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Abstract

Hypoproliferative anemia results from the inability of bone marrow to produce adequate numbers 

of red blood cells. The list of conditions that cause hypoproliferative anemia is long, starting from 

common etiologies as iron deficiency to rarer diagnoses of constitutional bone marrow failure 

syndromes. There is no perfect diagnostic algorithm, and clinical data may not always clearly 

distinguish “normal” from “abnormal”, yet it is important for practicing clinicians to recognize 

each condition so that treatment can be initiated promptly. This review describes diagnostic 

approaches to hypoproliferative anemia, with particular emphasis on bone marrow failure 

syndromes.

INTRODUCTION

Anemia of central origin, or hypoproliferative anemia, broadly refers to anemia resulting 

from underproduction of red blood cells by the bone marrow. Hypoproliferative anemia is 

characterized by an inappropriately low reticulocyte count and is distinguished from anemia 

secondary to blood loss or peripheral erythrocytes destruction, which are accompanied by 

elevated reticulocyte counts from a bone marrow regenerative response. Table 1 lists a 

classification of hypoproliferative anemia. The most common etiology worldwide is iron 

deficiency, followed by the anemia of chronic disease and inflammation, and the anemia of 

renal disease (1) (the anemia of chronic disorders is discussed by Weiss in this issue).

Clinical reasoning toward a diagnosis often employs at least two methods: pattern 

recognition or clinical gestalt and algorithms that use decision trees to differentiate causes or 

associations. Clinical gestalt can be described as pattern recognition of a patient's 

presentation as a whole, and physicians use it to quickly reach a tentative clinical decision. 

For example, a low hemoglobin in a young woman with no known medical issues except for 

menorrhagia and recent pregnancy “looks like iron deficiency”, based on a coherent 
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conception of a typical iron deficiency patient. Pattern recognition improves with clinical 

experience (2). However, clinical gestalt is subject to bias and error, as in “path-

determination”, in which inconsistent or incompatible features are ignored to the patient's 

peril. Parallel to the process of the pattern recognition is a review of a nonheuristic range of 

didactic aids, from lists of differential diagnoses to decision trees and formal algorithms, 

some now computer assisted. Differential diagnoses can be dynamically modified and 

shortened in an efficient manner by systematically incorporating preliminary clinical data, as 

well as clinical gestalt.

This review aims to provide helpful information for practicing physicians to refine their both 

pattern recognition and differential diagnosis of hypoproliferative anemia, particularly of 

bone marrow failure syndromes. We start with a brief overview of general diagnostic 

considerations followed by sections dedicated to representative bone marrow failure 

syndromes. Detailed pathophysiologies and treatments for specific bone marrow failure 

syndromes have recently been reviewed (3-8) and are not discussed in detail here. 

Myelodysplastic syndrome (MDS), another important category of bone marrow failure, is 

discussed by Santini in this issue.

DIAGNOSTIC APPROACH TO HYPOPROLIFERATIVE ANEMIA

History and Physical Examination

A careful history is critical to develop insight into both the underlying causes of anemia and 

the potential role of concurrent illnesses. Any history suggestive of blood loss should be 

elicited by asking specific pertinent questions. Social history should be reviewed, especially 

for exposure to toxic substances (occupational exposure, smoking, alcohol, etc.) and risk of 

chronic infection such as human immunodeficiency virus (HIV), hepatitis viruses, and 

tuberculosis. A dietary history may suggest nutritional deficiencies are the dominant cause 

of hypoproliferative anemia. Family history is important, not only in pediatric patients but 

also in adults, as some inherited anemias can present late in life without apparent physical 

anomalies, and an affected pedigree may be the only clue to a constitutional origin of blood 

abnormalities. Physical findings of anemia are usually non-specific, such as pallor and 

systolic murmurs. However, a systematic physical examination can provide valuable clues to 

underlying etiologies: neurologic abnormalities in vitamin B12 deficiency, 

hepatosplenomegaly and lymphadenopathy in lymphoproliferative disease, spoon-shaped 

nails (koilonychia) and angular stomatitis in iron deficiency, and specific physical anomalies 

associated with constitutional bone marrow failure syndromes (see below).

Laboratory Evaluation

Considerable information is contained in the initial laboratory tests that led to the detection 

of anemia: complete blood count (CBC) with white blood cell (WBC) differential, mean 

corpuscular volume (MCV), and reticulocyte count. Further basic laboratory tests are 

performed as appropriate depending on the clinical context: complete metabolic panel, 

lactate dehydrogenase (LDH), haptoglobin, iron study, occult blood, vitamin B12, folate, 

and thyroid function tests. If inherited hemoglobinopathies are suspected based on ethnicity 

and family history, electrophoresis of hemoglobin should be performed. The presence of 
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abnormalities in other hematopoietic cell lines alters the differential diagnosis of 

hypoproliferative anemia, and identification of red blood cell size is also useful (see Iolascon 

– microcytic anemia, Green – macrocytic anemia, in this issue). More than one etiology may 

coexist, leading to a mixed picture, so overreliance on preliminary categorizations based on 

the MCV and other initial test results should be avoided. Examination of the peripheral 

blood smear confirms the findings of automated counts (CBC), and can reveal schistocytes, 

teardrop cells, target cells, nucleated red blood cells, as well as morphological changes in 

WBC and platelets.

