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Abstract

The purpose of this study is to validate a Jacobian-based iterative method for real-time localization 

of magnetically controlled endoscopic capsules. The proposed approach applies finite-element 

solutions to the magnetic field problem and least-squares interpolations to obtain closed-form and 

fast estimates of the magnetic field. By defining a closed-form expression for the Jacobian of the 

magnetic field relative to changes in the capsule pose, we are able to obtain an iterative 

localization at a faster computational time when compared with prior works, without suffering 

from the inaccuracies stemming from dipole assumptions. This new algorithm can be used in 

conjunction with an absolute localization technique that provides initialization values at a slower 

refresh rate. The proposed approach was assessed via simulation and experimental trials, adopting 
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a wireless capsule equipped with a permanent magnet, six magnetic field sensors, and an inertial 

measurement unit. The overall refresh rate, including sensor data acquisition and wireless 

communication was 7 ms, thus enabling closed-loop control strategies for magnetic manipulation 

running faster than 100 Hz. The average localization error, expressed in cylindrical coordinates 

was below 7 mm in both the radial and axial components and 5° in the azimuthal component. The 

average error for the capsule orientation angles, obtained by fusing gyroscope and inclinometer 

measurements, was below 5°.

Index Terms

Capsule endoscopy; colonoscopy; localization; magnetic manipulation; medical robotics

I. Introduction

Wireless capsule endoscopy (WCE) allows physicians to visualize internal organs for 

diagnosis and potentially for intervention. This paper focuses on creating a modeling and 

algorithmic framework for localization of magnetically actuated WCEs. All the existing 

platforms for remote magnetic manipulation of a WCE inside the patient’s body operate in 

open loop [1], i.e., the capsule pose (i.e., position and orientation) is not tracked and used for 

control feedback purposes. Position control of WCEs is typically based on the assumption 

that the permanent magnet inside the capsule aligns with the external magnetic field. Pose 

tracking of the WCE would allow the capsule to automatically optimize magnetic coupling 

to maintain effective magnetic actuation, enabling the user to detect if the capsule is not 

following the expected trajectory (i.e., the capsule is trapped within a tissue fold), and to 

take appropriate countermeasures for reestablishing an effective motion. An example of 

position closed-loop control for a magnetically manipulated WCE is presented in [2], where 

optical tracking with external cameras is adopted to localize the capsule. To apply these 

results in a clinical setting and move toward the closed-loop manipulation of magnetic WCE 

position and orientation, online pose tracking without line-of-sight is crucial [3], [4].

Known methods for WCE pose tracking were designed largely for diagnostic purposes (i.e., 

to associate a lesion visualized by the capsule to its position inside the patient’s body) [5]–

[8] and are not compatible with magnetic manipulation due to electromagnetic interference 

with the external source of the driving field. Recently, a number of groups working on 

robotic magnetic manipulation of WCE began studying localization strategies that are 

compatible with magnetic manipulation. These works implement localization based on 

measuring the magnetic field at the WCE via magnetic field sensors (MFSs). Generally, 

these works rely on absolute localization using simple dipole models (e.g., [9] and [10]) or 

lookup tables based on finite-element solutions to the exact magnetic field (e.g., [3] and 

[11]). The simple dipole models provide limited localization performance when the WCE is 

close to the magnetic field source. They work best when the WCE workspace is far away 

from the driving magnet. However, to maximize the magnetic coupling, the WCE should 

ideally operate as close as possible to the driving magnet. The drawbacks of lookup-table-

based localization are the slow refresh rate and large memory requirements.
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The performance of current WCE localization algorithms provide modest localization 

accuracy within limited workspace. In [10], multiple measurements taken of the capsule 

moving along its main axis toward the external magnet allows the user to obtain the position 

in three degrees of freedom (DOF) with an error below 4 mm when the capsule is within 6 

cm of an external magnet. Continuous rotation of the capsule by an external revolving 

magnetic field combined with on-board magnetic field sensing [9] allows detection of the 

capsule position and orientation with an average error of 11 mm and 11° within the operative 

workspace. Real-time systems, such as in [3], [4], and [11], leverage sensor fusion (i.e., 

inertial and magnetic field sensing) and search within precompiled finite-element magnetic 

maps. In particular, the method proposed in [11] achieves a refresh rate of 50 ms and a 

position error of 10 mm within a 12-cm workspace. Better performances are obtained in [4], 

where the refresh rate goes down to 30 ms and the error drops below 6 mm within a 15-cm 

workspace. Finally, in our previous work [4], the sensor data acquisition and the localization 

algorithm required 6.5 and 16 ms per loop, respectively. One of the aims of our proposed 

new localization method is to decrease computational time, thus achieving both sensor 

acquisition and localization within 10 ms, allowing the implementation of a 100-Hz WCE 

manipulation closed-loop control.

In this paper, we validate our proposed algorithm on a WCE localization setup that includes 

an extracorporeal magnetic field source that manipulates an intracorporeal WCE. The 

localization strategy proposed herein aims to provide the change in pose of a WCE with 

respect to an external magnetic field source having known position and orientation. Using an 

approach similar to that used in [3], [4], and [11], the capsule is henceforth assumed to be 

equipped with an inertial measurement unit (IMU) and six orthogonal MFSs. When inertial 

data from IMU are integrated, as we propose in our method, drift becomes an issue over 

time. For this reason, our approach is best used in synergy with an absolute localization 

technique [3], [4] working at a slower refresh rate. In such a scheme, the absolute 

localization can repeatedly provide initialization values to our algorithm, thus preventing the 

integration error from exceeding a desired value.

