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Abstract

In randomized treatment studies where the primary outcome requires long follow-up of patients 

and/or expensive or invasive obtainment procedures, the availability of a surrogate marker that 

could be used to estimate the treatment effect and could potentially be observed earlier than the 

primary outcome would allow researchers to make conclusions regarding the treatment effect with 

less required follow-up time and resources. The Prentice criterion for a valid surrogate marker 

requires that a test for treatment effect on the surrogate marker also be a valid test for treatment 

effect on the primary outcome of interest. Based on this criterion, methods have been developed to 

define and estimate the proportion of treatment effect on the primary outcome that is explained by 

the treatment effect on the surrogate marker. These methods aim to identify useful statistical 

surrogates that capture a large proportion of the treatment effect. However, current methods to 

estimate this proportion usually require restrictive model assumptions that may not hold in practice 

and thus may lead to biased estimates of this quantity. In this paper, we propose a nonparametric 

procedure to estimate the proportion of treatment effect on the primary outcome that is explained 

by the treatment effect on a potential surrogate marker and extend this procedure to a setting with 

multiple surrogate markers. We compare our approach to previously proposed model-based 

approaches and propose a variance estimation procedure based on a perturbation-resampling 

method. Simulation studies demonstrate that the procedure performs well in finite samples and 

outperforms model-based procedures when the specified models are not correct. We illustrate our 

proposed procedure using a dataset from a randomized study investigating a group-mediated 

cognitive behavioral intervention for peripheral artery disease participants.
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1. Introduction

Clinical trials aimed at identifying effective treatment and prevention strategies to reduce the 

risk of a clinical outcome often face a number of key challenges when estimating a treatment 

effect on outcome risk. In particular, studies often require long term follow-up of patients in 

order to observe a sufficient number of events to precisely estimate treatment effects [1, 2]. 

In such settings, the availability of a surrogate marker that could be used to estimate the 

treatment effect and could be observed earlier than the primary outcome or with less cost or 

invasiveness to the patient would potentially allow researchers to make conclusions 

regarding the treatment effect with less required follow-up time and/or less cost [3]. That is, 

validated surrogate markers could enable shorter randomized clinical trials and require 

smaller sample sizes, thus accelerating acquisition of clinical information [4].

In one of the most influential papers on the validation of surrogate markers, Prentice [5] 

defined a criterion for a valid surrogate marker which required that a test for treatment effect 

on the surrogate marker also be a valid test for treatment effect on the primary outcome of 

interest. Since his work, a substantial amount of research has led to the development of four 

major frameworks for evaluating and validating surrogate markers, as described in Joffe & 

Greene [6]: one based on conditioning on the observed surrogate marker, a second based on 

defining direct and indirect effects of the treatment on the primary outcome, a third based on 

a meta-analytic framework, and a fourth based on principal stratification, with the approach 

proposed by Prentice belonging to the first framework. Methods developed within the first 

two frameworks have often focused on defining and estimating the proportion of treatment 

effect on the primary outcome that is explained by the treatment effect on the surrogate 

marker. Motivated by the Prentice criterion, these methods aim to identify useful statistical 

surrogates (as opposed to principal surrogates [7]) as those which capture a large proportion 

of the treatment effect on the primary outcome, which is also the focus of this paper. 

However, available statistical methods to estimate this proportion have numerous limitations 

[8, 9, 10, 11]. In particular, current methods usually require restrictive model assumptions 

that may not hold in practice. For example, Freedman et al. [8] proposed to estimate this 

proportion by examining the change in the regression coefficient for treatment when the 

surrogate marker is added to a specified regression model. However, when this model is 

misspecified, the appropriate interpretation of this estimate is not clear [12, 13]. Wang & 

Taylor [9] propose a much more flexible approach to estimate the proportion of treatment 

effect explained by defining a quantity that attempts to capture what the effect of the 

treatment would be if the values of the surrogate marker in the treatment group were 

distributed as those in the control group. While modeling choices are still required, this 

approach accommodates various practical settings and has a causal interpretation under 

certain conditions [13].

It is of great interest to investigate estimation procedures that allow for more flexible 

assumptions and do not rely on the correct specification of multiple models. Furthermore, 

when there are multiple surrogate markers of interest, it is difficult to capture the complex 

relationships between the surrogate markers using restrictive model-based methods. The 

approach proposed by Freedman et al. [8] for the single marker setting can be easily 

extended to a multiple marker setting by examining the change in the regression coefficient 
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for treatment when the surrogate markers are added to a specified regression model, though 

this approach still relies on the correct specification of the models. Xu & Zeger [14] have 

proposed methods to determine whether multiple markers can improve inference about the 

treatment effects on a clinical endpoint, but their approach requires specifying parametric 

models and using Markov Chain Monte Carlo to estimate model parameters.

