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Abstract

This Review discusses the various types of non-coding oligonucleotides, which have garnered 

extensive interest as new alternatives for targeted cancer therapies over small molecule inhibitors 

and monoclonal antibodies. These oligonucleotides can target any hallmark of cancer, no longer 

limited to so-called “druggable” targets. Thus, any identified gene that plays a key role in cancer 

progression or drug resistance can be exploited with oligonucleotides. Among them, small-

interfering RNAs (siRNAs) are frequently utilized for gene silencing due to the robust and well 

established mechanism of RNA interference. Despite promising advantages, clinical translation of 

siRNAs is hindered by the lack of effective delivery platforms. This Review provides general 

criteria and consideration of nanoparticle development for systemic siRNA delivery. Different 

classes of nanoparticle candidates for siRNA delivery are discussed, and the progress in clinical 

trials for systemic cancer treatment is reviewed. Lastly, this Review presents HER2 (human 

epidermal growth factor receptor type 2)-positive breast cancer as one example that could benefit 

significantly from siRNA technology. How siRNA-based therapeutics can overcome cancer 

resistance to such therapies is discussed.
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1. Introduction

The recent launching of the visionary Precision Medicine Initiative by President Barack 

Obama seeks to integrate individual variability in genes, environment, and lifestyle for 

personalized disease treatment and prevention. As the second most common cause of death 

in the US after heart disease, cancer remains one of the most fatal diseases. Oncology drug 

discovery is therefore at the forefront of the initiative. The initiative recognizes the issue of 

drug resistance and seeks to develop solutions. Progress in this regard will largely rely on 

programs such as the Cancer Genome Atlas (TCGA) project. TCGA researchers have begun 

to identify genomic aberrations and affected regulatory networks that enable aspects of 

cancer progression including proliferation, angiogenesis, invasion, drug resistance, and 

metastasis.1, 2 Unfortunately, many of the identified attractive therapeutic targets are 

considered ‘undruggable’ by conventional means (e.g., small molecule inhibitors, 

antibodies).

Advances in developing non-coding RNA molecules have provided a potential alternative 

strategy. RNA interference (RNAi) can easily be designed to modulate virtually any gene 

with a known mRNA sequence.3 RNAi could also negate the dedicated costs and efforts 

associated with traditional chemical compound screening strategies in drug discovery. 

Knocking down expression of oncoproteins at the mRNA level is potentially a more 

effective approach because this process inhibits the synthesis of the active proteins, whereas 

monoclonal antibodies and small molecule inhibitors merely block their activity and do not 

halt the synthesis of new active oncoproteins. Despite their promise, few oligonucleotide-

based therapies have reached the clinic due to inherent issues with bioavailability. The 

development of a versatile nanoparticle-based delivery platform is ever pressing for 

translating RNAi into the clinic.
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This Review provides an overview on the various oligonucleotide technologies and 

nanoparticle delivery platforms that have reached clinical trials. Insight into the 

shortcomings and limitations of the first-generation delivery platforms and rationale for 

current state-of-the-art nanoparticle development will be discussed. Lastly, specific 

examples utilizing oligonucleotide-based strategies for treating HER2-positive (HER2+) 

breast cancer will be provided along with perspectives regarding their potential translational 

impact.

2. Non-coding oligonucleotides as therapeutics in cancer

The functional roles of oligonucleotides (nucleic acids), beyond their use in encoding genes 

and proteins, were discovered in the 1990s. The identified non-coding oligonucleotides were 

shown to have a role in regulating gene expression and cell function in all organisms.4 

Figure 1 shows the research trend for each class of oligonucleotides and reveals that siRNAs 

and miRNAs have garnered the most interest since 2005. Although these oligonucleotides 

have promises in many disease applications, this Review will be limited to applications in 

cancer.

Small interfering RNAs (siRNAs)

Small interfering RNAs (siRNAs) are small (19–25 nt) double-stranded RNAs, which are 

incorporated into a protein complex called RNA-induced silencing complex (RISC) upon 

cellular internalization.5 Each siRNA has two strands, a sense strand and an antisense strand. 

The sense strand will be degraded by an endonuclease of RISC, argonaute 2. The antisense 

strand will guide RISC towards complementary target mRNA and induce mRNA cleavage. 

The siRNA strand containing the thermodynamically less stable 5′-end is preferentially 

incorporated as the antisense strand of RISC. Hence, chemical modifications are sometimes 

performed on siRNA strands to favor the incorporation of the intended antisense strand with 

RISC by modulating their thermodynamic asymmetry.6 siRNA machinery (RISC) can also 

be recycled upon degrading each mRNA. siRNAs have only one mechanism of gene 

ablation, which is mRNA cleavage, unlike antisense oligos, which have many mechanisms 

of action (see next section). Although siRNAs and miRNAs share the same RISC-mediated 

RNA cleavage, siRNAs are optimized and designed to target certain genes with high 

specificity, while miRNA can have multiple or unknown targets (see next section). Thus 

siRNAs are deemed more effective and controllable than antisense oligos and miRNAs, and 

their investigations pre-clinically and in clinics will be reviewed in the next sections.