The contribution of this paper stems from putting forward a new approach for WCE 

localization by using an iterative Jacobian-based method. To the best of our knowledge, 

iterative methods for WCE pose tracking that are compatible with magnetic manipulation 

have not been presented in prior works, partly because a complete analytical solution for the 

magnetic field is not available. To overcome this challenge, we apply finite-element 

solutions to the magnetic field problem and least-squares interpolations to obtain closed-

form and fast estimates of the magnetic field. By defining a closed-form expression for the 

Jacobian of the magnetic field relative to changes in the WCE pose, we are able to obtain an 

iterative WCE localization method without the inaccuracies stemming from dipole 

assumptions and without the downside of a slow refresh rate.

II. Method

A. Iterative Method for Magnetic Localization

Our localization approach is inspired by Jacobian-based methods (also known as resolved 

rates methods stemming from [12]). These methods are commonly used in robotics to solve 

Di Natali et al. Page 3

IEEE Trans Robot. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



systems of nonlinear equations subject to the limitations of firstorder linearization. In this 

paper, we assume that the refresh rate for pose tracking is fast enough that only small 

movements of the WCE may occur between subsequent pose measurements. We also 

assume that the orientation of the capsule is known through the algorithm described in 

Section III running on IMU data.

In order to apply an iterative method to magnetic localization, we need to consider the 

magnetic field, generated by a known source, as the following time-invariant nonlinear 

mathematical expression:

(1)

This equation will be denoted as magnetic direct relationship (MDR). Referring to Fig. 1, 

the MDR associates the coordinates of a point outside the magnetic field source pi = [xi, yi, 
zi]T to a corresponding vector function of magnetic field values Bi = [Bix, Biy, Biz]T.

If the capsule position changes from pi to pi+1 during a time increment Δt, the displacement 

Δp produces a change in the magnetic field measurements from Bi to Bi+1 according to (1). 

The partial derivative of the magnetic field vector, i.e.,  is given by

(2)

where ∇pf(pi) designates the gradient of f with respect to p. Using (2) in a first-order Taylor 

series approximation, we obtain

(3)

The magnetic inverse relationship (MIR), providing the current capsule position pi+1, can be 

derived by inverting (3) as

(4)

Moving from differential to the finite-difference iterative method,  replaced by ΔBi, 

where ΔBi is defined as ΔBi = (Bi+1 − Bi). In addition, according to [13], the gradient of a 

generic vectorial function, which is defined as f(x): ℝn → ℝ, is the transpose of the Jacobian 

as: ∇xf(x) = (Jxf(x))t. Then, (4) becomes

(5)

where  is the inverse of the Jacobian.
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An explicit formulation of the MDR (1) can be obtained by finite-element integration of 

magnetic field models, as suggested in [14], while a numerical estimate can be provided by a 

standard finite-element method software package, such as Comsol Multiphysics or ANSYS 

Maxwell. In the next subsections, we introduce a nonlinear interpolation method for a 

dataset of magnetic field values related to the position pi. Then, the interpolation is used to 

provide an analytical expression of the MDR through modal representation, numerical 

algebra theory, and the Kronecker product. Finally, a first-order resolved rates method using 

the Jacobian expression for the MIR is derived.

Fig. 2 represents the proposed magnetic localization algorithm exploiting sensor fusion of 

magnetic field and inertial measurements. The magnetic field interpolation (also called 

magnetic field calibration) is achieved offline, which leads to obtain the characteristic 

matrices Ar and Az. Once the interpolation is obtained, the online algorithm takes as input 

the magnetic field, the inertial measurements, and the external permanent magnet (EPM) 

orientation, returning the capsule pose. The capsule position is referred to the EPM frame, 

whereas the orientation expressed in Euler angles is relative to the world frame. The blocks 

DMR-IMR—which stand for direct and inverse magnetic relationship—and the iterative 

Jacobian method are presented in Section II-B, while the 3-D reconstruction is presented in 

Section II-C.

B. Direct and Inverse Magnetic Relationship

The magnetic field of a cylindrical axially magnetized permanent magnet exhibits 

cylindrical symmetry around its main axis  [15], [16]. If such a magnet is used as the 

external source of a magnetic field for capsule manipulation, as suggested in our previous 

work [3], [4], the localization can take advantage of the symmetry to reduce the 

computational burden. In particular, the 3-D position-tracking problem can be reduced to 

two dimensions. Then, once the position in 2-D is obtained, the third coordinate can be 

derived by sensor fusion as explained in Section II-C.

As represented in Fig. 3, the magnetic field is distributed around the main axis of symmetry 

of the EPM, , while Bθ—angular component of the magnetic field along θ—is null. The 

vector  represents a generic point on the loci of points, whose location satisfies 

the condition of having the same magnetic field Bc. This set of points of the locus generates 

a circumference ϒ (represented in Fig. 3) that can be analytically described as ϒ = [r, θ, z] |

r, z = const ∈ ℝ, and θ ∈ 0 → 2π. We refer to  as the generic point on the loci, 

which is expressed in the three cylindrical coordinates, whereas pc lies on the plane ℋ and is 

obtained by applying a rotation about  to . The plane ℋ is defined as: ℋ = ℝ2: {(r, z)|r, z 
∈ ℝ and θ = 0}.

Considering the magnetic field applied on a generic point , its components are expressed 

as Bc = [Br(r,z),Bθ(r,z),Bz(r,z)], where Bθ (r, z) = 0. Therefore, (1) could be furthermore 

simplified by defining the mathematical representation Ψ for the magnetic field Bc. The 

magnetic field Bc is given by the 2-D transformation Ψ for any given point  around the 

magnetic field source, such as Ψ:  → Bc. Br(r,z) and Bz(r,z) are two scalar values 
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representing the radial and the axial component of the magnetic field vector, which are 

functions of axial and radial spatial coordinates with respect to the center of the EPM.