In this paper, we propose a robust estimation procedure to estimate the proportion of 

treatment effect on the primary outcome that is explained by the treatment effect on one or 

more potential surrogate markers in order to identify useful statistical surrogates. For 

brevity, we will refer to ‘the proportion of treatment effect on the primary outcome that is 

explained by the treatment effect on a surrogate marker’ as ‘the proportion of treatment 

effect explained by a surrogate’. In Section 2 we introduce our setup and definitions in a 

potential outcomes framework and describe the quantity we aim to estimate. In Section 3 we 

propose our estimation procedure in a single marker and multiple marker setting. We first 

describe available approaches for estimating the quantity including the model-based 

approach proposed by Freedman et al. [8] and a more flexible though still model-based 

approach proposed by Wang & Taylor [9]. We propose to estimate the proportion of 

treatment effect explained by a single potential surrogate marker using a nonparametric 

approach and then extend this procedure to estimate the proportion of treatment effect 

explained by a combination of multiple potential surrogate markers. We focus on the setting 

in which the surrogate marker(s) and primary outcome are fully observed for all individuals 

in both treatment groups and the surrogate marker (at least one surrogate marker in the 

multiple surrogate case) is continuous, while the primary outcome can be any general fully 

observed (uncensored) outcome. In Section 4 we describe the asymptotic properties of our 

estimates and propose variance estimation procedures. In Section 5 we investigate the finite 

sample properties of our estimation procedure and compare our proposed procedure to other 

available methods using simulation studies. In Section 6 we illustrate this procedure using a 

dataset from a randomized study investigating a group-mediated cognitive behavioral 

intervention for peripheral artery disease participants.

2. Setup and Definitions in a Causal Inference Framework

Let G be the binary treatment indicator with G = T for treatment and G = C for control (or 

placebo) and we assume throughout that subjects are randomly assigned to treatment or 

control at baseline. Let Y and S denote the primary outcome measure and surrogate marker 

measure, respectively, observed for all subjects i, i = 1, ..., n. Suppose Y is used to estimate 

and test for a treatment effect, but that Y is expensive or invasive to obtain while S is less 

expensive or invasive or that S can be obtained earlier than Y. We aim to measure the 

surrogacy of S by estimating the proportion of treatment effect explained by S.

To define our quantity of interest, we use potential outcomes notation such that Y(g) and S(g) 

denote the primary outcome and surrogate marker under treatment G = g. That is, Y(T), Y(C), 

S(T) and S(C) denote the measures for the primary outcome under the treatment, primary 

outcome under the control, surrogate marker under the treatment and surrogate marker under 

the control, respectively. In practice, we only observe (Y, S) = (Y(T), S(T)) or (Y(C), S(C)) 

depending on whether G = T or C.
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Throughout, we define the treatment effect, Δ, as the expected difference in Y under the 

treatment compared to Y under the control, Δ = E(Y(T) − Y(C)). We aim to measure the 

surrogacy of a potential surrogate marker using contrasts between the actual treatment effect 

on Y and the residual treatment effect that would be observed if the surrogate marker is not 

affected by the treatment. The residual treatment effect can be defined as

(1)

where ΔS(s) = E(Y(T) − Y(C)|S(T) = S(C) = s) and FC(·) is the marginal cumulative 

distribution function of S(C), the surrogate marker measure under the control. Note that FC(s) 

could similarly be replaced by FT(s), the marginal cumulative distribution function of S(T) 

and we assume that the support of SC and ST are the same. However, ΔS(s) is in general not 

identifiable since S(T) and S(C) can not be observed simultaneously. To circumvent this 

difficulty, we assume that

(2)

That is, given the surrogate marker value in one group, the surrogate marker value in the 

other group becomes noninformative to the potential response in the current group. Under 

assumption (2),

(3)

where the first term in (3) can be interpreted as the expected outcome under treatment if the 

treatment has no effect on the surrogate marker and the residual treatment effect ΔS(·) can be 

used to measure the surrogacy of S. Note that ΔS given in (3) only depends on observed 

quantities and can be viewed as a measure for the direct treatment effect beyond the 

surrogate marker even without assumption (2). Further discussions on the interpretation of 

ΔS can be found in Section 7.

Thus, the proportion of treatment effect explained by the surrogate marker, which we denote 

by RS, can be expressed using a contrast between ΔS and Δ:

(4)

This definition is not new and has been proposed by Wang & Taylor [9]. In addition, Taylor 

et al. [13] provides a detailed description and assessment of the causal interpretation that is 

possible using the proportion of treatment effect explained by a surrogate marker as a 

measure of surrogacy. In this paper, we focus on nonparametrically estimating this 

proportion with a continuous surrogate marker. Informally, we use RS to measure the extent 

to which the treatment effect on the surrogate marker captures information about the 

treatment effect on Y by comparing the total treatment effect with the hypothetical treatment 

effect when there is no effect of treatment on S i.e. when FT(s) = FC(s). In the next section 

we describe previously proposed methods to estimate this quantity when a single continuous 

surrogate marker is available which have generally focused on model-based estimators, and 
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then describe our proposed estimation procedure in this setting. The following section then 

extends this methodology to a setting with multiple surrogate markers.