The reticulocyte count, a marker of effective erythropoiesis, is the single blood test most 

important for distinguishing hypoproliferative anemia from other causes (Figure 1). The 

reference range for the absolute reticulocyte count (ARC) is typically 20-90 K/uL and may 

vary according to measurement methods (9). When the reticulocyte count is reported as 

reticulocyte percentage, the absolute reticulocyte count can be computed by multiplying the 

reticulocyte percentage by the number of red blood cells. Alternatively, adjustment for the 

degree of anemia is accomplished as the corrected reticulocyte percentage (= reticulocyte 

percentage x patient's hematocrit [Hct] / reference Hct). The stressed bone marrow releases 

reticulocytes prematurely into the peripheral blood, where they remain in circulation, 

referred to as the reticulocyte maturation time. The reticulocyte maturation time is 

approximately 1 day for a Hct of 45%, 1.5 days for Hct of 35%, 2 days for Hct of 25%, and 

2.5 days for Hct of 15% (10). The reticulocyte index accounts for the maturation time and 

the degree of anemia, and is calculated as reticulocyte index = corrected reticulocyte 

percentage / maturation time of reticulocytes in peripheral blood in days. A reticulocyte 

index higher than 2-3 is not consistent with the diagnosis of hypoproliferative anemia (9).

Interpretation of vitamin B12 and folate levels can be difficult. A fasting serum cobalamin 

level of around 200 pg/mL is often used as a lower normal limit. However, patients with true 

vitamin B12 deficiency may present with higher serum cobalamin levels (11), and a 

sensitivity as low as 0.40 has been reported when a serum cobalamin level of <300 pg/mL is 

used as the diagnostic threshold (12). Total serum cobalamin levels also poorly reflect 

metabolically active levels of vitamin B12. Only transcobalamin II-bound cobalamin is 

bioavailable, and it comprises only approximately 20% of total serum cobalamin, and 

remaining serum cobalamin is bound to haptocorrin and metabolically unavailable (12). 

Changes in the level of these cobalamin-binding proteins can affect the measured level of 

cobalamin, for instance, the haptocorrin level can be falsely low in patients with multiple 

myeloma, while in patients with myeloproliferative disease, reported serum cobalamin levels 

may be falsely high (11, 13). Serum folate levels only reflect folate intake over the preceding 

few days, and a low value (less than approximately 3 ng/mL) does not necessarily indicate 

more meaningful deficiency at the tissue level (11). Red cell folate levels better reflect folate 

stores for the 3 months prior to testing (1, 14). Methylmalonic acid (MMA) and 

homocysteine (Hcy) levels measure vitamin availability at the tissue level, and are more 

reliable indicators of vitamin deficiencies (11). In general, MMA is elevated only in 

cobalamin deficiency, while Hcy is less specific and can be elevated in both cobalamin and 

folate deficiencies as well as in vitamin B6 deficiency, hypothyroidism, methotrexate 

therapy, phenytoin therapy, and in methylenetetrahydrofolate reductase deficiency and other 

genetic defects (11, 15, 16). Both MMA and Hcy can be high in renal insufficiency (11). 
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Elevation in plasma MMA and Hcy levels precedes decreased plasma cobalamin and folate 

levels, respectively. The sensitivity of an elevated plasma MMA is >90% for detecting 

vitamin B12 deficiency with hematologic abnormalities (17). Although MMA and Hcy tests 

are more expensive than are standard plasma vitamin levels, a cost-benefit analysis indicated 

that measurement of MMA is justified in patients with serum cobalamin levels between 

80-120 pg/mL and 270-300 pg/mL (12).

If primary bone marrow abnormalities are suspected or when the diagnosis remains 

uncertain after initial evaluation, bone marrow examination and further specific 

hematological tests are indicated to confirm the hypoproliferative nature of bone marrow and 

to identify other underlying pathologies: leukemia, MDS, myeloma, lymphoma, 

myelofibrosis, or infiltration by malignancy or granuloma (Figure 1, Figure 2). A core 

biopsy of adequate size and quality should be obtained because bone marrow cellularity and 

pathological findings may vary depending on the site (Figure 3-A), and underlying 

pathology may be distorted by crush artifact or handling error. At National Institutes of 

Health (NIH), a minimum bone marrow core size of at least 1.5 cm is sought when 

considering a diagnosis of bone marrow failure. In addition, a good quality bone marrow 

aspirate should contain macroscopically identifiable “spicules” or particles of bone marrow. 

An aspirate sample without spicules may indicate contamination by peripheral blood. 

Further specialized hematological studies, such as flow cytometry, cytogenetics, and 

molecular studies, will be discussed in the following disease-specific sections.

HYPOPROLIFERATIVE ANEMIA AS A COMPONENT OF BONE MARROW 

FAILURE SYNDROMES

The possibility of bone marrow failure syndromes increases once other etiologies of 

hypoproliferative anemia have been excluded (Table 1, Figure 2). Cytopenia can be limited 

to a single lineage or can be any combination of bicytopenia or pancytopenia. Bone marrow 

failure can be constitutional or acquired.

Isolated anemia: PRCA

Pure red cell aplasia (PRCA) is characterized by hypoproliferative anemia in the absence of 

abnormalities in other hematopoietic lineages. Patients present with symptomatic anemia. 

Regardless of classification, patients with PRCA share the same characteristic peripheral 

blood and bone marrow findings of normocytic or macrocytic anemia, profound 

reticulocytopenia, and severely diminished marrow erythroid precursor cells (Figure 3B-C). 

Classification of PRCA is shown in Table 2. Age at presentation, family history, and 

physical anomalies help distinguish constitutional from other forms. Congenital PRCA or 

Diamond-Blackfan anemia (DBA) is diagnosed at birth or within the first year of life in 

more than 90% of cases (18), although there are rare reports of presentation in adulthood 

(19). PRCA in adults are mostly acquired in the setting of underlying infections, 

autoimmune diseases, or malignancies. Self-limited forms of PRCA include transient 

aplastic crisis that affects patients with underlying hemolytic anemia following acute 

parvovirus infection, and transient erythroblastopenia of childhood that occurs in otherwise 

normal children triggered by yet unidentified viral infections.