The solution to the system of equations expressed by the transformation Ψ—in terms of both 

radial Br(r,z) and axial Bz(r,z) magnetic field—is unique in the semidomain ℋ′ defined as in 

Fig. 3 (note that the semidomain ℋ′ can be either related to the south or the north pole of the 

cylindrical axially magnetized EPM). Then, we define a finite domain , where the 

magnetic field radial component Br is always positive. On the other hand, if considering the 

domain ℋ, the transformation Ψ leads to two solutions in diagonally opposite quadrants in 

Fig. 3. Since the patient cannot be simultaneously above and below the magnet, we exclude 

one quadrant for practical implementation reasons. The region is a square plane having size 

L along  and , where the spatial transformation f(pc) in (1) is simplified and solvable as

(6)

The transformation Ψ(pc) can be expressed by two scalar mathematical functions, each with 

two inputs. The two functions provide the magnetic field radial component as

(7)

and the magnetic field axial component as

(8)

The numerical solution of (7) and (8) can be obtained by either applying the current density 

magnetic model or the charge density magnetic model, as demonstrated in [15] and [16]. 

Then, the magnetic field values can be casted in two data matrices Φr ∈ ℝm×p and Φz ∈ 

ℝm×p. These matrices represent the m × p magnetic field numerical solutions for any given 

position pc within , where m is the number of magnetic field measurements taken along 

the  direction and p is the number of magnetic field measurements taken along . The 

collection of numerical solutions [Φr, Φ z]T of (7) and (8), are expressed as

(9)

(10)

where Φrij and Φzij are the magnetic field values at position (i,j), which could be generally 

expressed as Φij. The single matrix element Φij can be approximated by applying the modal 

representation defined in [17]–[19] as

(11)
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The vector of the modal factors, i.e., a(z), can be expressed as

(12)

In this equation, A is the characteristic matrix of coefficients for the particular magnetic field 

shape that, together with the two orthogonal bases ω = {ω0, ω1, …, ωn} and γ = {γ0, γ1, …, 

γq}, represents the interpolation functions that best numerically approximate the 

transformation Φij over the domain of interest [20]. Once the interpolation functions ω and γ 

are chosen (see Section IV-A), and the characteristic matrices of coefficients Ar and Az for 

radial and axial magnetic field, respectively, are derived, the interpolation problem can be 

easily solved. The best dataset interpolation is chosen by adopting the orthogonal function 

that minimizes the least-squares error between the reference measure f(x) and the 

approximated value y*, such as ||f(x) − y*|| < δ. Examples of orthogonal functions 

investigated in this study include standard polynomial functions, Chebyshev polynomials 

[18], [19], Fourier harmonic basis [20], [21], and composition of these.

In the following paragraph, we describe how to derive the characteristic matrices of 

coefficients Ar and Az for the algebraic equations system in (11) and (12) by using the 

following matrix representation, as suggested in [18] and [19]:

(13)

where Φ is either the MDR solutions of Φr or Φz within r, z ∈ [0 → L], while Ω and Γ are the 

modal basis matrices and constitute the collection of n orthogonal basis for Ω and q 
orthogonal basis for Γ. Finally, m and p are the number of values estimated in the domain r 
∈ [0, L] and z ∈ [0, L], respectively.

The solutions for Ar and Az can be obtained by applying the Kronecker product theory as in 

[18], [19], and [22], where the symbol ⊗ represents the Kronecker product of two matrices 

as

(14)

The result provided by the algebraic interpolation is the generic matrix of coefficients A, 

which is given by

(15)

Once the matrices Ar and Az are known, the MDR, such as ψ(z, y) : (z, y) → (Φij), is solved 

for any point within the domain .

Given the calibration matrices Ar and Az, and the orthogonal basis ω(r) and γ(z), the system 

of equation expressed in (11) and (12) is completely determined. By differentiating ω(r) and 

γ(z) in ∂r and ∂z, respectively, we can obtain the complete formulation of the MIR in (2). 
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The following system of equations—expressed for the single solution [Φr, Φz]T— provides 

the ground to derive the Jacobian:

(16)

Applying (2) to this system of equations, and deriving the partial derivatives of Φ = [Φr, Φz]T 

such as  the gradient of Φ becomes

(17)

Considering that the derivatives of the constant coefficient matrices Ar and Az are null, as 

well as  and , (17) simplifies to

(18)

In order to obtain the expression of  and , a derivation is applied to the vectors 

constituting the orthogonal basis ω(r), γ(z). This leads to the following expression for the 

Jacobian JΦ:

(19)

Therefore, the magnetic field vector incremental difference  is given by

(20)

This result can be used in (3) to estimate the magnetic field Bi+1 by continuously updating 

ΔBi to the current magnetic

(21)

In conclusion, the following equation shows the iterative method to localize the WCE, 

estimating the current position pci+1 = [ri+1, zi+1]T of the capsule as

(22)
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where J−1 is the pseudoinverse of the Jacobian, which applies the least-squares method of 

optimization to the solution [23]. The term ΔBi is the difference in magnetic field recorded 

from the previous measurement.

C. Three-Dimensional Reconstruction

In order to track the WCE by applying the iterative algorithm, both the spatial orientation of 

the capsule and the external magnetic source pose must be known with respect to a common 

reference frame. The magnetic field vector Bc at the capsule position —expressed in the 

capsule frame —is measured by the onboard sensors. This vector can be expressed 

in the EPM frame  by applying the geometrical transformation , thus obtaining 

B.