3. Estimation

3.1. Single Surrogate Marker

We first focus on a setting where a single continuous surrogate marker, S, is available and 

our goal is to estimate the proportion of treatment effect explained by S, RS. Let the 

treatment effect measure of interest be the expected difference in outcome under treatment 

compared to control, Δ = E(Y(T) − Y(C)) = E(Y(T)|G = T) − E(Y(C)|G = C) assuming that we 

are in a randomized treatment setting. The observed data consist of nT independent 

identically distributed (i.i.d) copies of (Y(T), S(T), {(YTi, STi), i = 1, ···, nT}, from the 

treatment group G = T and nC i.i.d copies of (Y(C), S(C)), {(YCi, SCi), i = 1, ···, nC}, from the 

treatment group G = C. One can then estimate the treatment effect as

Since RS = 1 − ΔS/Δ, we now focus on estimating ΔS, the residual treatment effect. As 

expressed in (3), ΔS aims to capture the expected difference in outcome if the distribution of 

the surrogate marker in the treatment group was the same as the distribution of the surrogate 

marker in the control group. One model-based approach to estimate ΔS, proposed by Wang 

& Taylor [9], is to specify models for E(Y(g)|S(g)), g = T, C such as:

(5)

It can be shown that if this model is correctly specified, ΔS = β2. Thus, reasonable estimates 

for ΔS and RS could be  and , respectively. This approach is equivalent to that 

proposed by Freedman et al. [8] where an estimate for the proportion of treatment effect 

explained by a surrogate is obtained by fitting the following two regression models:

(6)

and estimating RS as  with  and  being the estimators of γ1S and γ1, 

respectively. Here we have used F to indicate that this is the estimate based on Freedman's 

proposed approach. When all the specified models are linear as in (5) and (6), 

.

Alternatively, to allow for additional flexibility, Wang & Taylor [9] suggest that one could 

include an interaction term when specifying the models used to estimate ΔS:
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(7)

It can be shown that when these models hold, ΔS = β2 + β3α0. Thus, reasonable estimates for 

ΔS, Δ, and RS using this approach would be

where we have used M to denote this as the flexible model-based estimator.

While the latter approach is more flexible in terms of model specification given the 

interaction term, both model-based approaches rely on correct model specification to obtain 

a consistent estimate. In particular, the limitations of using  as an estimate of the 

proportion of treatment effect explained by a surrogate have been widely noted and include 

the reliance of the estimate on the correct specification of both models in (6), which is often 

not practical, and the difficulty with interpreting the estimate when one or both models do 

not hold [10, 12, 9].

To develop a more robust approach, we instead propose an estimation procedure to estimate 

RS that does not require any model specification and instead nonparametrically estimates ΔS. 

Specifically, we propose to estimate μT(s) = E(Y(T)|S(T) = s) nonparametrically using kernel 

smoothing and we denote the resulting estimator as . That is,

where STi is the observed S(T) for person i, YTi is the observed Y(T) for person i, K(·) is a 

smooth symmetric density function with finite support, Kh(·) = K(·/h)/h and h is a specified 

bandwidth. As in most nonparametric functional estimation procedures, the choice of the 

smoothing parameter h is critical. To eliminate the impact of the bias of the conditional 

mean function on the resulting estimator, we require the standard undersmoothing 

assumption of  with δ ∈ (1/4, 1/2). To obtain an appropriate h we first use the 

bandwidth selection procedure given by Scott [15] to obtain hopt; and then we let 

 for some c0 ∈ (1/20, 3/10) to ensure the desired rate for h. In all numerical 

examples, we chose c0 = 0.25. We then estimate ΔS as

(8)
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where SCi is the observed S(C) for person i and YCi is the observed Y(C) for person i. Note 

that the second term of (8) simply estimates the mean response among those with G = C 
while the first term attempts to estimate the hypothetical mean response that would have 

been observed if the distribution of S among those with G = T was the same as that of those 

with G = C. In this way,  is an estimate of ΔS, the residual treatment effect after removing 

the treatment effect attributable to S. Lastly, we estimate RS as

Recall from above that it was assumed that the supports of S(T) and S(C) are the same. Since 

μT(s) is only identifiable on the support of S(T) without additional parametric assumption, 

this assumption is necessary to estimate . Otherwise, if the supports of S(T) 

and S(C) are not dramatically disparate, one may alternatively consider a modified version of 

this estimation method that uses appropriate spline or local linear smoothing methods [16, 

17], which allow mild extrapolation of μT(s) beyond the support of S(T).

3.2. Multiple Surrogate Markers

While work in the area of surrogate marker research has alluded to the need for a valid 

estimate of the proportion of treatment effect explained by a set of multiple surrogate 

markers, limited work has been done to propose and investigate robust estimates in this 

setting [12, 14]. One potential approach would be an extension of Freedman's estimate 

obtained by fitting the following two models:

(9)

where S is the vector of candidate surrogate markers, and estimating the surrogacy by

where, again,  and  are estimators for the corresponding regression coefficients.

Alternatively, one may generalize the definition of RS for a single marker, described above, 

to multiple markers in a straightforward manner:

(10)

where

under the assumption that

Parast et al. Page 7

Stat Med. Author manuscript; available in PMC 2017 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where FC(s) is the marginal cumulative distribution function of S(C).

If the model (9) is correctly specified, it is not difficult to show that Freedman's estimate is a 

consistent estimator of RS. However, since (9) may not be correctly specified, we consider 

alternative approaches. To estimate ΔS, one could consider a flexible model-based approach 

where models for E(Y|G, S) and E(Sj|G) for each Sj in S = {S1, ...Sp} (where p is the number 

of surrogate markers) are specified and obtain an estimate of ΔS assuming these models are 

correct. Without loss of generality, consider the case where there are three surrogate 

markers, S = {S1, S2, S3} and one specifies the following linear models:

(11)

(12)

and

(13)

It can be shown that when these models hold

(14)

Thus, reasonable estimates for ΔS and RS here would be easily obtained by replacing the 

unknown regression coefficients in (14) by their consistent estimators. We denote the 

resulting estimators by  and , similar to the single marker setting.