Ishii and Young Page 4

Semin Hematol. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Diamond-Blackfan anemia (DBA)—Congenital PRCA or Diamond-Blackfan anemia 

(DBA) is caused by haploinsufficiency of a ribosomal protein gene. Approximately 60% of 

DBA cases have identifiable mutations in ribosomal genes (20), among which the RPS19 is 

most commonly mutated, accounting for about a quarter of DBA cases (21). DBA is 

inherited in an autosomal dominant pattern, but penetrance and phenotype are variable (20, 

22, 23). The severity of DBA varies from in utero complications (preeclampsia, in utero fetal 

death, in utero growth retardation, hydrop fetalis) (24) to first symptoms of anemia later in 

life. Thirty to 40% of DBA patients have congenital physical anomalies (21); craniofacial 

abnormalities are most common and seen in about half of patients, followed by skeletal 

(commonly malformation of thumbs and upper limb), genitourinary, and cardiac 

abnormalities (18). Erythrocyte adenosine deaminase (eADA) (25) and hemoglobin F 

expression are classically increased (26). Genetic sequencing of known ribosomal gene 

mutations is commercially available, and a positive result supports the diagnosis of DBA 

(27). Screening for Fanconi anemia with chromosomal breakage analysis and exclusion of 

other constitutional bone marrow failure syndromes should be considered (discussed later).

Corticosteroids, typically prednisone at the starting dose of 2mg/kg/day (27, 28), are the 

mainstay of treatment for DBA, with an initial response rate of approximately 80% (29). 

Once an adequate response is achieved, steroids are slowly tapered (21, 27). However, 

relapse is frequent and there are insufficient data to support any specific steroid tapering 

schedule. Since a response is expected within the first few weeks, steroids should be 

discontinued for non-responders after a maximum of four weeks of administration (21, 27). 

Hematopoietic stem cell transplantation (HSCT) is the only curative treatment option for 

DBA, with a 5-year overall survival of approximately 70% for matched sibling donor 

transplant. The outcome of alternative donor HSCT has substantially improved over the past 

decade (27). Regardless of prior treatment, one fifth of patients in the DBA registry achieved 

remission, defined as an adequate hemoglobin level maintained for 6 months or more 

without any treatment. Overall actuarial survival is approximately 75% at 40 years of age 

(29).

Transient aplastic crisis and transient erythroblastopenia of childhood—
Presentation with acute worsening of anemia in children with underlying hemolytic anemia 

should raise the concern for transient aplastic crisis (acute B19 parvovirus infection), while 

sudden onset of severe anemia in previously well children points toward transient 

erythroblastopenia of childhood (no known infectious etiology). Anemia in children may 

have different manifestations compared to adults, such as failure to thrive, poor appetite, or 

apathy. Transient aplastic crisis resolves spontaneously within 1 to 2 weeks of infection, 

with the appearance of neutralizing antibodies to B19 parvovirus (30, 31). In contrast, it may 

take a few weeks to months before resolution of transient erythroblastopenia of childhood 

(32). In addition to reticulocytosis, hemoglobin, white cell, and platelet numbers may 

temporarily rise to higher than normal values during the process of bone marrow recovery.

Acquired PRCA—Acquired PRCA develops predominantly in adults, and is caused by 

antibody- and/or cellular-mediated inhibition of erythropoiesis. Evaluation for possible 

causes and associated concurrent conditions is important, as listed in Table 2. Acquired 
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PRCA is pathophysiologically and clinically associated with autoimmune diseases and 

malignancies (such as chronic lymphocytic leukemia [CLL], large granular lymphocytic 

leukemia [LGL leukemia] and thymoma) (33-37). Other causes of acquired PCRA are 

persistent B19 parvovirus infection in the setting of underlying immunodeficiency (such as 

acquired immunodeficiency syndrome [AIDS], immunosuppressant recipients) (38-40), 

antierythropoietin antibodies secondary to admininstration of recombinant human 

erythropoietin (41-43), pregnancy (44), and major ABO mismatched hematopoietic stem cell 

transplantation (45). There are numerous drugs and other conditions associated with PRCA, 

but causation is less well established (1, 43, 46).

Acquired PRCA secondary to persistent B19 parvovirus infection is effectively treated with 

immunoglobulin infusion (47, 48). For immune-mediated acquired PRCA, various 

immunosuppressive therapies are employed. Historically, corticosteroids were the first 

treatment of choice (7), with response rates of approximately 40% (49). However, relapses 

frequently occurred during steroid tapering, and complications of long-term steroid 

treatment became problematic. More recently, cyclosporine (CsA) has been advocated as the 

first treatment choice, and response rate to CsA monotherapy is approximately 70-80% (50, 

51). Relapses are also frequent after CsA discontinuation (51), and the reported relapse-free 

period after discontinuation is 10 months (range 1.5 to 40 months) (51). Cytotoxic drugs are 

usually reserved for CsA-refractory disease or for patients with contraindications to CsA (7). 

Cyclophosphamide may offer better response than CsA for LGL leukemia-associated PRCA 

(52, 53). Several reports have shown that some patients with refractory PRCA with or 

without underlying lymphoproliferative disease can be successfully treated with 

alemtuzumab, an anti-CD52 monoclonal antibody (54, 55). Other treatment options include 

antithymocyte globulin (ATG) (56, 57) and rituximab (58, 59). For thymoma-related PRCA, 

the hematological response rate after thymectomy is 25-30% at best (60, 61). Thymoma-

associated PRCA responds to CsA monotherapy or CsA-containing regimens (62). Matched 

sibling HSCT has been performed successfully for refractory cases (63-65).