Then, considering Figs. 1 and 3, the magnetic field vector B is expressed in cylindrical 

coordinates from its Cartesian coordinates, such as B = [Bx,By,Bz]T → [Br, Bz]T and θ, 

where θ corresponds to the azimuthal coordinate of the capsule position . The 

relationships that transform the magnetic field vector  from Cartesian 

to cylindrical coordinates are

(23)

where Bx, By, Bz are the Cartesian components of the magnetic field vector B with respect 

to the EPM frame . The axial and radial magnetic field components can be fed into 

the iterative algorithm, which derives the radial and axial coordinates of the capsule pc = [pr, 
pz]. These can be used in combination with θ to derive the three Cartesian coordinates as

(24)

III. Capsule Orientation Algorithm

This section presents the algorithm used to detect the change in capsule orientation and to 

generate the rotational matrix Rc with respect to the global frame. This algorithm based on 

the fusion of inclinometer and gyroscope outputs is widely adopted in the literature and is 

provided here for the sake of completeness. The capsule orientation knowledge is required in 

our magnetic localization approach in order to express the magnetic field vector Bc in the 

EPM frame.

Referring to Fig. 1, the accelerometer can be used as an inclinometer to obtain the absolute 

values of the two orientational angles α and β [24]. The rotations about xc and yc are derived 

directly from the gravitational vector g projection mapped on the three orthogonal axes of 

the onboard accelerometer as
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(25)

where ax, ay, az are the three accelerometer outputs.

A number of methods for inertial navigation can be adopted to estimate the third orientation 

angle γ, which is the rotational angle along the gravitational vector g. Examples span from 

fusing gyroscope and inclinometer measurements [25], [26] to applying a quaternion-based 

algorithm to inertial data [27]. The approach we have adopted involves applying the axis-

angle method for rotational matrices to the gyroscope outputs [28]. Briefly, it is possible to 

extract the rotation γ about the global axis zw by building the rotational matrix ###ΔRc with 

respect to the moving frame attached to the capsule . The instantaneous variations 

in capsule orientation can be derived from the gyroscope outputs as

(26)

where Δ[αc,βc,γc] are the instantaneous angle variations at the capsule moving frame within 

a measurement loop that lasts Δt. The instantaneous capsule rotational matrix ΔRc is then 

defined as

(27)

where Rx, Ry, and Rz are the rotational matrixes with respect to the xc-, yc-, and zc-axis, 

respectively. Then, the axial-angle representation of the rotational matrix ΔRc is derived, 

thus achieving the angle of rotation θ and the axis of rotation ω as

(28)

where êcj, i and êcj, i+1 are the unit vectors of the capsule frame at the ith and (i+1)th 

iterations, respectively. Finally, the axis-angle representation θ, ω must be reoriented 

according to the capsule orientation with respect to the global frame at the previous time 

step, . The third coordinate of the axial-angle representation corresponds to the capsule 

angle variation Δγ about . The capsule absolute orientation γ about the global axis  is 

achieved by summation of Δγ at each loop.

IV. Simulation-Based Validation

The proposed approach was validated using an NdFeB cylindrical EPM with an axial N52-

grade magnetization, a diameter of 5 cm, and a length of 5 cm. The size L of the squared 

domain  was fixed at 15 cm. The reference values for the magnetic field in  were 

obtained using Comsol Multiphysics, using a pitch of 0.2 mm for the mesh. The 

mathematical analysis and simulations were performed by using MATLAB (MathWorks 

Inc).
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A. Magnetic Direct Relationship

COMSOL Multiphysics (COMSOL, Stockholm, Sweden) was also used to create the 15 × 

15 matrix Φr and the 18 × 18 matrix Φz relative to the radial and axial components of the 

magnetic field, respectively. These two matrices were interpolated using two vectors of 

modal basis functions ω and γ. The vector ω captures variations of the magnetic field as a 

function of radial distance r, which is given by

(29)

Similarly, the dependence of the magnetic field on variations of the axial component z is 

captured by γ(z)

(30)

The modal basis functions were chosen based on simulation of the approximation residue 

with the minimum number of terms that provide a relative error of less than 10% within a 

portion of at least 70% of the domain .

Both Ar and Az were derived applying (15), thus obtaining 31 × 31 matrices. The 

interpolation was obtained by applying (11) and (12) to any radial and axial coordinates of 

the domain . The interpolation error was evaluated by comparing the interpolated 

magnetic field with the reference values derived by COMSOL Multiphysics. Given the 

position vector  within , Fig. 4(a) shows the module of the relative error for the 

radial magnetic field component, while Fig. 4(b) shows the module of the relative error for 

the axial component. Table I reports the portions of  where the interpolation error is below 

1%, 5%, 10%, and 20% for both the axial and the radial component of the magnetic field. 

The radial component estimation presents a relative error below 10% for the 86% of the 

radial magnetic field map. The axial component estimation shows that the 70% of the axial 

magnetic field map presents a relative error below 10%. Whenever the value of magnetic 

field intensity is very small, or null, a small approximation noise leads to a high relative 

error, as shown in Fig. 4. These results show an efficient estimation of both Br and Bz, thus 

allowing the MDR to be analytically derived via (16).

