is evaluated). It is the 

validation in this testing set that is often overlooked; most studies end by maximizing 

predictive accuracy in the training set.

The purpose of this article is to introduce the concept of validity shrinkage in predictive 

modeling, to emphasize the importance of estimating the validity shrinkage when offering a 

new predictive model, and to describe methods for doing so. For the reader’s convenience, a 

glossary of statistical terms is provided in Table 2.
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METHODS

The Concept of Validity Shrinkage

In the next section, we will discuss the metrics that can be used to quantify the predictive 

validity of a model, such that a larger (e.g., R2) or smaller (e.g., the MSE) value for a 

specific metric indicates greater model validity. First we address one limitation to these 

metrics: that they are susceptible to validity shrinkage, in which the predictive validity of a 

model shrinks when the model is applied to a new dataset. The cause of shrinkage is 

straightforward. The metrics computed from data are themselves random variables, meaning 

that they change from sample to sample. When we fit a model to data to maximize some 

function (e.g., R2) or minimize some function (e.g., the MSE), the algorithm adjusts the 

model parameters to optimize that function. In doing so, the algorithm adjusts the model to 

fit the observed data, which will be a function of the true signal in the data and also any 

idiosyncrasies (‘noise’) due to measurement error, random sampling variance, or biased 

sample selection. Because these idiosyncrasies are properties of the dataset, to the extent that 

the model is tuned to evaluate this dataset, the model will not as effectively predict new 

observations in new datasets that do not share those idiosyncrasies. This phenomenon is 

referred to by Hitchcock and Sober
19

 as ‘accommodation,’ but may also be called ‘over-

fitting,’ ‘capitalizing on chance,’ or ‘fitting to noise.’

Consider a situation in which an additional predictor, eye color, is included in a model and 

found to significantly improve the model validity. The contribution of the new predictor to 

the validity metric of the model could be considered a random variable. If eye color has no 

relation to the response (e.g., resting energy expenditure, or REE), we may expect its 

contribution to be zero. In our example, by random chance, eye color increased the model 

validity for that particular sample. If another sample is taken from the same population, eye 

color will likely not contribute to the model’s validity in the new sample because of 

regression to the mean (variables tend to be closer to the average on subsequent 

measurements)
20

. This drop in validity can be described as stochastic shrinkage when the 

samples come from the same population. The methods used to estimate stochastic validity 

shrinkage will be discussed in a later section.

Another type of shrinkage to be concerned about is generalizability shrinkage, where the 

validity metric shrinks when the predictive model generated on a sample from one 

population is applied to data from an entirely different population. This may occur when 

something that is a useful predictor in one group is not as useful in another group. For 

example, if one develops a formula to predict remaining lifespan from anatomic and 

metabolic variables in a sample of young men, the formula may not be as strong a predictor 

if applied to a sample of elderly women. In response to generalizability shrinkage, external 

validation
21, 22 is recommended when researchers need to expand the scope and use of the 

predictive model. We will not discuss generalizability shrinkage further here.

Metrics of Predictive Validity

The performance of a statistical prediction model can be assessed by measuring how close 

the predicted values are to the observed values or by measuring the correspondence, 
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similarity, or agreement between the predicted and the observed values. For example, in a 

model that predicts REE from anthropometric and demographic variables (see Heymsfield et 

al.
23

), including age, adipose tissue, adipose tissue-free mass, brain mass, liver mass, and 

sex, one would expect the predicted REE values to closely approximate the true REE. When 

predicting a binary outcome (e.g., has type 2 diabetes vs. does not have type 2 diabetes) 

using a statistical model, individuals who experience some characteristic, such as excess 

adiposity as measured by a higher body mass index (BMI) value, are identified to have a 

higher predicted risk of type 2 diabetes than do individuals who have normal BMI (see Ley 

et al.
24

). According to the type of outcome (e.g., continuous, binary, ordinal, time-to-event) 

and the statistical model to be used, predictive validity can be evaluated by different methods 

and metrics, which are implemented in many available statistical software packages. Several 

of the most common metrics are described below, although this list is by no means 

exhaustive. It should be noted that all the metrics from a specific sample are biased estimates 

and their accuracy must be tested in other independent samples or in the overall population.