miRNAs

miRNAs (mature microRNAs) are involved in regulating post-transcriptional gene 

expression and thus serve as one of the mechanisms that regulate cellular events and 

homeostasis.7 miRNA mimics (small, chemically modified double-stranded RNAs that 

mimic endogenous miRNAs) follow the sequence of existing miRNAs presiding in various 

cell functions. Due to the ability to target multiple genes, the role of miRNAs in non-

targeted cells can be uncertain. Further, miRNA expression can be upregulated or 

downregulated in cancer to promote cancer’s survival advantages. As miRNAs can behave 

as oncogenes or tumor suppressors,8 one can strategize with miRNAs therapeutically by 
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either suppressing oncogenic miRNAs or introducing tumor suppressor miRNAs (e.g., 

miRNA mimics). The first miRNA mimic that entered clinical trial in 2013 utilizes a 

liposome-based technology to deliver miR-34a in cancer patients (primary or metastatic with 

liver involvement), exploiting their natural tendency to accumulate in the liver. The miR-34a 

was found to downregulate mRNA expression of several genes such as ERC1, RRAS, 

PHF19, WTAP, CTNNB1, SIPA1, DNAJB1, MYCN, and TRA2A.9 This broad targeting 

ability can theoretically enhance therapeutic potential, but it also increases propensity for 

negative unwanted side effects.

Antisense oligonucleotides

Antisense oligonucleotides modulate gene expression by altering mRNA splicing pattern, 

blocking mRNA translation (by providing steric hindrance), and inducing degradation of 

targeted mRNA by the endogenous enzyme RNase H.4 RNAs are inherently unstable in 

biological system due to the presence of nucleases and have poor pharmacokinetic profiles 

due to rapid kidney clearance. To overcome these issues, several chemical modifications of 

the antisense oligos have been performed. Phosphorothioate (PS) backbone modification is 

one of the earliest and widely used for oligos currently in clinics. PS modification increases 

the antisense’s stability to nuclease degradation10 and promotes binding to plasma proteins, 

which prevents rapid renal clearance and promotes uptake by certain cell types with 

scavenger receptors (e.g., kidney and liver cells).11 In newer generations of antisense 

therapeutics, additional modifications (e.g., sugar modification, base modification, direct 

conjugation to targeting ligands) are also performed in addition to PS to further improve 

their performance, as reviewed elsewhere.12 One of the most advanced antisense oligos for 

cancer in clinical trials (i.e., reaching the NDA filing stage) is Genasense (Genta Inc.). 

Genasense was developed to block the production of the Bcl-2 protein, a key anti-apoptotic 

oncoprotein in cancer.13 It was later rejected by the FDA for treating melanoma and chronic 

lymphocytic leukemia because the primary endpoint of improving overall survival was not 

met.14 ISIS Pharmaceuticals is another leading company in antisense development. The 

most advanced antisense in their pipeline for cancer is OGX-011, which targets clusterin in 

castration-resistant prostate cancer. However, the phase III SYNERGY trial did not show 

significant improvement in overall survival.15 Other next-generation antisense drugs for 

cancer developed by ISIS Pharmaceuticals include ISIS-STAT3-2.5Rx for targeting STAT316 

in hepatocellular carcinoma and lymphoma and ISIS-AR-2.5Rx for targeting AR17 in 

prostate cancer. ISIS-STAT3-2.5Rx showed some clinical response in lymphoma patients 

(Phase I, 2014) and has currently progressed to Phase II studies.18 ISIS-AR-2.5Rx is 

currently in the phase I/II stage, but there are no published results to date.

Ribozymes

Ribozymes are considered self-processing RNAs in that they do not require proteins for 

catalysis. Angiozyme (Ribozyme Pharmaceuticals) is the first ribozyme that reached clinical 

trials for cancer treatment by targeting the vascular endothelial growth factor receptor-1 

(VEGFR-1) in patients with renal cancer. Phase I results (2005) in patients with refractory 

solid tumors showed a favorable safety profile, and 25% of patients had stable diseases for 

more than 6 months.19 Angiozyme was recently evaluated with metastatic breast cancer 

patients (Phase II, 2012) but did not show clinical efficacy.20
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Aptamers

Aptamers unlike other non-coding RNAs, rely on their tertiary and quaternary structure for 

interacting and binding with target proteins.21 Aptamers can bind proteins in a similar 

manner to antibodies but with less immunogenicity. Therefore, aptamers may serve as 

improved alternatives to current therapeutic antibodies. Like antibodies, most of the 

aptamer’s targets are still confined to only extracellular or membrane proteins. AS1411 

(Antisoma PLC) was designed to inhibit nucleolin activity and was the first aptamer to reach 

clinical trials for cancer treatment. Extended phase I (2006) and phase II (2014) studies have 

shown promising outcomes in patients with metastatic renal cell carcinoma.22

Challenges and Limitations

Challenges and Limitations most applications of oligonucleotides without delivery platforms 

are confined to blood or clearance organs (e.g., liver and kidney). Thus, lymphoma, kidney 

cancer, and liver cancer are the main candidates amenable to such technology. However, 

delivering sufficient therapeutic levels of oligonucleotides to other solid tumors (e.g., breast, 

prostate, pancreatic cancer) upon systemic administration remains a challenge. Molecular 

complexes and nanoparticle platforms have been introduced and widely studied in order to 

address these unmet needs.