Fig. 5 shows the ratio of the relative error of the single-dipole model [29] to the relative error 

of our interpolation method, where the relative error is calculated with respect to the 

reference values derived by COMSOL Multiphysics. The blue regions—ratio between 0 and 

1—of the maps correspond to a similar or better performance of interpolation for the dipole 

model compared with the proposed method. The dark red regions correspond to a ratio 

greater than 8. Table I reports the portions of , where the interpolation error of the dipole 

model is below 1%, 5%, 10%, and 20% for both the axial and the radial component of the 

magnetic field. From these results, we can conclude that the proposed approach provides a 

more accurate approximation for the magnetic field in both components.
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B. Magnetic Inverse Relationship

The pose detection iterative method based on (22) was assessed by simulating the capsule 

motion along a spiral path, starting from a central position in the map pc ≈ [0.09,0.055] m, 

reaching a final diameter of 1 cm, and assuming the orientation given. Fig. 6 shows the 

reference trajectory and its pose estimation. The color map represents the relative error of 

the radial coordinate. The estimation of the simulated capsule pose results in an axial 

coordinate relative error below 1%, with respect to its current position, for almost the entire 

simulation. The radial coordinate relative error is below 1% for the upper-right, lower-left, 

and lower-right quadrants of the spiral path represented in Fig. 6. The upper-left quadrant 

presents a relative error below 5%. This increased error is related to the radial localization 

error map of Fig. 4(a). Since the center of the spiral is at the upper-left quadrant of Fig. 4(a), 

where the radial error increases with proximity to the top-left corner, the error of localization 

along the spiral exhibits a similar trend. In addition, considering the noise of MFS readings, 

the outcome of the localization algorithm for each capsule position is represented by an 

ellipsoid of uncertainty (in cyan in Fig. 6). In this simulation, we used the noise levels of 

±0.08 and ±0.05 mT in measuring Br and Bz based on experimental characterization from 

the platform described in Section V-A. This simulation demonstrates an average sub-

millimeter localization accuracy for both the radial and axial component.

V. Experimental Assessment

A. Experimental Platform

1) Hardware—The experimental platform, represented in Fig. 7(a), is composed of the 

WCE, the EPM, a robotic manipulator (RM), and a personal computer (PC) connected to a 

wireless transceiver via the universal serial bus (USB) port. The real-time algorithm runs on 

the PC and communicates with the capsule through a USB transceiver. The EPM is an 

NdFeB (magnetization N52, magnetic remanence 1.48 T) cylindrical permanent magnet 

with axial magnetization. The EPM diameter and length are both equal to 50 mm, while the 

mass is 772 g. A six-DOF robot (RV6SDL, Mitsubishi Corp., Japan) mounts at its end-

effector the EPM. The robot is controlled in real time through a multithread C++ software 

application, which is described in Section V-A3. The manipulator is used to control and 

track the EPM position and orientation with respect to the global reference frame 

, which is assumed to be superimposed on the manipulator ground frame 

. The current EPM pose for the localization algorithm is derived from the robot 

end-effector pose, which is available at the application interface level with a resolution of 2 

× 10−2 mm in position and 1 × 10−3 degree in orientation. The EPM orientation frame 

 is an input for the localization algorithm (as described in Section II-C), while the 

EPM pose, as acquired by the robot encoders, is used as a reference position for the 

experimental assessment. A load cell (MINI 45, ATI Industrial Automation, USA), mounted 

in between the EPM and the RM, allows the EPM to be moved via admittance control for 

the general assessment described in Section V-B5.

2) Wireless Capsule—The WCE, schematically represented in Fig. 7(b), hosts the force 

and motion sensing module (FMSM), which was presented in [4], wireless microcontroller 

(WMC), and power supply (PS). The outer shell is fabricated in VeroWhite 3-D printer 
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material (OBJET 30, Stratasys, USA). The current prototype is 36 mm in length, 17.5 mm in 

diameter, and 15 g in mass. The capsule shell has four lateral wings that are used as a 

reference to achieve a precise alignment for the capsule frame  during the 

calibration.

The FMSM is composed of six MFSs (MFS, A1391, Allegro MicroSystems, USA), an IMU 

embedding both an accelerometer and a gyroscope (LSM 330, STMicroelectronics, 

Switzerland), and an off-the-shelf NdFeB (N52) cylindrical magnet, which was axially 

magnetized with 1.48 T of magnetic remanence, 11 mm in diameter, and 11 mm in height. 

The readings of the magnetic sensors integrated in the FMSM are acquired by the onboard 

16-bit analog-to-digital converter (ADC, AD7689, Analog Devices, Inc., USA). An 

acquisition cycle starts from sampling six analog inputs connected to the MFS outputs. 

Then, the six digitized values of acceleration and angular speed are received from the IMU. 

This dataset is acquired every 4.4 ms by the WMC (CC2530, Texas Instruments, USA) and 

used to build a 36-byte package together with the capsule status indicators (i.e., battery level, 

start/stop bytes). This package is then transmitted by the WMC to the external transceiver 

over a 2.4-GHz carrier frequency, with a refresh time of 6 ms (wireless data throughput 42.4 

kbit/s), resulting in a sampling rate of 166 Hz. The external transceiver is based on an 

identical WMC that communicates with the PC through a USB-serial converter (UM232R, 

FTDI, U.K.).

The power supply module embeds a low-dropout voltage regulator (LDO) (TPS73xx, Texas 

Instruments, USA) to provide a stable supply to both the FMSM and the communication 

module. In order to limit the current consumption when the device is not acquiring 

measurements, a digital output of the microcontroller can drive the SLEEP pin of all the 

MFS. This results in a current consumption, which varies between 400 mA, when the 

microcontroller is in low power mode, and 20 mA when it is in IDLE mode with the 

radioactive. Average current consumption rises to 48 mA during a single cycle of sensor data 

acquisition and wireless transmission. The power source used is a 50-mAh, 3.7-V 

rechargeable LiPo battery (Shenzhen Hondark Electronics Co., Ltd., China).