The coefficient of determination, or R2—R2, also known as the coefficient of 

determination, estimates the amount of the total variance in the outcome measurements that 

is explained by the predictive model. Expressed as a ratio, R2 ranges from 0 to 1. R2 is 

commonly used for continuous outcomes, but some variations can also be used for other data 

types
25

. For a predictive regression model, a value of R2 closer to 1 indicates better 

prediction. One drawback to the use of R2 for estimating predictive validity is that its value 

in any sample can only increase or stay the same when more predictor variables are added 

into the model. Thus, the use of a large number of predictors may lead to an over-fitted 

predictive model.
20

 In addition, the sample statistic value of R2 is an upwardly biased 

estimator of the true population parameter R2. The adjusted R2 or shrunken R2, presented in 

a later section, should be computed to assess the predictive performance.

The mean squared error, or MSE—Another broadly used method to evaluate predictive 

validity for continuous outcomes is the mean squared error (MSE). The MSE is calculated as 

the average of the squared differences between the observed and predicted values. A smaller 

value for MSE indicates that the predicted values are closer to the observed data and 

therefore a better prediction. Similar to the R2, the MSE of a predictive model in a new 

sample is generally larger than the MSE in the training sample because the new sample is 

not used for fitting the predictive model.

Sensitivity, specificity, and the receiver operating characteristic—In certain 

cases, we may wish to predict whether a patient will develop a binary outcome such as 

obesity from a set of patient characteristics at baseline. Since the output of the predictive 

model will be a predicted risk, and the patient either will or will not have the disease after a 

certain amount of time, the above metrics are unsuitable for this scenario. Hence, for binary 

predictions with a statistical method (e.g., logistic regression), researchers commonly 

consider specificity and sensitivity as metrics of model validity and visualize them with the 

receiver operating characteristic (ROC) curve
26

. The possible results of binary predictions 

are given in Table 3. We define sensitivity as the ratio of correctly predicted positives 

(sometimes called events or denoted outcome = 1, denoted as d in Table 3) divided by the 
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total number of actual positives (c+d); in our example, sensitivity would be the fraction of 

patients we had predicted would become obese over all the patients who actually became 

obese. We then define specificity as the ratio of the correctly predicted negatives (sometimes 

called nonevents or denoted outcome = 0, denoted as a in Table 3) to the total of actual 

negatives (a+b); here, specificity would be the fraction of patients we had predicted would 

not become obese over all the patients who actually did not become obese. In this 

framework, perfect prediction (meaning no false positives or false negatives) would have 

sensitivity and specificity both equal to 1.

If a predictive model provides predicted risks for subjects, then the actual prediction of the 

outcome will be based on defining a cutoff risk for the disease. For example, we could 

predict that all patients with a risk over 60% will become obese, while those with a risk 

under 60% will not. In practice, the choice of cutoff will affect both sensitivity and 

specificity such that increased sensitivity may result in lower specificity, or vice versa. As an 

extreme example, predicting that every patient will become obese (i.e., the cutoff is at 0% 

predicted risk) would have a sensitivity of 1 but a specificity of 0. The ROC curve visualizes 

this potential trade-off by plotting sensitivity vs (1 - specificity) across a series of cutoff 

points that change the prediction of positive and negative outcomes and therefore change 

observed sensitivity and specificity. The area under an ROC curve (AUC) is used as a 

quantitative measure of the ROC and prediction assessment of the statistical method used. 

AUCs are bounded by 0 and 1, where in general an AUC close to 1 indicates a nearly perfect 

prediction, an AUC of 0.5 indicates that the prediction is no better than chance, and an AUC 

of less than 0.5 indicates worse prediction than by chance. For situations in which the 

prevalence of an event is to be accounted for, the metrics of positive predicted value (PPV), 

negative predicted value (NPV), see e.g., Kuhn & Johnson
16

, and related measures (e.g., 

Ozenne et al.
27

) are available beyond sensitivity, specificity, and the ROC.