Anemia as a component of bicytopenia or pancytopenia

Acquired aplastic anemia—The definition of aplastic anemia (AA) is reduced blood 

counts and a hypocellular bone marrow replaced with fat (Figure 3D). Radiation, chemical 

exposure (benzene), drugs, infection, and pregnancy have all been historically linked to the 

development of aplastic anemia (46). However, it is often difficult to distinguish association 

from causation, and the majority of acquired AA cases remain idiopathic (3). Immune-

mediated mechanisms appear to be responsible for the severe deficiency of hematopoietic 

stem and progenitor cells (HSPC) (66), inferred from the success of immunosuppressive 

therapy (IST) in the majority of patients (67-70). Research laboratory studies also support 

underlying immune processes, including the demonstration of expansion of cytotoxic T-cells 

expressing type 1 cytokines and subsequent marrow suppression (71-74), regulatory T-cell 

deficiency (75, 76), acquired mutations in STAT3 and clonal cytotoxic T-cells in a subset of 

AA (77), and animal models (78).

Symptoms due to anemia and thrombocytopenia (typically mucocutaneous hemorrhage, 

petechia, and menorrhagia) are the most common reasons for patients to seek medical care, 
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while infection is an uncommon initial presentation even in the setting of severe aplastic 

anemia (SAA) (3). SAA has been defined as a hypocellular marrow for age and at least two 

of the following criteria: absolute neutrophil count <500/uL, absolute reticulocyte count 

<60,000/uL (or corrected reticulocyte count (CRC) < 1%), and platelet count <20,000/uL (3, 

79). Over 40% of patients with non-severe AA present without any symptoms (80), but 

pancytopenia worsens over time into the severe range in about half of these cases. The bone 

marrow is hypocellular without overt dysplasia or increase in blasts or other evidence of 

MDS and leukemia. The initial clinical presentation and bone marrow morphology of 

hypocellular MDS can be similar to aplastic anemia, and the distinction between these two 

entities can be difficult. Modest dyserythropoietic and megalobastic changes in red blood 

cells may be seen in AA, but dysplastic findings in megakaryocytes (especially small and 

mononuclear megakaryocytes) favor the diagnosis of MDS (Figure 3E-H). Quantification of 

CD34+ cells may also help distinguish the two conditions: low percentages of CD34+ cells 

(<0.5%) are associated with AA and higher CD34+ (>= 1%) may be indicative of 

hypocellular MDS (81). Abnormal cytogenetics results alone do not automatically exclude 

AA unless the abnormalities are MDS-defining. For some specialists, abnormalities trisomy 

8, trisomy 6, and trisomy 15 are accepted in AA cases upon presentation, but the clinical 

relevance of these abnormalities remains controversial (82-84). Per protocol at NIH, we 

exclude patients with cytogenetic abnormalities from clinical trials of AA. Patients with AA 

can gain new cytogenetic abnormalities over time, and specific high-risk abnormalities 

(especially loss of chromosome 7) are associated with progression to MDS or leukemia (85).

Overlap of paroxysmal nocturnal hemoglobinuria (PNH) with AA is common and identified 

in approximately 50% of cases (the AA/PNH syndrome) (86, 87). Peripheral blood cell 

surface flow cytometry for expansion of glycophosphoinositol (GPI) -anchored proteins 

should be performed to identify and quantify a PNH clone. Whether the presence of PNH 

clone is a prognostic indicator for a better response to IST is unsettled (86, 88-90). Our 

retrospective analysis of over 200 AA cases suggested that specific measures to address 

clinical PNH were rarely required (<5% of the cohort) (86). Patients without a PNH clone at 

presentation usually do not develop a clone following IST, and clones may disappear over 

time in some cases. Clinical signs and symptoms of PNH, such as hemolysis or thrombosis, 

were rarely observed among AA/PNH syndrome patients who underwent IST unless a large 

clone (>50%) persisted over time (86). Regardless of the PNH clone size at presentation, 

initial treatment should be immunosuppression or transplant to address underlying marrow 

failure (3).

Definitive treatment should be initiated promptly for severe aplastic anemia (SAA) to avoid 

the risk of serious infectious and other complications. Patients with non-severe AA can be 

monitored, particularly when they do not require transfusion, because it is unknown whether 

definitive treatment has long-term benefit for milder pancytopenia. Definitive treatment for 

SAA is either HSCT or IST. HSCT is a curative option, and HSCT is preferred for younger 

patients (e.g. <40 year-old) with a human leukocyte antigen (HLA)-matched sibling donor 

(3) (91-93). The risks of graft-versus-host disease (GVHD), related morbidity, and mortality 

increase with age (94-96). Upfront matched-related donor transplant in children has an 

excellent outcome, and 3-year overall survival and 3-year event free survival are both around 

90% (97). In SAA, bone marrow is the preferred stem cell source because peripheral blood 
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stem cell transplantation (PBSCT) is associated with higher risk of chronic GVHD and 

mortality (98-100). The outcome of matched unrelated donor (MUD) transplantation is 

improving, and MUD transplantation is recommended for younger patients who do not have 

a matched sibling and have failed IST, but generally not as first-line therapy (3, 101).

IST is initial therapy for most patients when HSCT is not a feasible option due to lack of 

suitable donors, age, or comorbidities. The combination of horse antithymocyte globulin 

(ATG) and cyclosporine (CsA) is standard (102), with a response rate of 60-70% and overall 

long-term survival comparable to HSCT (67-70). Baseline ARC and absolute lymphocyte 

count (ALC) have prognostic implications: patients with a higher baseline ARC (≥ 25K/uL) 

and ALC (≥ 1000/uL) have better response to IST and better survival compared to lower 

baseline ARC/ALC group (response rate to IST at 6 months, 83% vs. 41% [p<0.001], and 5-

year survival, 92% vs. 53% [p<0.001]) (90).