With this approach, one could now define a single “pseudo-marker”

using (12). If the surrogacy of S is defined by (10), then the surrogacy of S is equivalent to 

that of W when W = μT(S) = E(Y(T)|S(T) = S). Here, the surrogacy of the one-dimensional 

“marker” W is defined by (3) and (4). The formal justification of this claim is given in 

Appendix A of the Supplementary Materials. Therefore, we can claim that W has the full 

surrogacy of all three markers combined, i.e., RW = RS, which can be estimated based on 

(14). However, the validity of this approach, no matter how flexible the relevant regression 

model is, still depends on the correct specification of the model. Under a misspecified 

model, RW is different from RS and, more importantly, the model-based estimator  is not 

a valid estimator of either of them.
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An alternative way to estimate ΔS is to employ a nonparametric procedure. However, when 

the dimension of S (the number of potential surrogate markers) is greater than two, a 

completely nonparametric procedure is infeasible due to the curse of dimensionality [18]. 

Instead, we propose to use a two-stage procedure combining the aforementioned model-

based approach and the nonparametric estimation procedure proposed in Section 3.1. 

Specifically, our proposed two-stage procedure is based on a dimension reduction approach 

where we focus on the conditional distribution of Y(T)|S(T) first. That is, we employ a 

working semiparametric model such as

(15)

to reduce the dimension of S at the first stage, where g(·) is a monotone increasing function 

given a priori. Even when the working model is misspecified, the resulting estimator  based 

on {(YTi, STi), i = 1, ···, nT} converges to a deterministic limit β0 in probability as nT → ∞ 

under general regularity conditions. Other commonly used regression models such as the 

generalized transformation model can also be employed to estimate the conditional 

expectation E(Y(T)|S(T)) either directly or indirectly. Without loss of generality, we consider 

 as the new surrogate marker of interest and in the second stage, apply the approach 

proposed in the single marker setting to estimate its surrogacy. To be specific, we 

nonparametrically estimate E(Y(T)|QT = q) where  as  based on 

 and then estimate ΔS as

where . We estimate the proportion of treatment effect captured by S via Q, RS as 

. Regardless of the correct model specification of (15),  will always be a 

consistent estimator of ΔQ where

and FQC(·) is the cumulative distribution function of  and  will always be a 

consistent estimator of RQ = 1 − ΔQ/Δ, the surrogacy of . While the estimator  is 

constructed to estimate the full surrogacy of S, it may not approximate the latter well if the 

working model (15) fails to characterize the dependence of Y(T) on S(T). Therefore, in 

practice one may want to fit a more flexible regression model than (15), e.g. (with a slight 

abuse of notation) one could assume a working regression model
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where Z(S) is a known transformation of the marker S including, for example, interactions 

and nonlinear transformations of the components of S. In the end, we may use  as 

the new surrogate marker for the treatment effect and  as the estimator for its surrogacy. 

Note that even though we may not capture the full surrogacy of S,  and  could still serve 

as a good surrogate marker and an accurate assessment of its surrogacy, respectively.

4. Inference and Variance Estimation

It can be shown that under suitable regularity conditions the proposed estimates  and 

are consistent estimators of RS and RQ, respectively. Furthermore,  and 

 converge weakly to respective normal distributions. The theoretical 

justification is provided in Appendix B (single marker setting) and Appendix C (multiple 

marker setting) of the Supplementary Materials. The variances associated with these 

asymptotic distributions are difficult to estimate empirically. Therefore, we propose to 

estimate the variability of our proposed estimators and construct confidence intervals using a 

perturbation-resampling method, which has been successfully used in many applications 

[19, 20, 21, 22, 23]. This perturbation-resampling method is similar to the wild bootstrap 

[24, 25, 26].

Specifically,  be n × D 
independent copies of a positive random variables V from a known distribution with unit 

mean and unit variance, such as the standard exponential distribution. In the single marker 

setting, let

and

Then one can estimate the distribution of

by the empirical distribution of
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For example, the variance of former can be approximated by , the empirical variance of the 

latter conditional on the observed data. To construct a 100(1 − α)% confidence interval for 

RS, one can calculate the 100(α/2)th and 100(1 − α/2)th empirical percentile of  or 

estimate the variance of  by the empirical variance of  and construct the 

corresponding Wald-type confidence interval. An alternative is to employ Fieller's method 

for making inference on the ratio of two parameters [27, 28] and obtain the 100(1 − α)% 

confidence interval for RS as

where  and cα is the (1 − α)th percentile of

In the multiple marker setting, let  and  be the perturbed estimates of  and 

estimated using weights V(b), respectively. Specifically, if  is obtained via solving the 

estimating equation

then  is the root of the perturbed estimating equation

and , for g = T or C. Furthermore, the perturbed counterparts of  and 

are
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respectively, and  can be defined as . Again the distribution of

can be approximated by the empirical distribution of

when the sample size is large. Therefore, we may make inference for RQ similarly and 

obtain confidence intervals as described in the single marker setting. The theoretical 

justification for the perturbation-resampling procedure is provided in Appendix D of the 

Supplementary Materials.

5. Simulation Studies

5.1. Single Surrogate Marker

We examined several simulation settings to assess the performance of our proposed 

estimator, , and proposed variance estimation procedure in the single surrogate marker 

setting. In addition, we compared the performance of our proposed estimator to both model-

based estimators described in Section 3.1,  and . When the models that are required to 

be specified to obtain  and  are correct, we would expect the proposed estimate and 

both model-based to be unbiased though the proposed estimate may not be as efficient. 