3. Clinical translation of siRNA-based cancer therapeutics

Systemic (intravenous) administration of siRNAs is considered more feasible and applicable 

than local treatment to target a wider spectrum of cancers, including advanced cancer or 

metastasis. Systemic delivery of siRNAs must overcome several barriers before reaching 

their intended site, which is the cytosol of cancer cells. When introduced in blood 

circulation, naked siRNAs exhibit potential for stimulating an innate immune response and 

are susceptible to blood enzyme degradation. Several siRNA modification strategies have 

been studied to address these issues: (1) backbone modifications such as phosphorothioate or 

boranophosphate linkages, (2) modifications of 2′-OH group on the pentose sugar such as 2′-

fluoro, 2′-O-methyl, 2′-O-(2-methoxylethyl), 2′-O-(2,4-dinitrophenyl), and locked nucleic 

acids, and (3) modifications of the termini such as 5′-phosphate, 5′-O-methyl, and 3′-

deoxythymidine.5, 23 However, extensive modifications may hamper siRNA silencing 

efficacy by negatively affecting RISC incorporation and target afffinity.24, 25 Due to their 

small size, siRNAs also suffer a short circulation half-life due to rapid kidney clearance. In 

addition, these modified siRNAs still lack the ability to home specifically to cancer cells.

Nanoparticles are considered the most promising carriers for siRNA delivery over such 

alternatives as viral-based carriers, which have concerns regarding immunogenic response 

and insertional mutagenesis.26 Nanoparticles can deliver hundreds to thousands of siRNA 

molecules per an uptake event,27 while there are only 1–10 siRNA molecules in the 

conjugates (with antibodies or aptamers).28 As a result, this review will only focus on non-

viral vectors/platforms for siRNA delivery.
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4. Nanoparticles for siRNA delivery: common rationale and concepts

Prolonging siRNAs’ half-life

Prolonging siRNAs’ half-life cannot be achieved by modifying siRNAs alone. Due to their 

small size, siRNAs will be cleared rapidly by kidney filtration. Similarly, nanoparticles 

larger than 200 nm can be trapped and cleared by the liver and spleen. Thus, nanoparticles 

loaded with siRNAs at a size range of 30–200 nm can potentially prolong systemic 

clearance.29 Besides size considerations, surface characteristics also dictate their fates in 

vivo.30 Charged nanoparticles can bind with opsonins like immunoglobulin and complement 

proteins.29 This binding promotes phagocytosis by means of Fcγ and complement receptors, 

respectively, in the reticuloendothelial system (RES). This also leads to faster blood 

clearance by the liver and spleen. To minimize the nanoparticle uptake by RES, a 

hydrophilic neutral polymer is often used to shield the surface charge of the nanoparticles. 

Polyethyleneglycol (PEG)31 is one of the most often used stealth polymers. Others are 

dextran and sialic acid.32 This prolonged circulation of siRNA-nanoparticles will increase 

the likelihood of their accumulation in tumors.

The toxicity of cationic nanoparticles

The toxicity of cationic nanoparticles must be taken into account when used as a siRNA 

delivery platform. Although cationic compounds (polymer or lipid) are commonly used for 

siRNA delivery due to their ability to load negatively charged siRNAs via electrostatic 

interaction, they are considered toxic to cells and notorious for poor blood compatibility. 

Cellular damage can be caused by direct interactions between the cationic groups and 

cellular components or indirectly by reactive oxidative species formed in the presence of 

cationic compounds.33 Further, cationic nanoparticles can interact with red blood cells, 

causing hemolysis.34 Since PEGylation of cationic compounds can serve to shield the 

surface charge of nanoparticles, the stealth effects of PEG also enhance the safety profile 

and blood compatibility of cationic materials.35, 36 In addition to PEG, charge neutralization 

upon binding with anionic-charged siRNAs may be accomplished to reduce the toxicity of 

cationic charged particles.37

Targeting tumors by nanoparticles

Targeting tumors by nanoparticles can be achieved by two simultaneous strategies. First, 

passive targeting of nanoparticles to the tumor area is made possible by the enhanced 

permeability and retention (EPR) effect.38 This effect describes tumors with abnormal 

molecular and fluid transport dynamics due to leaky vasculature and poor lymphatic 

drainage, and is contributed by rapidly growing tumors requiring extra nutrient, oxygen, and 

blood supply.39 This pathological characteristic allows nanoparticles of size 30–200 nm to 

escape blood vessels and accumulate in tumor tissue. The longer the blood circulation half-

life, the more nanoparticles will be able to accumulate in the tumors. In clinical setting, this 

phenomenon is diverse among different cancer types and affected by several complex 

biological characteristics, such as angiogenesis, morphology of tumor vasculature, tumor 

genetic profiles, and components of tumor microenvironment (ECM, immune cells).39 