Recently, an oral thrombopoietin mimetic, eltrombopag was approved by the United States 

Food and Drug Administration (FDA) for the treatment of SAA. In refractory SAA, 

eltrombopag monotherapy provided hematological responses in at least one lineage in 

almost half of study patients at 12 weeks, with many achieving multilineage hematological 

improvements and transfusion independence (103). Long-term follow-up of the study cohort 

revealed that improvements were sustained even after discontinuation of eltrombopag (104). 

Currently, ongoing clinical trials at the NIH are testing the efficacy and safety of 

eltrombopag in combination with standard IST as upfront therapy. Eltrombopag is generally 

well tolerated with minimal side effects, but long-term effects of the treatment, including 

clonal evolution, are yet to be determined. Uncontrolled studies have shown that androgens 

provide sustained hematological recoveries and survival benefit in some patients (105, 106).

Stereotypical constitutional bone marrow failure syndromes that present in 
adults—Bone marrow findings of constitutional syndromes are identical to acquired AA 

(3). Approximately 30% of pediatric bone marrow failures are comprised of constitutional 

(or inherited) syndromes (46). Some constitutional bone marrow failure syndromes can 

present in adulthood even without suggestive family history (Table 3). When bone marrow 

failure syndromes are suspected, it is important to exclude constitutional conditions in 

appropriate settings because it has important therapeutic implications.

Fanconi Anemia: Fanconi anemia (FA), the most common constitutional bone marrow 

failure syndrome, is inherited in an autosomal recessive or X-linked recessive manner (46). 

There are at least 16 known FA genes, which encode proteins essential for DNA repair and 

genomic stability (107). FA is associated with a predisposition for both hematologic and 

solid malignancies. Bone marrow failure is the most common first hematopoietic 

presentation of FA (107). Classically, FA is associated with congenital physical anomalies, 

such as skin hyperpigmentation, short stature, upper limb anomalies, skeletal changes, 

hypogonadism, renal malformation, and characteristic facial features (8). However, the 

manifestations of FA are heterogeneous, and up to one third of patients lack these physical 

features (108). The median age at diagnosis is 6.5 years, but varies widely from 0 to 49 years 

(8). The cumulative incidence of bone marrow failure, hematologic neoplasms, and non-

hematologic neoplasms by 40 years of age is reported to be 90%, 33%, and 28%, 
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respectively (108). Thus, it is reasonable to screen for FA in patients who present with bone 

marrow failure syndromes up to at least 40 years of age even in the absence of a suggestive 

family history or physical anomalies.

Increased chromosomal breakage of peripheral blood cells after exposure to the DNA 

crosslinking agents, diepoxybutane (DEB) or mitomycin C (MMC), is diagnostic of FA. 

Occasionally when results in peripheral blood cells are normal and there is a high clinical 

suspicion for FA, chromosome breakage analysis of cultured skin fibroblasts is performed 

(6). Distinction between acquired AA and FA has important clinical implications: HSCT is 

the only curative treatment and IST is futile for FA. Because of sensitivity to DNA damages 

inherent in FA, HSCT regimens require modification and vigilant monitoring for 

malignancies is important. Moreover, genetic screening of family members is necessary 

before considering them as potential stem cell donors and for genetic counseling.

Telomere Diseases: Dyskeratosis Congenita in Children and Telomeropathies in 
Adults: Dyskeratosis congenita is another classical example of constitutional bone marrow 

failure that usually manifests early in life. Dyskeratosis congenita shares some clinical 

features with FA, including early development of bone marrow failure, associated physical 

anomalies, and predisposition to cancers (5). The classic mucocutaneous triad is patchy skin 

hyperpigmentation, dystrophic nails, and oral leukoplakia. Skin and nail changes typically 

present during first decade of life (109). Although mucocutaneous manifestations are highly 

prevalent (110), the complete mucocutaneous triad is seen in less than half of patients (46). 

Bone marrow failure develops by the third decade of life (median age of onset 8 years old) 

(110), and is the major cause of mortality. Classical X-linked dyskeratosis congenita is 

caused by mutations in the DKC1 gene. DKC1 encodes a protein called dyskerin (111), 

which is a part of the telomere repair complex (or telomerase), and loss of its function 

destabilizes the complex, leading to an inability of cells to maintain telomeres (4, 5). The 

telomere repair complex functions to maintain telomeres in cells with high replicative 

capacity, such as hematopoietic stem cells, preventing chromosome erosion, cell senescence, 

and genomic instability (5). Mutations of genes that encode components of telomerase result 

in accelerated telomere attrition and very short telomere length (112-114). Genetic studies in 

pedigrees with autosomal dominant and recessive patterns have revealed gene mutations in 

various components of the telomere repair complex or shelterin (the telomere protection 

complex), including TERC (a RNA template for telomerase) (115, 116), TERT (a reverse 

transcriptase) (117), and, much less frequently, NOP10 (118), NHP2 (119), and TINF2 
(120).