The concordance index, or c—The concordance index, denoted by c, is a statistic that 

measures the agreement between the rank order of the observed and the predicted values 

(see Harrell et al.
20

). For example, the c index quantifies whether the subject with the 

highest observed REE also has the highest predicted REE, whether the subject with the 

second-highest observed REE has the second-highest predicted REE, and so on. Sometimes 

referred to as the c-statistic, the c index can be interpreted as the probability of concordance 

between the predicted and the observed outcomes and can be interpreted much like the ROC 

AUC: a value of 1 indicates perfect prediction, whereas a value of 0.5 indicates a prediction 

no better than chance. Because the c index does not involve the underlying distributions of 

the outcomes, it can be used to evaluate predictive validity for continuous, binary, ordinal, 

and censored time-to-event outcomes. Hence, the c index and its variants are especially 

useful for survival (time-to-event) prediction. If the outcome to be predicted is a binary 

response, c is equivalent to the ROC AUC.

How to Quantify Shrinkage and Assess Validity Under Shrinkage

As previously mentioned, an integral part of model validation is the estimation of how much 

the model’s validity will hold or shrink when the model is used on an independent dataset. 

When a predictive model is being developed, shrinkage is best quantified by cross-
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validation. If one is looking to estimate the validity of a model reported in the literature, 

back-of-the-envelope calculations such as the adjusted R2 and shrunken R2 are available.

Cross-validation—The main function of cross-validation is to provide qualitative and 

quantitative insight
20

 on the model’s potential to predict outcomes in new independent 

samples without collecting additional data. In cross-validation, the available data are split 

into two sets of data that are used for two distinct purposes. One set of data is used to 

construct the predictive model using the measured values of the outcome and predictor 

variables; this part is called the training set. The second set of data is used to test the 

predictive model; this set is called the validation set.

In practice, this process of cross-validation can be done by using data splitting of varying 

sizes to give a more robust estimate of the true validity of the predictive model. A common 

approach is k-fold cross-validation, the steps of which are listed below.

1. Randomly partition the original sample into k sets of equal size (k is often chosen 

as 5 or 10).

2. Choose one of the k sets to be the validation set, and combine the other k-1 sets to 

create the training set.

3. Fit the predictive model on the training set.

4. Calculate the metric of predictive validity using the validation set.

5. Repeat steps 2–4 k times, so that each of the k sets is used as the validation set 

once.

6. Average the k metrics of predictive validity to get the estimated predictive measure 

of the true validity of the model. Shrinkage can be calculated as the difference 

between this metric and the metric from using all the data together.

Note that k-fold cross-validation is preferable to single data-splitting (also called the 

validation set approach
16, 20, 28–30

), where the data are split into two sets and only one is 

used as a validation set, because each of the two resulting sets may not be representative of 

the entire dataset. A special case of k-fold cross-validation is leave-one-out cross-validation, 

where k is equal to the sample size and we consider the validity of the model on each subject 

in turn when removed from the training set. Leave-one-out cross-validation is useful for 

examining whether any one observation has an undue effect on the properties of the 

predictive model and in cases where the sample may be undersized for cross-validation. For 

datasets where the outcome variable is binary and the prevalence in the sample is greatly 

different from 50%, one may wish to partition the data (step 1) by using stratified 

sampling
16

 so that the training set more closely resembles the entire original dataset.

Bootstrap—Another method of utilizing already-collected data, the bootstrap, can be used 

to estimate the shrinkage
20

 of predictive performance for a metric. A bootstrap sample is 

generated from the entire original data by drawing a random sample with replacement, such 

that a particular observation may be included in the bootstrap sample once, or more than 

once, or possibly not at all. The predictive performances across bootstrap samples are 
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combined
31,32,33. Bootstrap-derived measures of predictive validity are obtained separately 

(see, for example, Ambroise and McLachlan
32

, Molinaro et al.
33

) from cross-validation-

derived metrics.