While passive delivery to human tumors has been evidenced by enhanced tumor 

accumulation of drugs40 and siRNAs41, 42 when delivered by nanoparticle platforms, the 
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field still requires significant further exploration. One of the challenges is the lack of 

controlled studies that tease out how different components of the tumor microenvironment or 

tumor types affect the EPR effect. Additional reviews on the EPR effect and nanomedicine 

can be found elsewhere.39, 43 Once accumulated in tumors by the EPR effect, active 

targeting can be achieved by decorating outer surface of nanoparticles with targeting agents 

(homing targets),44 such as monoclonal antibodies, single-chain variable fragments (scFv), 

targeting peptides, transferrin, folic acid, and aptamers. This strategy exploits the binding 

between targeting agents and receptors (or other membrane proteins) on the tumors, which is 

followed by cellular uptake of the particles termed receptor-mediated endocytosis.45 The 

efficiency of active targeting is contributed by several factors, such as receptor expression 

levels, binding affinity between receptors and targeting agents, number and accessibility of 

targeting agents to the receptors, and the uptake kinetics of the cells.39 Alternatively, 

cationic nanoparticles may enter cells upon electrostatic interaction with negatively charged 

cell membranes, a process called adsorptive endocytosis,46 which is less specific than the 

aforementioned receptor-mediated endocytosis. Other physiological properties of 

nanoparticles (size, shape, surface chemistry, surface roughness) also impact the cellular 

uptake profile.29 Active targeting should be deemed as a complementary strategy to the EPR 

effect rather than a distinct strategy because nanoparticles need to be in the vicinity of tumor 

area by passive targeting first. Upon tumor accumulation, active targeting then enhances the 

internalization of nanoparticles by target cells, improving its efficacy. In addition to utilizing 

overexpressed markers on cancer cells, active targeting may also potentiate the EPR effect/

tumor accumulation by targeting tumor vasculature with overexpressed endothelial 

markers,47 such as tumor-penetrating iRGD peptide targeting αv integrins.48

Endosomal escape

Endosomal escape is considered a major cellular barrier for siRNA delivery. The primary 

route of nanoparticle uptake to cells is endocytosis. Upon endocytosis, early endosomes 

containing siRNA-nanoparticles will later fuse with sorting endosomes, late endosomes, and 

eventually lysosomes in which various nucleases and acidity will degrade siRNAs.49 To 

avoid lysosomal degradation, nanoparticles have to be capable of compromising endosomal 

membranes so that siRNAs can escape from the endosome into the cytosol where they can 

function. For example, liposomal-based platforms must reorganize and bind the anionic 

phospholipids on the endosomal membrane. This binding destabilizes the endosome 

membrane, allowing endosomal escape of siRNAs (flip-flop mechanism).50 Polymers with 

protonatable amines (e.g., Polyethylenimine (PEI)) can also promote endosomal escape by 

proton sponge effects.49

To summarize, in order for siRNA delivery to be feasible as illustrated in Figure 2, the 

nanoconstructs need to (1) be intravenously injectable and thus dispersible in saline, (2) have 

prolonged blood circulation (avoiding rapid clearance by the kidney, liver, and spleen) so 

they can seek and accumulate in the tumor, (3) protect siRNAs from blood enzyme 

degradation, (4) be taken up effectively into cells, (5) escape the endosome and release 

siRNAs in the cytoplasm, and (6) have low toxicity.
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5. Different classes of nanoparticles for systemic delivery of siRNAs

This section provides a general overview of nanoparticle platforms (Figure 3) investigated 

for siRNA delivery. Emphasis is placed on those that show efficacy in animal models upon 

systemic administration. The three main classes of materials under investigation are lipid-

based, polymer-based, and inorganic nanoparticles.

5.1 Lipid-based nanoparticles

Lipid-based nanoparticles or liposomes are among the earliest class of materials for systemic 

siRNA delivery that advanced to clinical trials. They are known for their excellent 

biocompatibility and biodegradability. When put in solution with siRNAs, siRNA-liposomes 

can self-assemble and encapsulate the siRNA. Endosomal escape of siRNA relies on flip-

flop mechanism as discussed in the previous section. A thorough catalog of lipids utilized 

for encapsulation is summarized elsewhere.51 A majority of lipid-based nanoparticles 

exploit their natural tendency to accumulate in the liver (major clearance organ).52 Specific 

examples of lipid-based platforms for siRNA delivery in clinical trials will be discussed in 

the clinical trial section.