3) Software Architecture—A multithread C++ WIN32 application running on the PC 

unbundles the data and shares them with three other parallel threads. The first thread 

controls the RM through a UDP/IP communication with a refresh rate of 140 Hz. It sends 

the desired pose to the robot controller and then receives the robot pose feedback. The 

second thread implements a digital Kalman filter for each of the six MFS and the six IMU 

outputs before running the iterative localization algorithm. The algorithm outputs the 6-DOF 

capsule pose estimation p = [x, y, z, α, β, γ] with respect to the EPM frame . The 

third thread manages a TCP/IP communication with a MATLAB application (Mathworks, 

USA), which displays the localization algorithm estimation. The data transfer rate for the 

robot controller applications is 83 Hz. The refresh time for the capsule pose estimation p and 

the capsule wireless data transfer is 6.8 ms (refresh rate 150 Hz). Referring to Fig. 8, the 

MATLAB application displays the capsule position and orientation p = [x, y, z, α, β, γ] with 

respect to the EPM reference frame  in real time (refresh every 30 ms) on a 3-D plot. 

Current pose numerical values are also displayed.
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B. Experiments and Results

1) Capsule Orientation Algorithm Assessment—Because the localization method 

we propose also relies on real-time capsule orientation data, the first step in the experimental 

assessment consisted in validating the algorithm described in Section III. In order to quantify 

the absolute error in capsule orientation, the WCE was rigidly attached to the end-effector of 

the RM. The orientation of the WCE was varied within a range of ±90° about each of the 

three axes [xEPM, yEPM, zEPM] by adopting combined motions for a total of one minute. 

Inertial data acquired by the WCE were sent over the wireless link, while the orientation of 

the end-effector, as measured by the RM built-in encoders, was adopted as a reference. The 

average orientation error was 3.4° ± 3.2° for α, 3.7° ± 3.5° for β, and 3.6° ± 2.6° for γ.

A second experiment aimed to quantify the steady-state drift for the capsule orientation 

algorithm. This is particularly relevant for the estimation of γ, which is obtained by iterative 

integration unlike α and β. For this test, the WCE was locked into the capsule dock (see Fig. 

7 or Multimedia Attachment 1) for 7.5 min while acquiring data and running the capsule 

orientation algorithm. The average error and its standard deviation over the entire period was 

0.34° ± 0.18° for α, 0.27° ±0.17° for β, and 1.8° ± 1.1° for γ, while the absolute error at the 

end of the 7.5 min was 0.5° for α, 0.2° for β, and 5.2° for γ.

2) Steady-State Positional Drift Evaluation—This set of experiments, referred to as 

T01, was aimed at evaluating the localization algorithm behavior in steady conditions. 

Before the trials began, the iterative localization algorithm was initialized as shown in 

Multimedia Attachment 1. The calibration consisted of three steps. First, the capsule was 

placed into the capsule dock, with a known position and orientation with respect to the 

global frame [xw,yw, zw]. Then, the MFSs in the WCE were biased while maintaining the 

EPM outside the workspace. Finally, the EPM was moved to a reference position with 

respect to the WCE, and the relative distance between the EPM and the WCE, as derived by 

design, was used to initialize p(t = 0) (digitization phase in Multimedia Attachment 1).

After the initial calibration, the EPM was moved to eight different positions within the 

workspace, while the WCE was maintained in the capsule dock. Each position was chosen to 

be at about 10 cm from the center of the workspace along both the radial and axial 

coordinates. The radial and axial coordinates of the EPM were fixed to 80 and 130 mm, 

respectively. The azimuth coordinate θEPM was changed from zero to 2π in π/4 steps. Each 

EPM position was maintained for 1 min, while recording the localization data. The results 

were compared with the reference EPM pose as derived by the RM encoders. Table II 

reports the azimuth coordinate, the average radial error, and the average axial error for each 

of the eight EPM positions.

For each trial, the relative error, the drift, and the residual measurement noise were 

statistically analyzed, while the system was not subjected to relative motion between the 

WCE and the EPM. The proposed localization method presented an average absolute and 

relative error for the radial component of 2.9 ± 1.4 mm and 1.85 ± 2.1%, respectively. The 

average absolute and relative errors for the axial component were 2.1 ± 1.0 mm and 1.9 

± 0.9%, respectively.
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Typical trends for radial and axial component estimation are shown in Fig. 9. During the 

trials, the pose estimation presented a drift due to the system noise and the iterative 

integration. However, the relative error was always below 5%. The residual measurement 

noise [see Fig. 9(d)] had a Gaussian distribution (Jarque-Bera normality test with h equal to 

1 and p-value 0.1) with null average and a bandwidth below 0.5%, which remained constant 

for the entire duration of each trial. The magnetic field measurement noise fused with the 

IMU measurements did not affect the localization algorithm, thus resulting in stable long-

term behavior.

3) Robustness to Initialization Errors—This set of experiments, referred to as T02, 

was aimed at assessing the algorithm sensitivity to errors in position initialization. These 

trials were performed by moving the EPM to the same eight positions used for T01, while 

maintaining the WCE fixed into the capsule dock. For each EPM position, four different 

tests were performed by adding an increasing error e to the initialization distance p(t = 0) as 

measured during calibration. In particular, the error e had a random direction in  and  and 

an increasing module (i.e., 1, 5, 10, and 20 mm). As in T01, each test was 1 min long.

Considering all 32 tests performed, the average absolute and relative error for the radial 

component were 15.5 ± 4.2 mm and 19.5 ± 6.0%, respectively. The axial component had an 

average absolute error of 13.6 ± 3.9 mm and an average relative error of 12.1 ± 3.5%.

Typical trends for radial and axial component estimation affected by a 10-mm error in 

position initialization are shown in Fig. 9. In this case, the absolute and the relative error [see 

Fig. 9(b) and (c), respectively] decreased within the duration of the trial, never exceeding 

10% of the reference value. Interestingly, the localization algorithm was able to correct the 

initialization error with time. The residual measurement noise for both the radial and the 

axial component [see Fig. 9(d)] presented the same behavior observed in T01 trials.