Variable selection when assessing validity—An important source of validity 

shrinkage is when estimates of predictive validity are based on data used to select a subset of 

the most promising variables drawn from a set of possible predictors for the ‘final’ selected 

model. In Chapter 7 of their book, Hastie et al.
29

 point out the gravity of applying variable 

selection (for example, subset selection and stepwise methods) once on the entire sample 

before obtaining a metric of predictive performance. If the data from the training set are used 

for both the selection and the validation of predictors selected for the ‘final’ predictive 

model, it is a logical consequence that those predictors will have exaggerated validity. The 

predictive performance of this model in those data should not be expected to represent well 

the performance of the model in another independent sample from the population. This issue 

illustrates why a separate validation set is important for evaluating the predictive 

performance of a model. Ambroise and McLachlan
32

 explain that cross-validation or 

bootstrap approaches can be applied appropriately in the context of data-driven model 

variable selection, but care must be taken to appropriately account for the downwardly 

biased prediction error estimation caused by assessing model performance within the 

selection process. The key to doing this is to keep the model selection independent of the 

prediction error evaluation. So, rather than fitting the same ‘final’ model consisting of 

previously selected variables in each of the training subsets generated by the cross-validation 

or bootstrapping routine, the same variable selection procedure used to establish the ‘final’ 

model must be performed in each of the training subsets to arrive at, possibly, newly selected 

models to be evaluated for prediction error in the corresponding validation subsets.
32

Adjusted and shrunken R2—As mentioned above, the R2 tends to overestimate a 

model’s validity because it does not account for over-fitting of the model. Modifications to 

the R2 have been proposed that penalize the metric for an increased number of predictors 

relative to the total sample size.

The adjusted R2 is constructed to estimate the true R2 in the population. The adjusted R2 

takes into account the sample size (n) and the number of predictors (p), based on an 

adjustment that involves the ratio p/n. The larger the number of predictors p relative to the 

sample size n, the larger the necessary reduction because a larger amount of shrinkage is 

expected. The adjusted R2 given by Wherry’s formula
34

 provides an estimate (τ̂2) for the 

population parameter R2 (τ2) and is as follows:

Furthermore, the shrunken R2 (Lord-Nicholson type shrinkage
34

 given by a derived formula 

of Cattin
35

) is applied to estimate how well the regression obtained in the given sample 

would predict future samples from the same population from which the derivation sample 

was drawn. The shrunken R2 formula
35

 is given by
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where τ2 can be estimated by using the Wherry’s estimator defined above. Note that the 

number of predictors (p) in the denominator accounts for how a model with a larger number 

of predictors relative to sample size (n) is more likely to experience greater shrinkage in 

validity when applied to a new sample.

Adjusted and shrunken R2 are relatively easy to implement and require no added 

computational tools for resampling the data. They offer well-recognized and established 

measures of validity shrinkage for goodness of prediction with linear regression. The 

adjusted R2 is usually reported by most statistical analysis programs, even MS Excel. Given 

the ease of implementation and inclusion in the standard reporting of statistical software 

such as MS Excel, SAS, Stata, R, and SPSS, the adjusted or shrunken R2 should always be 

reported by researchers proposing predictive models involving the R2 metric. These statistics 

should also be considered when selecting the variables to go into the predictive model.

Case study for the R2 metric—We applied validity shrinkage estimation by shrunken 

R2 to a sample of published results of predictive performance. Shrunken R2 was obtained by 

using the formulas presented in the previous section. Table 4 presents the collection of 

studies that used linear regression and R2 to measure predictive performance for study 

outcomes. We can see that in studies such as Yamanaka et al.
37

 that used a large number of 

predictors (p=17) relative to sample size (n=36), the amount of validity shrinkage was 

substantial (R2=0.672 reduced to shrunken R2 of 0.207). Note that adding a greater number 

of predictors is not inherently deleterious if one also uses a larger sample size, as in Blalock 

et al.
36

 However, we see that in general an overreliance on validity metrics susceptible to 

shrinkage could lead to overstated conclusions of model validity that can mislead readers 

concerning the actual capacity of the model to predict new samples.