5.2 Polymer-based nanoparticles

A cyclodextrin-based nanoparticle was the first polymeric nanoparticle to enter clinical trials 

for systemic siRNA delivery to cancer.53 Since then, there have been several attempts to 

develop polymeric-based platforms for siRNA delivery. Attractive attributes include ease of 

chemical modification to introduce functionalities (e.g., endosomal escape components, 

targeting components), controlled release properties, and a large selection of functional 

polymers, while challenges for polymeric carriers are toxicity concerns and some issues of 

scalability and reproducibility. Traditionally, polymers used for siRNA delivery are cationic 

in order to complex with negatively charged siRNAs (electrostatic interaction). Also, 

siRNAs can be conjugated directly on the polymer. More detailed reviews on polymers 

(polyplex, conjugate, micelle, and dendrimer) for siRNA delivery can be found elsewhere.54

5.3 Inorganic nanoparticles

Inorganic nanoparticles exhibit unique tunable properties including the rigid surface 

amenable to chemical modification and their unique intrinsic properties (e.g., 

superparamagnetic property of iron oxide NPs,55 size-dependent optical features of quantum 

dots,56 photothermal property of gold and silver NPs,57 antioxidant property of mesoporous 

silica nanoparticle (MSNP),58 drug-loading capacity in MSNP pores). They are also 

typically easier to synthesize with high reproducibility and scalability. Inorganic materials 

do not destabilize as easily as polyplexes or liposomes when challenged with charged 

compounds in blood or on cell membranes. In most cases, to enable siRNA delivery, 

inorganic nanoparticles are typically surface-modified with other polymers or lipids, 

generating a hybrid compound. One hurdle for clinical translation of inorganic nanoparticles 

is potential toxicity due to their physicochemical properties (size, shape, charge), rigidity, 

and non-degradability. Nevertheless, some materials within this class are considered 

biologically inert (e.g., gold NPs),59 and some are degradable60 to safe components in the 
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body (e.g., calcium phosphate,61 iron oxide,60 and mesoporous silica).62 The most widely 

studied inorganic nanoparticles are described as follows.

Mesoporous silica nanoparticles (MSNPs)—Mesoporous silica nanoparticles 

(MSNPs) have many favorable properties as drug delivery carriers such as tailorable 

mesoporous structures, high specific surface areas, large pore volumes, ease of controlling 

size, and high synthesis scalability.63 Thus, they have been studied extensively and evaluated 

for their biomedical applications. Mesoporous silica is biodegradable to non-toxic 

components (e.g., silicic acid) that can be cleared by kidneys.62 Silica nanoparticles (C dots) 

were approved for clinical trials as injectable PET tracers, and the Phase I safety profile was 

favorable.64 Therefore, the translation of other silica-based nanoparticles to clinics should be 

feasible.

MSNPs have been widely researched for siRNA delivery in vitro and in vivo. Efficacy in 

animals upon systemic administration has been attained when MSNPs were coated with 

cationic polymers including PEI-cyclodextrin65, PDMAEMA66, and PEI-PEG36, 67 to 

promote siRNA and/or cellular uptake by adsorptive endocytosis due to lack of targeting 

agent. Recently, our group reported an antibody-conjugated PEG-PEI-MSNP for targeted 

siRNA delivery, which results in growth inhibition of drug-resistant HER2-positive breast 

tumors.36

Iron oxide nanoparticles—Iron oxide nanoparticles have been widely evaluated in 

biomedical and clinical applications. Examples of FDA-approved injectable iron oxide 

nanoparticles include ferumoxtran-10 as an MRI imaging agent and ferumoxytol as an iron 

replacement product for anemia in patients with chronic kidney disease. Iron oxide 

nanoparticles are deemed safe because iron exists in and is essential for the body. In 

addition, iron oxide nanoparticles can be guided to the target site by magnetic drug 

delivery.68 Lastly, superparamagnetic iron oxide nanoparticles (SPIONs) can generate heat 

under alternating magnetic fields and have been explored for magnetic hyperthermia 

treatment.55 Since iron oxide nanoparticles have been approved by the FDA, the translation 

of this class of materials to clinics is feasible. Wu et al.69 modified SPIONs with PEI-PEG 

and conjugated them with targeting agents (RGD peptides) for delivery of survivin siRNA to 

hepatocellular carcinoma xenografts. Given every other day, the targeted nanoparticles were 

more effective than their non-targeted counterpart, exemplified by gene silencing activity 

and increased apoptotic activity in tumors.

Calcium phosphate nanoparticles—Calcium phosphate nanoparticles unlike other 

inorganic nanoparticles, possess the unique property of being able to self-induce endosomal 

escape. Calcium phosphate can dissolve in acidic conditions61 thereby increasing endosomal 

osmotic pressure and, in turn, causes endosomes to swell and eventually rupture. Yang et al. 

utilized calcium phosphate nanoparticles coated with a lipid bilayer, PEG, and anisamide 

(targeting sigma receptor) for siRNA delivery to NSCLC xenograft.70 Promising in vivo 

efficacy (tumor growth inhibition) upon systemic administration was also reported.

Gold nanoparticles—Gold nanoparticles are of interest for biomedical applications due 

to their property of surface plasmon resonance.59 They can be utilized for bioimaging 
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diagnosis and photothermal therapy. SiRNA delivery with gold nanoparticles has also been 

widely studied in vitro. Studies that have evaluated response in animal models upon 

systemic administration are much less prevalent. For example, relying on passive delivery, 

Jensen et al. successfully delivered siBcl2L12 to glioblastoma by conjugating siRNAs and 

PEG directly on gold nanoparticles.71

Carbon nanotubes—Carbon nanotubes have also been evaluated as siRNA carriers. 