The distinction between constitutional and acquired forms of aplastic anemia is blurred by 

recent advances in the understanding of telomere biology and its role in hematopoietic stem 

cell functions. Some acquired aplastic anemia cases among adults without associated 

physical anomalies or a suggestive family history have TERC and TERT mutations (115, 

117). In addition to bone marrow failure, telomeropathies cause pulmonary fibrosis (121) 

and liver disease such as cryptogenic cirrhosis and portal hypertension (122). Premature 

graying of hair is a features of telomeropathies and a helpful clue in the clinic (4). TERC 
and TERT mutations have highly variable penetrance, and they are considered as genetic risk 

factors that modify the susceptibility of the host to environmental insults rather than genetic 

Ishii and Young Page 9

Semin Hematol. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



determinants of organ failure (5). For example, smoking appears to accelerate progression of 

pulmonary fibrosis in patients known to have TERT mutations (123).

Average chromosomal telomere content in peripheral blood leukocytes can be measured 

with commercial assays, such as standardized flow-FISH (fluorescent in situ hybridization 

with labeled probes of telomere repeats measured by flow cytometry) and quantitative 

polymerase chain reaction (qPCR) amplification for telomere DNA (Figure 4) (124, 125). 

Results must be adjusted for age, because telomere length normally declines over a lifespan 

in healthy individuals. Telomere length of total lymphocytes below the first percentile for 

age strongly supports the diagnosis of telomere disease with high sensitivity and specificity , 

while telomere content assayed in total leukocytes is less specific (126). However, telomere 

length above the first percentile does not exclude the diagnosis, as some patients with 

confirmed mutations in telomerase genes can have normal telomere length (127). Patients 

with other inherited bone marrow failure syndromes (e.g. FA, DBA, and Shwachman-

Diamond syndrome) as well as patients with acquired AA without identifiable mutations can 

also have short telomeres (114, 128).

The only potentially curable treatment is HSCT, but some patients respond to 

immunosuppressive therapies as in acquired AA. As in FA, family members must be 

confirmed to lack mutations before they can serve as donors. Transplant with reduced 

intensity conditioning regimen has been successfully performed for dyskeratosis congenita 

patients (129, 130). Androgens increase TERT gene expression and telomerase enzymatic 

activity (131), and improve hematological findings in about half of the patients (105, 132).

GATA2 deficiency: Haploinsufficiency of the hematopoietic transcription factor GATA2 

results in a range of hematologic syndromes (133). GATA2 deficiency can be sporadic or 

inherited in an autosomal dominant pattern (134, 135). Most mutations occur in the second 

zinc finger domain or a conserved intronic enhancer element of GATA2, but patients can 

also have uniallelic expression of GATA2 without an identifiable mutation (133). GATA2 

deficiency causes familial MDS / AML (136), monocytopenia and mycobacterial infection 

(monoMAC syndrome) (135), dendritic cell, myeloid, and NK cell lymphopenia (DCML) 

(137), Emberger syndrome (lymphedema and MDS) (138), idiopathic bone marrow failure 

syndromes (139) and aplastic anemia (140). Non-hematological clinical features include 

susceptibility to nontuberculous mycobacteria (NTM) and human papilloma viruses (HPVs), 

warts, panniculitis, erythema nodosum, lymphedema, pulmonary complications (including 

alveolar proteinosis, which is exceedingly rare in general populations), and sensorineural 

hearing loss (133, 134, 141). The frequency of GATA2 mutations in bone marrow failure 

syndromes is not well established. In an NIH cohort with a confirmed diagnosis of acquired 

aplastic anemia, GATA2 mutations were identified in approximately 5% of patients (140). 

The natural history of bone marrow failure associated with GATA2 mutations can be 

atypical: Figures 5A-G show peripheral blood and bone marrow findings from a patient who 

initially presented with pancytopenia and marrow findings consistent with AA, which 

rapidly evolved into AML with myelodysplastic changes within two years.

As in other constitutional bone marrow failure syndromes, identification of GATA2 

mutations has clinical implications, especially for screening of family donors for the same 
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genetic defects and to recognize increased risks of multi-organ dysfunction associated with 

the mutations. Flow cytometry of peripheral blood and bone marrow can distinguish GATA2 

deficiency from idiopathic AA: GATA2 deficiency is associated with disproportionately 

reduced numbers of peripheral blood monocytes, B-cells, and NK cells. The bone marrow 

from patients with GATA2 deficiency also is characterized by markedly reduced monocytes, 

B-cells, and NK cells, as well as by the absence of hematogones (142) (Figure 6).

MYELOPHTHISIC ANEMIA

Myelophthisic anemia is a broad and antique term used to describe hypoproliferative anemia 

resulting from bone marrow fibrosis and infiltration by abnormal tissues. Myelophthisic 

anemia may be a manifestation of primary myelofibrosis or fibrosis secondary to other 

conditions (Table 1). Primary myelofibrosis (PMF) is a clonal myeloproliferative disease, 

characterized by bone marrow fibrosis, hepatosplenomegaly, extramedullary hematopoiesis, 

ineffective erythropoiesis, and abnormal cytokine expressions. PMF is classified as one of 

the myeloproliferative neoplasms (MPNs), along with polycythemia vera (PV) and essential 

thrombocythemia (ET). Patients commonly present with constitutional symptoms such as 

fever, night sweats, fatigue, weight loss, pruritis, bone pain, and symptoms related to 

extrameduallary hematopoiesis (discomfort or pain from splenomegaly, early satiety). 

Rarely, bleeding or thrombosis can be the presenting symptom. About one-fourth of patients 

are asymptomatic (143). Janus kinase (JAK) 2 mutations (most commonly V617F) are seen 

in approximately 60% of patients with PMF or post-ET MF, and are more prevalent among 

patients with post-PV MF (95%) (144-146).