However, when these models are not correctly specified, we would expect the model-based 

estimators to potentially yield biased estimates of R while  should remain unbiased. 

Therefore, we examine two main simulation settings with varying values of RS: one where 

the models specified in the estimation procedure for  are correct and one where these 

models are not correctly specified. In both simulation settings the model specification 

required for  does not hold because we allow for an interaction between the treatment and 

the surrogate. Throughout all simulations we use a normal density kernel for our proposed 

estimate. For each simulation setting we present results when nT = nC = 200 and nT = nC = 

1000 to assess performance and sensitivity to sample size. For all three estimates ( , 
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and ), we estimate variance using our proposed perturbation approach and construct 

confidence intervals using both the quantiles of the perturbed estimates and Fieller's method.

In the first simulation setting, Setting (i), we generated data such that the models specified in 

(7) are correct. That is,

where α0 = 23, 5, and −1/3 correspond to RS = 0.2, 0.5 and 0.9, respectively. That is, when 

α0 = 5, the treatment effect on the surrogate marker explains approximately 50% of the 

overall treatment effect. The top portion of Table 1 shows the performance of our proposed 

estimator  and both model-based estimators,  and  in this setting when RS = 0.2, 

0.5, and 0.9. The proposed estimation procedure performs well with very small bias, an 

estimated standard deviation using the perturbation approach close to the empirical standard 

deviation and a coverage level close to the nominal level of 95%. As expected, both  and 

 have very small bias and the efficiency loss demonstrated by the proposed estimation 

approach when the model specified by the flexible model-based approach is correct, is fairly 

mild. However,  has poor performance with inadequate coverage and large bias compared 

to the other two estimators as was expected given that this estimation approach incorrectly 

assumes that there is no interaction between the treatment and the surrogate marker. 

Performance in general is better when nT = nC = 1000 compared to when nT = nC = 200 as 

expected, with the flexible model-based approach being slightly superior to the proposed 

method when the smaller sample size is used.

In the second simulation setting, Setting (ii), we generated data such that the models 

specified in (7) are not correct. Specifically,

where (α0, α1, α2) = (20, 1, 0.5) corresponds to RS ≈ 0.2, (α0, α1, α2) = (0.5, 1, 0.5) 

corresponds to RS ≈ 0.5, and (α0, α1, α2) = (0, 0.82, 0.22) corresponds to RS ≈ 0.9. The 

bottom portion of Table 1 shows the performance of our proposed estimator  and both 

model-based estimators,  and  in this setting. As expected when the models are 

misspecified, both model-based estimators have rather large bias and poor coverage with 

higher bias and poorer coverage as RS increases, while the proposed estimate is unbiased 

and has coverage levels close to the nominal level of 95%. For all estimators, the 

perturbation approach produces standard deviation estimates that are close to the empirical 
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estimates. As expected, when nT = nC = 200, the estimates from the proposed method have 

larger biases than those in the larger sample size setting but still outperform the two model-

based approaches.

5.2. Multiple Surrogate Markers

We also examined several simulation settings to assess the performance of our proposed 

estimator, , and proposed variance estimation procedure in the multiple surrogate marker 

setting, and compared the performance of our proposed estimator to the extension of 

Freedman's estimator, , and the model-based estimator, , described in Section 3.2. 

Since we assumed a working linear regression model for , both the 

proposed and model-based estimators aim to estimate RQ, the surrogacy of . On the 

other hand, it can be shown that Freedman's method aims to estimate RF, the surrogacy of 

, where γ2S is the limit of the estimated regression coefficient of model (9) as the 

sample size goes to infinity. As in the previous section, when the specified models are 

correct, we would expect the proposed estimate and both model-based estimates to be 

unbiased though we expect some efficiency loss with our proposed estimator. However, 

when these models are not correctly specified, we would expect the proposed estimator and 

its associated inference are still valid for estimating RQ, while neither  nor  are 

consistent for their respective quantities (RQ and RF, respectively). Therefore, we examine 

two main simulation settings with varying values of RS: one where the specified models are 

correct and one where these models are misspecified. In both simulation settings the model 

specification required for  does not hold because we allow for an interaction between the 

treatment and the surrogate. We will also compare RQ and RF to the true surrogacy of S, RS. 

Throughout all simulations we use a normal density kernel for our proposed estimate and for 

each simulation setting we present results when nT = nC = 200 and nT = nC = 1000 to assess 

performance and sensitivity to sample size, as in the single marker settings. For all three 

estimates ( ,  and ), we estimate variance using our proposed perturbation approach 

and construct confidence intervals using both the quantiles of the perturbed estimates and 

Fieller's method.