However, toxicity is of major concern for this class of material. The mechanisms of carbon 

nanotube toxicity include oxidative stress, inflammatory responses, and DNA damage.72 

Most studies that employ carbon nanotubes to deliver siRNAs in vivo employ local injection 

(intratumoral injection).73 While carbon nanotubes have been widely studied for drug 

delivery, in vivo efficacy as siRNA carriers upon systemic administration have yet to be 

reported for cancer treatment.

Quantum dots—Quantum dots have unique electronic and optical properties that are 

tunable to different sizes and shapes.56 While they may be useful tools for molecular biology 

as imaging agents, the toxicity of their components (i.e., cadmium and tellurium) is an 

issue.74 This will likely limit the translation of quantum dots to in-human clinical 

applications in the near future. Non-toxic quantum dots are currently under research in a 

developmental stage.75 Quantum dots have not yet been evaluated in vivo for siRNA 

delivery.

6. Translation of systemic siRNA delivery for cancer treatment in clinics

The systemic delivery of siRNAs in their infancy relied on modified siRNAs to enhance 

their stability and allow cellular uptake in lieu of a carrier. However, due to their small size, 

a majority of them will be cleared by the kidneys with a filtration size cutoff of 10 nm. 

Therefore, the application of these modified siRNAs are primarily restricted to renal 

cancer.76

Nanoparticle platforms have been developed to overcome this barrier for siRNA delivery. As 

mentioned previously, the first nanoparticle system that reached clinical trial (in 2008) for 

siRNA delivery to solid tumors was the cyclodextrin nanoparticle system (CALAA-01) 

developed at Calando Pharmaceuticals. It was designed to deliver siRNA against the M2 

subunit of ribonuclease reductase to melanoma. Although clinical data were only reported 

for three patients, it was the first successful systemic siRNA delivery by targeted 

nanoparticles to human tumors, as evidenced by target gene and protein knockdown, and 

mRNA cleavage (RACE analysis).41 Since then, there have been several developments in 

siRNA delivery. Table 1 summarizes the nanoparticle systems that have reached clinical 

trials for cancer treatment upon systemic administration, along with the references that 

describe the technology and/or the clinical studies. A majority of these technologies are 

lipid-based, exploiting their natural tendency to accumulate in the liver (major clearance 

organ).52

Delivering siRNAs successfully to other solid tumors in humans remains a challenge. For 

example, Atu027 was designed to modulate PKN3 expression in the vascular endothelium 
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(not cancer cells).80 By reducing vascular leakage/permeability with siPKN3, Atu027 may 

limit the metastatic potential of the cancer. In a completed Phase I study, Atu027 was found 

to stabilize diseases in 41% of the patients with advanced solid tumors at the end of 

treatment (i.e., 8 weeks).80 Accordingly, it will be evaluated in combination with 

gemcitabine in patients with pancreatic cancer in the Phase I/II trial. While the development 

of Atu027 signifies important progress in the field of siRNA delivery, it does not contain a 

targeting agent and hence has not yet addressed the need to deliver siRNAs specifically to 

cancer cells. Other particles are lipid-based nanoparticles, which face the same limitations of 

liver homing. Clinical trials evaluating these compounds in solid tumors beyond the liver are 

ongoing (Table 1), and their efficacy remains to be seen. More detailed review on siRNA 

platform in cancer clinical trials can be found in a recent review.85

As an example of how siRNA based therapeutics can overcome shortcomings of current 

standard therapies, we will present a case study with HER2+ breast cancer.

7. Overview of HER2+ breast cancer and HER2 protein

Breast cancer is the most frequently diagnosed cancer in women, and, after lung cancer, the 

second leading cause of cancer death in women in the US since 1950.86 The current risk of 

American women developing breast cancer in their lifetime is one in eight. It is estimated 

that 234,190 new cases will be diagnosed in the US in 2015.86 For metastatic breast cancer, 

the five-year survival rate is 25%. HER2+ breast cancer is a clinical subtype that presents 

HER2 overexpression on the tumor cell surface, caused by the amplification of HER2 

oncogene and related genetic elements in the amplicon on chromosome 17.87 This clinical 

subtype accounts for approximately 15–25% of invasive breast cancer.88

HER2 (ERBB2) belongs to a family of transmembrane receptor tyrosine kinases (RTKs), 

which also include HER1 (EGFR; epidermal growth factor receptor), HER3 (ERBB3), and 

HER4 (ERBB4). RTKs have key roles in regulating several cellular processes such as 

proliferation, migration, metabolism, differentiation, and survival, particularly during 

embryogenesis.89, 90 In normal cells, this signaling network is tightly regulated. However, 

when these genes mutate, amplify, or overexpress, they become oncogenes that are 

responsible for the onset, progression, and aggressiveness of many types of cancer.