Secondary processes must be excluded before making the diagnosis of primary 

myelofibrosis. Other hematological disorders that can be accompanied by bone marrow 

fibrosis include multiple myeloma, lymphomas, hairy cell leukemia, AML, mastocytosis, 

and many others (46). Reactive myelofibrosis may occur due to infiltrating metastatic 

cancers (especially breast, lung, and prostate), disseminated mycobacterial infection or 

infection with other organisms (1, 46). Myelofibrosis has been associated with autoimmune 

diseases (147, 148), granulomatous diseases like sarcoidosis (149), and conditions related to 

bone metabolism, such as renal osteodystrophy (150), hypo- and hyperparathyroidism, 

vitamin D deficiency, and Paget disease (46).

The peripheral blood smear shows teardrop red blood cells with leukoerythroblastic features, 

characterized by appearance of immature myeloid cells and nucleated erythrocytes. Bone 

marrow aspiration is often difficult and a “dry tap” in more than half of cases (151). 

Treatment and prognosis depends on the etiology of myelofibrosis. Treatable causes must be 

recognized, because addressing the primary disorder, such as infection or autoimmune 

disease, may improve marrow fibrosis (147, 148, 152). The choice of treatment for primary 

myelofibrosis is determined in a risk-adaptive manner. Most experts agree on “wait-and-see” 

or symptom-guided approach for lower risk disease (153, 154).

TRANSFUSION AND SUPPORTIVE CARE

In all bone marrow failure syndromes, adequate transfusion of blood products is important to 

correct associated symptoms and prevent organ dysfunction. In general, red blood cell 

Ishii and Young Page 11

Semin Hematol. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transfusions are provided to maintain a hemoglobin above 7 g/dL (higher than 9 g/dL for 

patients with ischemic heart disease) (3). Platelet transfusion to maintain a count of 10 K/uL 

is a routine to avoid spontaneous severe bleeding in stable patients. All red blood cell and 

platelet products should be leukoreduced to minimize the risk of HLA alloimmunization and 

resultant transfusion refractoriness, which is problematic for long-term transfusion support. 

HLA alloimmunization may limit availability of suitable donors and negatively impact 

transplant outcomes (155, 156). Leukoreduction of blood products also decreases the risk of 

febrile transfusion reaction and transfusion-related transmission of cytomegalovirus (CMV) 

(157). Profoundly immunocompromised patients, especially recipients of HSCT, are at risk 

for the lethal complication of transfusion-associated GVHD (158). The risk of transfusion-

associated GVHD can be eliminated by irradiation of blood products (159), although 

irradiation of blood products is not proven necessary in uncomplicated SAA. The use of G-

CSF or erythropoietin is generally ineffective in severe aplastic anemia (160). In patients 

with severe neutropenia (ANC <500/uL), it is important to promptly evaluate and treat 

possible infection with empiric broad spectrum antibiotics. Patients who have received 

substantial amount of red blood cell transfusion develop organ dysfunction secondary to 

transfusion-associated iron overload. Effective iron chelation regimens are available both 

parenterally (deferoxamine) and orally (deferasirox) (161-163). Expert consensus has 

proposed to initiate chelation therapy when the hepatic iron concentration reaches 6–7 mg/g, 

dry weight, or when the patient has received approximately 100-300 mL/kg of transfusions 

(21, 27). As a surrogate marker, a serum ferritin level of 1000–1500 ug/L is used as the 

cutoff to start iron chelation, although serum ferritin levels may unreliably reflect total iron 

burden (164). Other parameters of iron stores, such as MRI imaging T2 and T2*, may also 

be applied clinically (164-166).

CONCLUSION

Bone marrow failure syndromes comprise a minority of hypoproliferative anemia in clinical 

practice, not only for general internists but also for the practicing hematologist. 

Nevertheless, it is important that clinicians recognize bone marrow failure syndromes and 

refer patients to a specialist, because timely and optimal treatment may affect the prognosis. 

As briefly introduced in this review, recent advances in the understanding of 

pathophysiology have provided us insights into immune-mediated disease mechanisms, 

hematopoiesis maintenance, and cancer predisposition. Further laboratory and clinical 

research should improve clinical practice and provide opportunities to address fundamental 

scientific questions.
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Figure 1. 
Diagnostic approach to hypoproliferative anemia. ARC: absolute reticulocyte count. RI: 

reticulocyte index. AA: aplastic anemia. CKD: chronic renal disease. MDS: myelodysplastic 

syndrome. MMA: methylmalonic acid. LDH: lactate dehydrogenase
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Figure 2. 
Diagnostic approach to bone marrow failure syndromes. MDS: myelodysplastic syndrome. 

PNH: paroxysmal nocturnal hemoglobinuria. LGL: large granular lymphocytes. PRCA: pure 

red cell aplasia. RBC: red blood cell. PB: peripheral blood. AA: aplastic anemia
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Figure 3. 
A. Variably hypocellular marrow in aplastic anemia (cellularity <5% to 40%). B. Bone 

marrow biopsy of a patient with pure red cell aplasia (CD71 stain), revealing lack of 

erythroid precursors. C. Flow cytomery of bone marrow cells from a patient with pure red 

cell aplasia. Absence of erythroid lineage is confirmed and quantified. D. Typical bone 

marrow biopsy in severe aplastic anemia: hypocellular bone marrow replaced with fat. E-G. 

Examples of atypical megakaryocytes (E: Widely separated lobes without strand. F: small 

bilobated megakaryoctes. G: small monolobated megakaryocyte). H. Normal megakaryocte 

for comparison. I. Bone marrow biopsy of a patient with hypocellular MDS. 

Immunohistochemical staining for CD61 highlights atypical bilobated megakaryoctes. 