In the third simulation setting, Setting (iii), we generated data such that the models specified 

in (12) and (13) are correct. That is,

where (α0, α1, α2) = (17.5, 4, 2.5) corresponds to RS = 0.2, (α0, α1, α2) = (5.35, 4, 2.5) 

corresponds to RS = 0.5, and (α0, α1, α2) = (1.99, 3.6, 2.3) corresponds to RS = 0.9. The top 
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portion of Table 2 shows the performance of our proposed estimator  and both model-

based estimators,  and  when RS = 0.2, 0.5, and 0.9. The proposed estimation 

procedure performs well with very small bias, an estimated standard deviation using the 

perturbation approach close to the empirical standard deviation and a coverage level close to 

the nominal level of 95%. As expected, both  and  have very small bias and the 

efficiency loss demonstrated by the proposed estimation approach when the model specified 

by the flexible model-based approach is correct, is fairly mild. However, the 95% confidence 

interval based on  has inadequate coverage due to relatively large bias compared to the 

other two estimators. It is expected given that this estimation approach assumes there is no 

interaction between the treatment and the surrogate marker. As in the single marker setting, 

performances of all methods are in general better when nT = nC = 1000 compared to when 

nT = nC = 200, with the flexible model-based approach being slightly superior to the 

proposed method especially when the smaller sample size is used.

In the last simulation setting, Setting (iv), we generated data such that the models specified 

in (12) and (13) are not correct. Specifically,

where (α0, α1, α2, α3, α4, α5, α6, α7) = (47, 0.7, 0.4, 0.2, 0.5, 0.7, 0.39, 0.2) corresponds to 

RS ≈ 0.2, (α0, α1, α2, α3, α4, α5, α6, α7) = (9.3, 0.7, 0.4, 0.2, 0.5, 0.5, 0.3, 0.1) corresponds 

to RS ≈ 0.5, and (α0, α1, α2, α3, α4, α5, α6, α7) = (1.2, 0.52, 0.32, 0.1, 0.5, 0.5, 0.3, 0.1) 

corresponds to RS ≈ 0.9. The lower portion of Table 2 shows the performance of , , 

and  in this setting when RS ≈ 0.2, 0.5, and 0.9. As noted above, since we assume a 

working linear regression model for , both the proposed and flexible 

model-based estimators aim to estimate RQ, the surrogacy of , while Freedman's 

method aims to estimate RF, the surrogacy of . Therefore, in Table 2 we provide both 

the true RS (0.2,0.5 or 0.9) and (RQ, RF) and calculate bias, MSE, and coverage with respect 

to the quantity each estimator aims to estimate. As discussed in Section 3.2, when the 

working model (15) in our proposed procedure is not correct, the proposed estimator, , 

will always be a consistent estimator of RQ but will only approximate the true RS. In 

contrast, when the models in the flexible model-based procedure, (11) and (12), are not 

correct, the model-based estimator  is not a consistent estimate of either RQ or RS. In this 

simulation setting, none of the specified models are correct [hatwide] i.e. the working model 

for the proposed procedure is not correct and the models specified by the flexible model-

based procedure and Freedman's approach are also not correct. The proposed estimation 
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procedure outperforms both model-based estimators in terms of bias and MSE and has better 

coverage for RQ. When RS = 0.90 and the working model is misspecified, the coverage of 

our proposed estimator is slightly lower than the nominal level which may due to the 

potential inadequacy of the normal approximation, particularly when RS is close to 1.

6. Example

To illustrate our proposed estimation procedure we use data from a study of a 6-month 

group-mediated cognitive behavioral (GMCB) intervention for peripheral artery disease 

(PAD) participants. Previous results from this study described in McDermott et al. [29] 

showed that the GMCB intervention, which promoted home-based walking exercise, 

improved distance covered in a 6-minute walk, 12 months after completing the intervention, 

compared to a control group. The intervention consisted of weekly visits to an exercise 

facility and incorporated group support and self-regulatory skills (nT = 81) while the control 

group condition involved weekly on-site group meetings at a medical center where 

participants received health educational lectures on topics not related to exercise (nC = 85). 

The primary outcome was the distance the participant completed after 6 minutes of walking 

up and down a 100-foot hallway at 12 months after randomization. There were three 

potential surrogate outcomes of interest which were obtained from the Walking Impairment 

Questionnaire (WIQ), a PAD-specific measure of self-reported limitations with 3 domains: 

walking distance, walking speed, and stair climbing (all on a scale from 0-100) [30]. Given 

that measurement of the primary outcome, the distance covered in 6 minutes, requires 

special supervision and attendance by the patients, we were interested in the questionnaire 

measures as potential surrogates as they would require fewer resources to collect.

For illustration, we estimate the proportion of treatment effect explained by each of the three 

potential surrogates alone (walking distance, walking speed and stair climbing from the 

WIQ), and then estimate the proportion of treatment effect explained by all three surrogates 

together using our proposed procedure and the model-based procedures. The overall 

treatment effect, defined as the difference in the change in distance covered in six minutes in 

the intervention group (average gain of 25.6 meters) compared to the control group (average 

loss of 7.4 meters), was 33.9 meters. Table 3 shows the resulting estimates of RS for S equal 

to each of the three surrogate measures using the proposed estimator, , the flexible model-

based estimator, , and Freedman's estimator, , and corresponding standard deviation 

estimates and 95% confidence intervals. The estimated proportion of treatment effect 

explained varied substantially depending on the estimation procedure used. While none of 

the measures appear to explain a substantial proportion of the treatment effect, self-reported 

walking speed from the WIQ appears to capture the largest proportion of the treatment 

effect. Specifically, walking speed explains about 48% of the treatment effect using our 

proposed estimation procedure, 37% using the flexible model-based procedure and 17% 

using Friedman's approach. Walking distance from the WIQ also appears to explain a 

reasonable proportion of the treatment effect while stair climbing explains little of the 

treatment effect. The last portion of Table 3 shows the estimated quantities for all three 

surrogate measures together. With the flexible model-based procedure, one could use the 
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estimated model parameters to construct a single “pseudo-marker” as described in Section 

3.2 which would be:

Using our proposed procedure, 48% of the treatment effect is explained by the three 

measures together while the flexible model-based procedure and Freedman's approach 

estimate the proportion of treatment effect explained as 38% and 18%, respectively. It is 

important to note that all procedures produce rather wide confidence intervals in this 

illustration, we discuss this further below.