4) Robustness to Positional Lag—This set of trials aimed at evaluating the effect that a 

lag between the EPM and the WCE may have on the localization algorithm. In particular, 

our goal was to quantify the minimum value for the relative speed between the EPM and the 

WCE that would prevent the localization algorithm to converge. For reference, the typical 

endoscope absolute speed during a colonoscopy is in the order of 0.8–1.6 mm/s [30]. 

However, for magnetic capsule endoscopy, the relative EPM-WCE speed is ideally null, as 

the WCE should be following the EPM motion under the effect of magnetic coupling. This 

is true as long as the WCE is able to freely move inside the lumen.

After the initial calibration as described for T01, five trials were performed by moving the 

EPM at increasing speeds while collecting localization data. Like the previous experiments, 

the WCE was locked into the capsule dock. The EPM was initially positioned at 110 mm 

along the radial component and 110 mm along the axial component, and then moved by 200 

mm along yw at a constant acceleration. For the five trials, acceleration was set to 0.396, 

0.793, 1.190, 1.587, and 1.984 m/s2, respectively. Multimedia Extension 1 shows one of 

these trials, while the results for the experiment with 1.984 m/s2 acceleration are reported in 

Fig. 10. As expected, the EPM motion along yw affected only the radial component of the 

localization algorithm, leaving the axial component almost unperturbed.
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For this set of trials, the localization algorithm presented a relative error in the radial 

component of 10% for a relative speed of 0.221 ± 0.046 m/s. This increased up to 20% for a 

relative speed of 0.335 ± 0.050 m/s. The average absolute error in the radial component was 

11.86 ± 8.36 mm, with an average relative error of 16.3 ± 10.2%. For the axial component, 

the average absolute error was 2.66 ± 1.8 mm, with an average relative error of 2.3 ± 1.6%.

Given these results, we can conclude that the algorithm is sensitive to the relative speed 

between the WCE and the EPM and the relative error exceeds 10% if the relative speed is 

greater than 0.2 m/s. As previously discussed, this speed is well above the values that we 

expect to experience during magnetic manipulation of a WCE.

5) General Assessment—The final experiment aimed at validating the localization 

algorithm for a generic trajectory of the EPM, with the WCE fixed into the capsule dock. 

After calibration, the EPM was moved via admittance control to form a 3-D loop within the 

workspace, starting from the initialization position p(t = 0). During this trial, the EPM 

coordinates spanned from about −10 to 10 cm along both  - and  -axes, and from 6 to 

12 cm away from the WCE position along the -axis.

For the entire trajectory, the proposed method of localization presented an average absolute 

error in the radial component of 6.2 ± 4.4 mm and an average relative error of 5.7 ± 7.6%. 

The average absolute error for the axial component was 6.9 ± 3.9 mm, with an average 

relative error of 7.0 4.9%. The average absolute error for the azimuth component (θ) was 

5.4° ± 7.9°.

The trajectory (as reconstructed from the RM encoders) and its estimation are represented in 

Fig. 11. Typical trends for the radial (r), the axial (z), and the azimuthal (θ) component 

estimations are shown in Fig. 12(a), (c), and (e), while the absolute and relative errors are 

reported in Fig. 12(b), (d), and (f). The azimuthal component presents a large absolute error 

when the radial component of the capsule position is approaching zero. This is due to minor 

misalignments between the capsule and the EPM. This error is significantly attenuated in the 

conversion of the pose from cylindrical to Cartesian coordinates by applying (24), as the 

radial component pr is very small or equal to zero.

It is worth noting that the experimental assessment showed an error that is about one order 

of magnitude larger than what was observed by simulation. This is probably due to the noise 

introduced by the sensors and by the digitization process.

Real-time operation of the localization algorithm for random motion of the WCE is shown in 

Multimedia Extension 2. On the left side of the screen, the localization output is plotted in 

real time showing the WCE and the EPM reference frames.

In Multimedia Extension 3, the localization is performed while moving the EPM parallel to 

a plexiglass pipe placed at an angle with respect to the global frame. In this case, the WCE is 

free to move in the pipe under the effect of magnetic coupling. The distance between the 

EPM and the WCE is about 10 cm. The localization real-time output p = [x, y, z, α, β, γ] and 

the EPM position are both superimposed to the video stream. This demonstrates the ability 
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of the proposed localization algorithm to track the WCE in real time during magnetic 

manipulation.

VI. Conclusion

This paper was motivated by the limitations of existing magnetic localization algorithms in 

terms of computational time, precision, and compatibility with magnetic manipulation of 

endoscopic capsules. To overcome these limitations, we put forward a new method for real-

time localization using fusion of inertial data with information from MFSs, combined with 

an iterative Jacobian-based approach. Our strategy uniquely applies a parameterization of 

the magnetic field by using least-squares interpolation over an exact finite-element solution, 

thus overcoming the limitations of the simplistic dipole model. To achieve this 

parameterization, we used Kronecker products and a modal fitting to describe the magnetic 

field. To assist with real-time localization (which is paramount for solving a nonlinear 

inverse problem), we used the Jacobian of the magnetic field intensity relative to pose 

perturbations of the endoscopic capsule. This allowed the use of a local linearization 

approach that is similar to the resolved rates method for inverse kinematics of serial robots.