Examples of Well Done Validation

Examples in the literature in which validation was conducted and the resulting predictive 

performance was reported include the following: (1) a single split-sample, or validation set 

approach, dealing with a single training sample and a single validation sample
11–14, 45, 46; 

(2) leave-one-out cross-validation
8,10; (3) k-fold cross-validation

16
; and (4) bootstrap

32
. As 

mentioned above, the gold standard for assessing predictive ability is validation on an 

external dataset. Although this approach may be difficult to do, it can be done and should 

always be considered. Examples of external validation include Rush et al.
14

, Jackson et al.
47

, 

and Steyerberg et al.
48

Common Misconceptions on Acquiring Model Validity

It is possible to avoid many mistakes when trying to establish the validity of a proposed 

predictive model. Two particularly common misconceptions that are easily avoidable are a 

lack of validation, which we discuss next, and the variable selection when assessing validity, 

already discussed in a previous section.

Ivanescu et al. Page 8

Int J Obes (Lond). Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



No validation—A common misconception in the development and reporting of predictive 

models is that model validation beyond performance on the training set is not necessary. As 

we have shown above, foregoing the assessment of potential validity shrinkage may give a 

false sense of model accuracy to other investigators interested in applying that model to their 

datasets. Conducting validation of the predictive measures provides essential information to 

the research community about the model.

In the case where an independent sample is not readily available for external validation, the 

study of predictive modeling
38, 49 should be accompanied by a cross-validation-derived 

predictive validity measure
20

 or a metric that is a formula-derived (e.g., shrunken R2) 

adjustment.

Case examples—The literature on obesity and related exposures and outcomes is rich in 

articles detailing statistical models that estimate associations that do not take into account 

the predictive accuracy of those models during optimization of the model or when applying 

the model to external samples. This is a shortcoming in many of these cases, such as when 

the focus is on the association between an outcome and a particular exposure of interest
50

. It 

becomes more clearly problematic when a model or a component of a model is presented as 

a tool for predicting outcomes in external samples. For instance, Xi et al.
51

 devised an 

obesity genetic risk score for predicting insulin resistance. They derived the risk score model 

in a training sample of Chinese children without conducting the proper evaluation of the 

model’s prediction error. As such, because prediction error was neither minimized nor 

subsequently evaluated by, for example, cross-validation, it remains unclear whether this 

obesity genetic risk score is useful in practice.

DISCUSSION

How to Minimize Shrinkage

In this section we point out several strategies for constructing predictive models that may 

result in minimizing validity shrinkage. We discuss increasing the sample size of the study, 

reducing the number of predictors, informing predictive models by theory or prior 

knowledge, and using robust methods. In any given study of predictive modeling, these 

strategies can plausibly be applied jointly, and necessarily in conjunction with validation, 

such as cross-validation.

Increase sample size—Collecting data on more individuals from the population is the 

obvious way to increase the sample size of a study. Appropriately handling of observations 

with missing data can also increase the sample size available for analysis. As such, the 

methods used for model fitting should be carefully selected in the presence of missing data 

(Little and Rubin
52

, Graham
53

).

Reduce the number of predictors—Model parameters provide model flexibility, 

leading to the quotation attributed to John von Neumann: “With four parameters I can fit an 

elephant, and with five I can make him wiggle his trunk.” It is common for researchers to 

want to put all possible predictors in the model (estimating at least one model parameter for 

each), but, as we have discussed, this can create issues for validity shrinkage, such as the 
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possibility of reporting un-validated metrics of predictive performance. When a larger 

number of predictors are considered, too many predictors are sometimes included given the 

sample size. As a result, the model may have a large reduction in predictive validity when 

applied to new data. In addition, including redundant variables, such as highly correlated 

variables, in a predictive model does not add more information but leads to multicollinearity 

that may result in unstable regression models. The use of redundant variables should 

therefore be avoided. When a large number of variables are available, some model selection 

strategies may be applied such as LASSO, which is explained under robust methods.