7. Discussion

We have proposed a nonparametric procedure to estimate the proportion of treatment effect 

explained by a single potential surrogate marker and have extended this procedure to a 

setting with multiple surrogate markers. Specifically, our procedure uses kernel smoothing to 

estimate the conditional mean of the primary outcome given the surrogate marker under 

treatment and applies this estimate to the control group to obtain an estimate of the residual 

treatment effect. In the multiple marker setting, we use a working model to obtain a single 

summary measure and again use kernel smoothing in an effort to obtain an estimate that is 

more robust to misspecification of the working model. We have compared our proposed 

approach to available model-based approaches which require specification of models 

describing the relationship between the surrogate and the primary outcome and 

demonstrated through simulations that the proposed procedure outperforms the model-based 

procedures when the specified models do not hold. In addition, we have proposed a variance 

estimation procedure based on perturbation-resampling and showed that the resulting 

variance estimates are close to empirical estimates.

As discussed in Molenberghs et al. [11], focusing on the proportion of treatment effect 

explained by a surrogate as the quantity of interest to capture surrogacy has some 

limitations. While our definition of the quantity in (4) improves upon the more common 

definition using coefficients from a linear regression model because it does not rely on 

correct model specification, the quantity will still tend to be unstable when the treatment 

effect is close to zero and confidence intervals for the quantity will tend to be very wide 

unless one has a very large sample size or the treatment effect is large, as we observed in our 

illustration with PAD participants. Therefore, use of the proportion of treatment effect 

explained quantity would not be advisable in a study where the treatment effect is small. 

While we have shown that our proposed estimators can greatly reduce bias by being robust 

to model misspecification, further research to develop more efficient estimators would be 

useful.

We note that causal interpretations of the estimated quantity should be approached with care 

since certain untestable assumptions are required to hold in order for this quantity to truly 

capture the proportion of treatment effect explained by the surrogate. However, independent 

of those assumptions, the defined surrogacy quantity could be used to quantify the ability of 
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the surrogate marker to replace the primary outcome in estimating the treatment effect. 

Specifically, one could measure the treatment effect based on S only using

where μ(s) is a prediction of Y based on S = s and FT (·) is the marginal cumulative 

distribution function of S(T), the surrogate marker under treatment. If μ(s) = E(Y(T)|S(T) = s), 

then the difference that would be observed when  is used as a measure of the treatment 

effect instead of Δ is exactly (3) i.e. ΔS. This equivalence does not rely on the assumptions in 

(2) and suggests that the defined surrogacy quantity has an appropriate interpretation in 

terms of the bias in replacing the treatment effect on the primary outcome with the expected 

treatment effect given the surrogate information.

A limitation of our proposed approach is the requirement that the supports of S(T) and S(C) 

are equivalent. However, in most practical applications where one aims to estimate the 

proportion of treatment effect explained, it is more likely that there will be substantial 

regions of overlap between S(T) and S(C) and less likely that these two regions of support 

will be substantially separated. In addition, due to the use of kernel smoothing, care should 

be taken in using the proposed estimator in small sample size settings; as shown in Section 

5, performance may be adequate with sample sizes of 200 in each group but in certain 

settings, performance can be undesirable.

Finally, we have assumed that both the surrogate marker and primary outcome are fully 

observed and that the surrogate marker (at least one in the multiple surrogate case) is 

continuous. In simple settings, where the surrogate marker is discrete, alternatives that do 

not involve nonparametric smoothing can be used. When the primary outcome of interest is 

a time-to-event outcome such as time to death or time to diabetes diagnosis, the methods 

proposed here would require further (nontrivial) extension to handle missing surrogate 

marker measurements and censoring of the primary outcome itself. Further research in these 

areas is warranted.

An R package implementing the methods described here, called Rsurrogate, is available on 

CRAN.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Performance of the proposed ( ) and model-based estimators (  and ) in terms of bias, empirical 

standard deviation (ESD), average standard deviation (ASD) obtained using the proposed perturbation-

resampling approach, mean squared error (MSE) and coverage of the 95% confidence intervals obtained using 

both the quantiles of the perturbed estimates (Quantile) and Fieller's method (Fieller), in Setting (i) where 

there is a single surrogate marker and the models assumed by the flexible model-based estimator, , are 

correctly specified, and Setting (ii) where there is a single surrogate marker and the specified models are not 

correct with nT = nS = 200 and with nT = nS = 1000.