(Figure 3B-C: Courtesy of Dr. Raul Braylan)
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Figure 4. 
Telomere content of leukocytes measured by standardized flow FISH or quantitative PCR. A 

patient's result is compared to age-adjusted normalized values. Calculated telomere length of 

total mononuclear cells below the first percentile for age strongly suggests a diagnosis of 

telomere disease. (Courtesy of Dr. Bogdan Dumitriu)
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Figure 5. 
GATA2 deficiency in the clinic: The patient presented as 18 year-old male with 

pancytopenia and marrow of AA, and within two years, he developed AML with 

myelodysplastic morphology.

A. Initial bone marrow biopsy at presentation: hypocellular marrow with trilineage 

hypoplasia compatible with AA. B-E. Bone marrow biopsy two years later: B. AML with 

myelodysplastic morphology; 30-40% cellularity. C. CD34 immunohistochemistry of 

biopsy, highlighting increased blasts. D. Dysplastic large osteoclast-like megakaryocyte with 

separated nuclear lobes, on aspirate smear. E. Pelgeroid PMN, peripheral smear. F. Small 

mononuclear megakaryocyte, on aspirate smear. G. Increased blasts, 35% on 500 cell 

differential of aspirate smear. (Courtesy of Dr. Danielle Townsley and Dr. Katherine Calvo).
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Figure 6. 
Bone marrow flow cytometry of lymphoid subsets and monocytes in GATA2 patients. 

Compared to AA patients, GATA2 patients have disproportionately reduced bone marrow 

mature B cells (CD10−, CD20+), hematogones (CD10+, CD20−), monocytes (CD14+, 

CD64+), and NK cells (CD3−, CD56+) (Courtesy of Dr. Katherine Calvo).
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Table 1

Classification of hypoproliferative anemia

Nutritional deficiency

    • Iron

    • Vitamin B12

    • Folate

Anemia of chronic disease and inflammation

Anemia of renal disease

Exposure to toxins or drugs

    • Alcohol

    • Drugs

Endocrine abnormality

    • Hypothyroidism

    • Hyperthyroidism

    • Panhypopituitalism

    • Primary or secondary hyperparathyroidism

    • Androgen deficiency (male)

Hemophagocytic lymphohistiocytosis

Secondary to hematologic malignancies

    • Leukemia

    • Lymphoma

    • Multiple myeloma

    • Myelodysplastic syndrome (MDS)

    • Myeloproliferative neoplasms

Bone marrow failure syndromes (see Table 2)

Myelophthisic anemia

    • Metastatic cancers

    • Hematologic malignancies

    • Infections

    • Autoimmune diseases

    • Granulomatous diseases

    • Renal osteodystrophy

    • Hypo- and hyperparathyroidism
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Table 2

Classification of bone marrow failure syndromes

Acquired Constitutional

Isolated anemia: PRCA

Transient Diamond-Blackfan anemia

    • Transient aplastic crisis, parvovirus B19 Inherited sideroblastic anemia

    • Transient erythroblastopenia of childhood Congenital dyserythropoietic anemia

Infection

    • Persistent parvovirus B19 infection (immunocompromised patients)

    • EBV, CMV, HIV, hepatitis viruses

    • Other infections

Malignancies

    • Thymoma

    • LGL leukemia

    • CLL

    • Other hematologic and solid malignancies

Drugs and chemicals

Pregnancy

Complication of major ABO-mismatch HSCT

Erythropoietin antibody due to usage of recombinant human erythropoietin

Idiopathic

Bicytopenia / Pancytopenia

Radiation Fanconi anemia

Drugs and chemicals Telomere diseases

    • Cytotoxic drugs (chemotherapy)     • Dyskeratosis congenita

    • Benzene     • Telomeropathies

Infections GATA2 deficiency

    • EBV Schwachman-Diamond syndrome

    • Hepatitis viruses

    • HIV

    • Parvovirus B19

Immune disease / Malignancies

    • LGL leukemia

    • Thymoma

    • PNH

    • Collagen vascular diseases

Pregnancy

Idiopathic
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Table 3

Characteristics of constitutional bone marrow failure syndromes that accompany hypoproliferative anemia

Disease Genetics Median age at 
diagnosis 

(range)
*

Associated physical anomalies Diagnostic tests 
(other than gene 
sequencing)

DBA Ribosomal protein genes 3 months (0-64) Abnormal thumbs, short stature Elevated erythrocyte 
adenosine deaminase, 
elevated Hgb F 
expression

Fanconi anemia Fanconi anemia genes (DNA repair 
and genomic stability)

6.5 (0-49) Skin pigment changes or café-au-
lait spots, short statrure, upper limb 
anomalites, microcephaly, renal 
malformations, hypogonadism, ear 
anomalities and deafness

Increased 
chromosomal breakage 
of peripheral blood 
cells after exposure to 
the DNA crosslinking 
agent (DEB, MMC)

Telomeropathy Telomere repair complex or 
telomere protection complex 
(TERT, TERC, and others)

14 (0-75) Oral leukoplakia, dystrophic nails, 
skin hypo/hyperpigmentation (lacey 
reticular rash), pulmonary fibrosis, 
cryptic cirrhosis, portal 
hypertension, premature graying of 
hair

Short telomere 
contents of peripheral 
blood leukocytes 
(flow-FISH, 
quantitative PCR)

GATA2 deficiency Hematopoietic transcription factor Insufficient data Recurrent warts, disseminated non-
tuberculous mycobacteria infection, 
lymphedema, panniculitis, 
pulmonary diffusion and ventilatory 
defects, pulmonary alveolar 
proteinosis

Flow cytometry: 
peripheral blood - 
disproportionately 
reduced monocytes, B 
cells and NK cells, 
bone marrow - reduced 
monocytes, B cells, 
NK cells, and absent 
hematogones 
compared to AA

*
Reference 8
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