Inform model by theory or prior knowledge—Experts, discipline-specific research, 

and prior studies may provide knowledge about the relationship between study variables and 

the response. Pertinent scientific reason may inform the consideration of predictors. 

Knowledge independent of the current data can be helpful for prediction in other data. For 

example, prior knowledge indicating a nonlinear relationship between a predictor and the 

response can be accounted for directly when constructing the predictive model. An example 

is that an individual’s height should be accounted for when predicting total body mass owing 

to the square-cube law.

Robust methods—Given a library of predictor variables, each model component may not 

be equally important for the outcome. Each predictor introduces at least one additional 

model component that needs to be estimated. Least absolute shrinkage and selection 

operator (LASSO) and ridge regression are “shrinkage” methods
29, 54 for obtaining 

estimated coefficients by applying a calculated penalty to reduce the magnitude of the model 

coefficients. The resulting parameter coefficients are “shrunk” (i.e., penalized toward a null 

value of zero) depending on their perceived importance for predicting the response. Ridge 

regression cannot zero out the parameter coefficients, whereas the LASSO method can select 

predictors by shrinking the parameter coefficients to zero for those predictors with small 

effects. Thus, LASSO is preferable when some of the predictors in the model may not be 

important. The methods are robust to estimate model coefficients in the presence of many 

predictors with large or small magnitude
55

. LASSO-related methods include elastic net, 

which applies a LASSO and ridge-combined penalty type to select and shrink the 

coefficients. For example, to predict type 2 diabetes remission after bypass surgery, a binary 

variable (yes/no), Cottilard et al.
56

 studied a predictive model using LASSO with a set of 10 

preoperative measures as predictor variables: sex, age, BMI, fasting glycemia, HbA1c, 

hypertension, T2D duration, insulin therapy, number of anti-diabetic drugs, and C-peptide 
value.

Conclusions

Predictive modeling can have great value in many applications and is frequently used in 

obesity and nutrition research. Readers and potential future users of a published predictive 

model will want to know how good the predictive validity of that model is, that is, how well 

the model will predict future, yet-to-be-observed data. Investigators typically provide 

metrics that give information about the predictive validity of the model in the sample on 

which it was derived, but commonly neglect to provide how well the model can be expected 

to perform in future samples. As we have explained herein, the model will almost assuredly 
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not predict as well in future samples as it did in the sample from which it was derived, and 

this degree of validity shrinkage can be quite large. Methods for estimating and reporting 

validity shrinkage and the expected predictive validity in new samples are available and 

should be used.
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Table 1

Example studies of predictive modeling in obesity and nutrition

Study Predictive Model Topic Assessment measure of predictive 
performance*

Categorical response variable

Baan et al.
3 Identify risk for undiagnosed diabetes in a healthcare setting ROC/AUC Sensitivity/Specificity PPV/NPV

Dixon et al.
4 Explore predictors of diabetes remission and conversely inadequate 

glycemic control after gastric bypass surgery
ROC/AUC Sensitivity/Specificity PPV/NPV

Forns et al.
5 Identify liver fibrosis in patients with chronic hepatitis C ROC/AUC Sensitivity/Specificity PPV/NPV

Hayes et al.
6 Predict the resolution of type 2 diabetes in severely obese patients after 

gastric bypass surgery
Correctly/Incorrectly Classified (%)

Li et al.
7 Predict obesity risk as a function of genetic loci and different 

anthropometric traits
ROC/AUC

Thomas et al.
8 Predict long-term successful weight management from outcomes 

measured in the first 3 months
ROC/AUC

Continuous response variable

Cancello et al.
9 Compare associations of macrophages in white adipose tissue with 

hepatic damage in obese patients
R2

Chen et al.
10 Develop a calibration model to compare the ability of quantitative 

insulin-sensitivity check index and supplementary surrogates to predict 
clamp index of insulin sensitivity