Setting (i) Model Correctly Specified

nT = 200, nC = 200

RS = 0.2 RS = 0.5 RS = 0.9

RŜ RS
M RS

F RŜ RS
M RS

F RŜ RS
M RS

F

Bias −0.0023 −0.0005 −0.0072 −0.0066 −0.0021 −0.0189 −0.0072 0.0009 −0.0295

ESD 0.0260 0.0259 0.0251 0.0457 0.0445 0.0432 0.0559 0.0506 0.0488

ASD 0.0262 0.0258 0.0250 0.0466 0.0450 0.0434 0.0561 0.0513 0.0494

MSE 0.0007 0.0007 0.0007 0.0021 0.0020 0.0022 0.0032 0.0026 0.0033

Coverage (Quantile) 0.946 0.941 0.938 0.945 0.941 0.914 0.926 0.942 0.885

Coverage (Fieller) 0.951 0.947 0.942 0.946 0.947 0.915 0.934 0.944 0.885

nT = 1000, nC = 1000

RS = 0.2 RS = 0.5 RS = 0.9

RŜ RS
M RS

F RŜ RS
M RS

F RŜ RS
M RS

F

Bias −0.0003 0.0003 −0.0065 −0.0014 −0.0001 −0.0169 −0.0031 −0.0007 −0.031

ESD 0.0118 0.0115 0.0111 0.0207 0.0196 0.0188 0.0241 0.0214 0.0205

ASD 0.0117 0.0115 0.0111 0.0203 0.0196 0.0189 0.0238 0.0216 0.0208

MSE 0.0001 0.0001 0.0002 0.0004 0.0004 0.0006 0.0006 0.0005 0.0014

Coverage (Quantile) 0.948 0.947 0.899 0.939 0.946 0.840 0.936 0.934 0.676

Coverage (Fieller) 0.948 0.950 0.900 0.940 0.951 0.835 0.941 0.941 0.682

Setting (ii) Model Misspecified

nT = 200, nC = 200

RS = 0.2 RS = 0.5 RS = 0.9

RŜ RS
M RS

F RŜ RS
M RS

F RŜ RS
M RS

F

Bias −0.0022 −0.0141 −0.0241 −0.0064 −0.0364 −0.0612 −0.007 −0.0629 −0.0844

ESD 0.0250 0.0290 0.0275 0.0404 0.0521 0.0492 0.0161 0.0436 0.0404

ASD 0.0255 0.0292 0.0277 0.0417 0.0525 0.0497 0.0176 0.0441 0.0414
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Setting (ii) Model Misspecified

nT = 200, nC = 200

RS = 0.2 RS = 0.5 RS = 0.9

RŜ RS
M RS

F R̂S RS
M RS

F R̂S RS
M RS

F

MSE 0.0006 0.0010 0.0013 0.0017 0.0040 0.0062 0.0003 0.0059 0.0088

Coverage (Quantile) 0.946 0.912 0.842 0.948 0.883 0.737 0.937 0.562 0.246

Coverage (Fieller) 0.947 0.908 0.832 0.947 0.873 0.715 0.933 0.537 0.224

nT = 1000, nC = 1000

RS = 0.2 RS = 0.5 RS = 0.9

RŜ RS
M RS

F RŜ RS
M RS

F RŜ RS
M RS

F

Bias −0.0008 −0.0134 −0.0234 −0.0022 −0.0335 −0.0585 −0.0018 −0.0587 −0.0805

ESD 0.0116 0.0133 0.0126 0.0185 0.0236 0.0223 0.0071 0.0192 0.0177

ASD 0.0116 0.0133 0.0126 0.0185 0.0236 0.0224 0.0072 0.0191 0.0177

MSE 0.0001 0.0004 0.0007 0.0003 0.0017 0.0039 0.0001 0.0038 0.0068

Coverage (Quantile) 0.950 0.826 0.528 0.944 0.681 0.214 0.936 0.079 0.005

Coverage (Fieller) 0.951 0.818 0.521 0.948 0.673 0.201 0.942 0.067 0.002
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Table 3

Estimates, standard deviations (SD), and 95% confidence intervals (CI) using both the quantile method 

(Quantile) and Fieller's method (Fieller) for estimates of the proportion of treatment effect explained by each 

of three potential surrogate markers alone (walking distance, walking speed and stair climbing obtained from 

the WIQ) and the proportion explained by all three together, where the outcome of interest is change in 6 

minute walking distance from baseline to 12 months using the proposed estimator, , the flexible model-

based estimator, , and Freedman's estimator, 

R̂ S RS
M RS

F

Potential surrogate: walking distance from the WIQ

Estimate 0.4403 0.1701 0.0753

SE 0.22 0.1771 0.0976

95% CI (Quantile) (0.04,0.92) (−0.07,0.57) (−0.03,0.31)

95% CI (Fieller) (0.01,1.01) (−0.11,0.55) (−0.08,0.27)

Potential surrogate: walking speed from the WIQ

Estimate 0.4808 0.3722 0.1726

SE 0.2437 0.2839 0.1618

95% CI (Quantile) (0.13,1.04) (0.04,1.06) (−0.02,0.53)

95% CI (Fieller) (0.08,1.05) (−0.04,1.11) (−0.06,0.52)

Potential surrogate: stair climbing from the WIQ

Estimate 0.122 0.1392 0.0695

SE 0.2099 0.1581 0.0913

95% CI (Quantile) (−0.34,0.47) (−0.08,0.52) (−0.02,0.3)

95% CI (Fieller) (−0.43,0.46) (−0.17,0.51) (−0.11,0.28)

All three potential surrogates

Estimate 0.4835 0.3801 0.1771

SE 0.3236 0.3095 0.1785

95% CI (Quantile) (−0.21,1.06) (0.04,1.12) (−0.02,0.61)

95% CI (Fieller) (−0.28,1.04) (−0.06,1.07) (−0.09,0.57)
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