8. Targeted RNAi-based Therapeutic Strategies for HER2+ Breast Cancer

The standard treatment for HER2+ breast cancer (and first-line in metastatic HER2+ breast 

cancer) is a combination of HER2-targeted therapies (trastuzumab + pertuzumab) and a 

taxane agent (docetaxel or paclitaxel). However, it cannot manage advanced cancer beyond 

prolonging survival and, even still, most HER2+ patients progress. Thus, non-coding RNA 

molecules such as HER2 siRNA (siHER2) serve as potential alternatives to antibodies and 

small molecule inhibitors. Knocking down HER2 at the mRNA level is potentially a more 

effective approach than merely blocking HER2 activities by conventional monoclonal 

antibodies or small molecule inhibitors because it circumvents resistance mediated by 

incomplete receptor blockage, alternative splicing and post-translational modification, 

mutations, and sustained phosphorylation mediated by other proteins.91 Further, while 

monoclonal antibodies and small molecule inhibitors can target only certain accessible 
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proteins (so-called “druggable targets”), RNAi can be designed to modulate virtually any 

gene with known mRNA sequences.

To date, no siRNA therapeutics for HER2+ breast cancer have reached clinical trials. In 

preclinical studies, a handful of studies have explored RNAi-based strategies targeting 

HER2+ breast cancer. Inoue et al.92 utilized polymalic acid conjugated with HER2 antisense 

and trastuzumab (HER2-antibody) for targeted delivery. In addition to serving as a targeting 

agent, trastuzumab can elicit therapeutic effects presenting a potential synergy between 

HER2 antisense and trastuzumab by which HER2 antisense inhibits new HER2 receptor 

synthesis, and trastuzumab blocks the activity of existing HER2 receptors. In addition to 

targeting HER2, two studies investigated siPLK1 (siRNA against polo-like kinase 1 (PLK1)) 

as an anticancer strategy. PLK1 is an attractive therapeutic target in oncology due to its 

integral role in promoting cell division, and its overexpression is correlated with aggressive 

behavior in multiple tumor types.93 Yao et al.94 complexed siPLK1 with a peptide fusion 

protein containing HER2 scFv for targeted siRNA delivery. Later, Dou et al.95 employed a 

similar strategy but instead used PEG-PLA based nanoparticles conjugated with HER2 scFv. 

Both studies showed successful targeted delivery, accumulation, and silencing of PLK1 in 

breast tumor models. Despite the promising results, these studies all utilized the BT474 

xenograft model, a trastuzumab-sensitive cell line.

Recently, our group has reported that treatment with siHER2 could induce growth arrest 

with effective GI50’s in the low nanomolar range (<10 nM) in a panel of 15 trastuzumab-

resistant (8 of which are also lapatinib-resistant) HER2+ breast cancer cell lines (Figure 4). 

The effect (e.g., cell death) was also specific to HER2+ cancer cells and not HER2-cells.

For systemic delivery of the siHER2, our group has developed an MSNP-based delivery 

platform conjugated with trastuzumab as the targeting agent.36 The nanoconstruct consisted 

of a MSNP core (~50 nm) with surface modifications of cross-linked PEI and PEG. PEI 

promoted the endosomal escape of the siRNA, while PEG provided steric effects to prevent 

aggregation, protected siRNA against enzyme degradation, and enhanced overall blood 

compatibility. Further conjugation with trastuzumab provided homing capabilities and 

showed enhanced specificity (see Figure 5).36 The nanoconstructs effectively stimulated 

apoptotic death in HER2+ breast cancer cells grown in vitro, while sparing HER2 non-

amplified cells. As in the Inoue et al. study, we also observed a synergistic effect of 

trastuzumab and siHER2 upon evaluation in trastuzumab-sensitive cells such as BT474. 

More importantly, the siHER2-nanoconstruct displayed efficacy in refractory HER2+ 

xenograft tumors. As shown in Figures 5A and B, HER2 protein levels could be reduced by 

60% in orthotopic HCC1954 xenografts following a single intravenous injection of the 

siHER2-nanoconstructs. While the tumor was shown to be resistant to regimens of 

trastuzumab with or without paclitaxel (Figure 5C), siHER2-nanoconstructs could achieve 

significant tumor growth inhibition after 2 doses (Figure 5D). This ability to overcome 

resistance with siHER2 despite targeting the same pathway as trastuzumab emphasizes a key 

advantage of RNAi. This suggests great promise in RNAi technology as alternative and 

efficient agents to conventional small molecule inhibitors and monoclonal antibodies.
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Like other nanoparticle candidates, mesoporous silica based nanoparticle (MSNPs) for 

siHER2 delivery need to be evaluated extensively for acute and chronic toxicity prior to 

clinical applications. In mice, the adverse reaction above maximum tolerated dose (MTD) of 

IV administered MSNPs is typically linked to mechanical obstruction of MSNPs in the 

vasculature that leads to congestion in multiple vital organs and subsequent organ failure.96 

This could be attributed to very high local concentration during bolus injection into small 

veins of mice, which should be largely mitigated with infusion in humans. In general, the 

toxicity (in vitro and in vivo) of MSNPs depends largely on porosity, size, shape, and surface 

characteristic, as extensively reviewed elsewhere.97,98 For example, aminated-MSNPs96 or 

PEGylated-MSNPs99 were found to be safer than non-modified MSNPs. While some 

generalization regarding toxicity may be made, the toxicity of specific material must be 

evaluated with the final constructs as we have done with our material. Cargos like siRNAs 

can neutralize cationic charged particles, making them safer. Owing to small and uniform 

particle size of MSNP, steric effect of PEG, and charge neutralization with siRNA, we have 

reported outstanding blood compatibility, low immune response,36 and low cytotoxicity of 

our material.36, 91 Nevertheless, extensive efficacy and toxicity profile of this drug candidate 

in mice and primates needs to be established prior to clinical evaluation.