MSE

Clasey et al.
11 Develop body composition prediction equations for pediatric use R2

Garcia et al.
12 Predict body fat by using measurements of skinfold and body part 

circumferences
R2

Huang et al.
13 Predict total body fat by using weight, height, age, gender, Tanner 

stage, and abdominal skinfold in children
R2

Rush et al.
14 Predict fat-free mass by using body composition measures R2

Russell et al.
15 Determine associations of regional fat mass and adipokines with body 

mineral density
R2

*
ROC, receiver operating characteristic; AUC, area under the ROC curve; PPV, positive predictive value; NPV, negative predictive value; R2, 

coefficient of determination; MSE, mean squared error.
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Table 2

Glossary of statistical terms

Term Definition

Adjusted R2 A metric of predictive ability, such that values closer to 1 suggest higher predictive ability. Modifies the R2 

to account for the number of predictor variables in the model relative to the sample size. Less susceptible 
to validity shrinkage than the basic R2. It is intended to be an unbiased estimator of the squared correlation 
between the predicted and actual values in the population from which the derivation sample was drawn.

AUC, area under the curve A metric of predictive validity, such that values closer to 1 suggest higher predictive ability. Defined as the 
area under the ROC curve.

Bootstrap A resampling procedure that can be used for estimating the possible validity shrinkage of a predictive 
model. Works by drawing random sets of data from the observed data.

c, the concordance index A metric of predictive validity, such that values closer to 1 suggest higher predictive ability. Measures the 
concordance between observed and predicted outcomes.

Cross-validation A procedure for estimating the possible validity shrinkage of a predictive model. Works by separating the 
observed data into separate training and validation sets.

Generalizability shrinkage Validity shrinkage occurring due to the model being applied to data from a different population than the 
one it was built in.

Mean squared error (MSE) A metric of predictive validity, such that values closer to zero suggest better predictive ability. The average 
of the square of the differences between the observed and predicted values.

Population parameter The true, unobservable value defining the distribution of a variable or associations between variables in the 
population.

Prediction The true future prediction of an unobserved event or variable that has not yet occurred OR the estimation 
of an event or variable that has already occurred but has not yet been observed.

Predictive ability How ‘good’ a predictive model is at predicting an unobserved event or variable from provided values of 
predictor variables.

Predictive modeling Statistical models used to make predictions based on values of predictor variables.

R2, the coefficient of 
determination

A metric of predictive ability, such that values closer to 1 suggest higher predictive ability. The proportion 
of variance in a continuous outcome that is explained by the predictive model.

Response variable The study variable needing to be predicted. Also known as dependent, outcome, or target variable.

ROC, receiver operator 
characteristic curve

A curve of sensitivity versus (1-specificity), defining how the predictive ability of a model changes with 
different cutoffs for predicted risk.

Sample statistic An estimate of the true population parameter obtained from a finite sample from the population.

Sensitivity The proportion of ‘positive’ events successfully predicted by the model.

Shrunken R2 A metric of predictive ability, such that values closer to 1 suggest higher predictive ability. Modifies the R2 

to account for the number of predictor variables in the model relative to the sample size. Less susceptible 
to validity shrinkage than the basic R2. It is intended to be an unbiased estimator of the squared correlation 
between the predicted and actual values in a new sample from the same population from which the 
derivation sample was drawn.

Specificity The proportion of ‘negative’ events successfully predicted by the model.

Stochastic shrinkage Validity shrinkage occurring due to variations from one finite sample to another.

Validity shrinkage The reduction in predictive ability of a predictive model when moving from the data used to construct the 
model to and a new, independent dataset.
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Table 3

Cross-tabulation of actual values versus possible predictions for a binary outcome

Prediction

No Outcome (Y=0) Has Outcome (Y=1)

Reality
No Outcome (Y=0) a (True negative) b (False positive)

Has Outcome (Y=1) c (False negative) d (True positive)
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