Our algorithm was evaluated by simulation and experiments. We investigated the robustness 

of our pose estimates of the wireless capsule to initialization errors. We also characterized 

the residual measurement noise and the effect of positional lag when the magnet driving the 

capsule was moving. Our results showed that, even though the proposed algorithm exhibits 

limitations of convergence for fast relative motions, the pose estimation of the magnetic 

capsule for clinically realistic speeds was effective and reliable. In particular, experimental 

results showed an average error (expressed in cylindrical coordinates) below 7 mm in both 

the radial and axial components, and 5° in the azimuthal component. The average errors for 

the capsule orientation angles, obtained by fusing gyroscope and inclinometer 

measurements, were 0.3° for α and β, and 5° for γ. Overall, the relative error always 

remained below 10%. The proposed localization algorithm was able to run at a 1-ms refresh 

rate, an order of magnitude below what was reported in previous works. The overall refresh 

rate, including sensor data acquisition and wireless communication, was 7 ms, thus enabling 

closed-loop control strategies for WCE magnetic manipulation running faster than 100 Hz. 

Since the least-squares interpolation presents some regions of the magnetic field domain 

where the relative error is greater than 20%, in future applications the robot path planner can 

be instructed to follow the capsule and to enclose it in an optimal localization area to avoid 

these regions.

Drift—a common problem in integrative methods—may become an issue over time and 

affect the precision of localization. A possible solution is to integrate the proposed approach 

with absolute localization strategies [3], [4] or with techniques fusing multiple sensor data 

having different resolutions and refresh rates, as proposed in [31]–[33] for SLAM 

applications. Since the final goal is to localize the capsule during magnetic manipulation, the 

behavior of the algorithm must be quantitatively assessed with the capsule in motion against 

a reference localization method (i.e., vision-based localization, as in [2]), exploiting also 

inertial navigation system theory by applying the extended Kalman filter [34], [35].
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In summary, the proposed localization strategy is compatible with magnetic manipulation of 

WCE, does not require clear line-of-sight, and has a resolution that is finer than the capsule 

size, and a refresh rate that is adequate for real-time closed-loop robotic control. This 

represents an enabling technology that can move us toward intelligent control of a WCE 

during an endoscopic procedure.
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Fig. 1. 
Schematic representation of the source of magnetic field (EPM in the figure) and two 

sequential positions (i.e., pi and pi+1) of the capsule to be localized. The capsule 

orientational angles yaw and pitch are referred to as α and β, respectively.
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Fig. 2. 
Block diagram of the proposed iterative algorithm for WCE pose detection. The diagram 

displays system input, output, Jacobian of the MDR, 3-D reconstruction, and the offline 

least-squares fit calibration, which leads to the characteristic matrices Ar and Az.
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Fig. 3. 
Schematic view of the magnetic field distribution for a cylindrical axially magnetized 

permanent magnet. (a) View of the ℋ planes, its subset ℋ′, and the domain . (b) Radial 

distribution of the magnetic field on the plane .
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Fig. 4. 
Relative error for the (a) radial and (b) axial magnetic field estimated by the MDR within .
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Fig. 5. 
Ratio of relative errors of the single-dipole model to the interpolation model for the (a) 

radial and (b) axial magnetic field components. Black regions stem from visualization 

artifacts due to oscillations in the ratio from three to eight times.
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Fig. 6. 
Simulated motion of a capsule along a spiral trajectory in the center of . The black line 

represents the reference trajectory, while the crossed line shows the capsule position 

estimated by applying the Jacobian-based iterative method. The cyan ellipses represent the 

ellipsoid of localization uncertainty due to MFS noise. Colors in the crossed line express the 

relative error in position detection for the radial component.
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Fig. 7. 
Experimental platform. (a) RM and EPM. (b) Visual rendering of the wireless capsule 

endoscope (WCE) and its internal components, where FMSM is the force and motion 

sensing module, WMC is the wireless microcontroller, and PS is the power supply.
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Fig. 8. 
Schematic representation of the global frame, EPM frame, and capsule frame. The capsule 

orientation angles [α, β, γ] are shown with respect the global frame.
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Fig. 9. 
Results for the steady-state positional drift experiment (T01) and for the initialization error 

evaluation (T02) with an initialization error of 10 mm. Both T01 and T02 results are 

evaluated for the radial (left column) and the axial (right column) component. (a) Reference 

position versus estimation. (b) Absolute positional errors. (c) Relative positional errors. (d) 

Residual measurement noise. The azimuth error is presented in Fig. 12.
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Fig. 10. 
Position estimation results during the positional lag trial with uniform acceleration of 1.984 

m/s.
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Fig. 11. 
Three-dimensional representation of the EPM trajectory and its estimation by the 

localization algorithm.
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Fig. 12. 
Typical trends for the (a) radial, (c) axial, and (e) azimuth components during the final 

experiment, and related absolute and relative errors (b, d, and f, respectively).

Di Natali et al. Page 33

IEEE Trans Robot. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Di Natali et al. Page 34

TABLE I

Portions of  Showing Different Levels of Relative Error in the Interpolated Magnetic Field From the 

Proposed Method and the Single Magnetic Dipole Model

Level of relative error Radial Component Axial Component

Below 1% 42% 30%

Below 5% 78% 61%

Below 10% 86% 70%

Below 20% 92% 79%

Magnetic dipole model Radial Component Axial Component

Below 1% 12% 0.4%

Below 5% 63% 2%

Below 10% 81% 5%

Below 20% 90% 10%
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TABLE II

Results of the Steady-State Positional Drift Experiment (T01)

θEPM(°) T01-RE (mm) T01-AR (mm)

0 0.3 ± 0.3 1.5 ± 0.5

45 1.5 ± 0.9 0.3 ± 0.3

90 7.2 ± 2.8 6.4 ± 3.3

135 4.4 ± 2.1 3.4 ± 1.6

180 0.5 ± 0.5 1.8 ± 0.8

225 5.1 ± 2.8 2.5 ± 1.2

270 3.7 ± 1.5 0.6 ± 0.2

315 0.5 ± 0.4 0.4 ± 0.3
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