Conclusion and Future directions

For nanoparticle-based siRNA therapeutics to be successful, aside from overcoming the 

general bottleneck associated with effective systemic bioavailability and intracellular 

delivery as outlined in this Review, their ability to avoid adverse toxicity associated with 

immune response, organ accumulation, their manufacturability (scale-up with high 

reproducibility) and their storability are just as vital. However, limited data have been 

reported on these subjects. Co-delivery of multiple siRNAs or siRNAs and chemotherapies 

may be needed to address cancer heterogeneity or modified over time with different disease 

stages. Lastly, to help realize the goals of personalized medicine, adaptable nanoconstructs 

that can facilitate this concept are highly beneficial (e.g., siRNAs is loaded last, by simple 

mixing in saline,36 upon identification of target genes).

Search strategy and selection criteria

References for this Review were identified through searches of PubMed with the search 

terms “siRNA in vivo”, “systemic/i.v./tail vein”, “nanoparticles”, and “cancer” from 2000 

until May, 2015. Articles were also identified through searches of the authors’ own files. 

Only papers published in English were reviewed. The final reference list was generated on 

the basis of originality and relevance to the broad scope of this Review.
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Highlights

• Oligonucleotides as alternative candidates for targeted therapies.

• siRNAs open doors to hitting ‘undruggable’ targets.

• Translation of siRNAs to clinics is dependent on delivery platform.

• Nanoparticles have been widely studied for siRNA delivery.

• siRNAs have great potential in drug-resistant HER2-positive breast cancer.
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Figure 1. 
Trend of research in oligonucleotides. The number of publications each year (1992–2014) 

based on Pubmed queries with specified keywords.
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Figure 2. Schematic illustration of delivering siRNAs to tumors upon intravenous administration
(A) Nanoparticles (mesoporous silica nanoparticles surface functionalized with polymer and 

targeting antibody used as an example) that were developed as siRNA carriers need to be 

able to protect siRNAs from blood degradation and prolong their blood residence time. This 

will enhance the propensity of siRNA-nanoparticles to accumulate in tumors via the EPR 

effect (see text). (B) Nanoparticles are typically taken up to cancer cells by endocytosis. The 

uptake can be further promoted by conjugating targeting ligands onto nanoparticles (active 

targeting). Upon endocytosis, siRNAs need to escape endosome to their site of action, 

cytosol. (C) Delivered siRNAs are then processed by intracellular machinery (RNA-induced 

silencing complex) and degrade their target complementary mRNA.
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Figure 3. 
Different classes of nanoparticle platforms being developed for siRNA delivery. Three main 

classes of nanoparticle platforms include lipid-based, polymer-based and inorganic-based 

nanoparticles. Adapted from refs.36, 100
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Figure 4. Trastuzumab and siHER2 response in 21 HER2-positive cell lines and 2 HER2-negative 
cell lines
Cells were treated with trastuzumab in a dose range of 0–30 μg/ml or siHER2 in a dose 

range of 0–30 nM. Cell viability was measured 5 days after treatment. GI20 values (dose 

required to achieve 20% inhibition of cell growth) of trastuzumab and GI50 values (dose 

required to achieve 50% inhibition of cell growth) of siHER2 across the cell lines are 

reported. If required growth inhibition was not achieved, 30 μg/ml and 30 nM were reported 

for trastuzumab and siHER2, respectively. Modified with Permission from John Wiley 
and Sons36

Ngamcherdtrakul et al. Page 24

Cancer Treat Rev. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. In vivo HER2 reduction and growth inhibition of orthotopic HCC1954 tumors
(A) Representative immunofluorescent images of tumor tissues collected from mice (n = 4/

group) at four days post i.v. injection with one dose of MSNP-based nanoconstructs loaded 

with siHER2 or siSCR (1.25 mg siRNA/kg) or PBS control. (B) Quantitative HER2 levels of 

the tissues (means ± SD). Images were analyzed by CellProfiler (red = HER2 protein; green 

= CD31 endothelial marker; blue = DAPI staining cell nuclei). (C) Tumor growth in mice 

bearing orthotopic HCC1954 tumor xenografts showed resistance to 5 mg/kg trastuzumab 

with or without 3 mg/kg paclitaxel but (D) responded to T-siHER2-NP, given via IV 

injection – receiving the same treatments as (A) but multiple doses (days of injection are 

indicated by arrows). Tumor volumes are presented as means ± SEM. Specified p-values are 

against the saline control. Reproduced with Permission from John Wiley and Sons36
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