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Abstract

Generalized Estimating Equations (GEE) is a general statistical method to fit marginal models for 

longitudinal data in biomedical studies. The variance-covariance matrix of the regression 

parameter coefficients is usually estimated by a robust “sandwich” variance estimator, which does 

not perform satisfactorily when the sample size is small. To reduce the downward bias and 

improve the efficiency, several modified variance estimators have been proposed for bias-

correction or efficiency improvement. In this paper, we provide a comprehensive review on recent 

developments of modified variance estimators, and compare their small-sample performance 

theoretically and numerically through simulation and real data examples. In particular, Wald tests 

and t–tests based on different variance estimators are used for hypothesis testing, and the guideline 

on appropriate sample sizes for each estimator is provided for preserving Type I error in general 

cases based on numerical results. Also, we develop a user-friendly R package “geesmv” 

incorporating all of these variance estimators for public usage in practice.
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1. Introduction

Longitudinal data is commonly encountered in biomedical studies [1, 2, 3, 4]. For example, 

in a diabetes study, repeated primary efficacy measures on HbA1c were taken over time 

(baseline and follow-up visits after treatment) for each patient, and the question of interest 

was to investigate the trend of HbA1c changing over time or the insulin treatment effect on 

HbA1c [5]. For such a situation, the responses from the same individual turn to be “more 
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alike”, thus incorporating within-subject correlation and between-subject variations into 

model fitting is necessary to improve the efficiency of the estimation and enhance the power.

To analyze repeated measures, several simple traditional approaches exist (i.e., MANOVA) 

[6]. However, mixed-effect models (MEM) [2] and Generalized Estimating Equations (GEE) 

[7] are popularly applied. Of note, MEM is an individual-level approach that is able to adopt 

random effects to capture the correlation among observations from the same subject [8]; 

GEE is a population-level model based on the quasi-likelihood function [9, 10]. In this 

paper, we focus on GEE which holds several defining features: 1) Under mild regularity 

conditions, the parameter estimates are consistent and asymptotically normal even under the 

mis-specified “working” correlation structure of the responses; 2) When the inference is 

intended to be population-based, for instance, the overall treatment effect, GEE treats the 

variance-covariance matrix of the responses as nuisance parameters [9]; 3) GEE relaxes the 

distribution assumption, and only requires correct specification of marginal mean and 

variance as well as the link function between the mean and covariates of interest. GEE has 

been implemented in statistical software (i.e., SAS, R), and can be directly adopted for 

analysis.

It is known that the variance estimators of parameters of interest are utilized in hypothesis 

testing, thus its accuracy is important for valid inference. Under some specific conditions 

such as small sample size, the traditional GEE with the classic “sandwich” variance 

estimator does not perform satisfactorily, and considerable downward bias is exhibited [11, 

12, 13, 14], in turn leading to inflated type I errors and lower coverage rates of the resulting 

confidence intervals [15, 16]. Until now, several remedy strategies on modifications of 

variance estimators have been proposed to improve the finite small-sample performance [13, 

17]. To our knowledge, few studies exist to cover various variance estimators including the 

most recently developed ones on GEE with small samples for comprehensive comparisons, 

and there is a lack of a guideline on the adequate sample size for preserving Type I error. 

Note that the recent paper related to this area was discussed by Li and Redden [18] with 

emphasis on the small sample performance of bias-corrected sandwich estimators 

particularly for cluster-randomized trials with binary outcomes. However, this work has 

several limitations: 1) only the scenarios with binary outcomes were considered; 2) the 

influence of misspecified correlation structure was not explored; 3) The degrees of freedom 

of the approximate t–distribution did not take the variability of the variance estimator into 

account [16, 19, 20], but only depended on the number of clusters; 4) limited variance 

estimators implemented by SAS were considered, but the most recent ones were not. In this 

paper, we attempt to address these issues and provide a more comprehensive and accurate 

comparisons of different modified variance estimators. Furthermore, we develop a user-

friendly R package including functions for calculating the modified variance estimators as 

well as the degrees of freedom defined as a function of the variance of the estimator for t–
tests [16, 20].

The remainder of the article is organized as follows. In Section 2, we introduce the notations 

and provide nine variance estimators of GEE as well as their theoretical comparisons. In 

addition, two types of hypothesis testing, Wald tests and t–tests, are emphasized. Later, in 

Section 3, we provide extensive simulation to compare the performance of different variance 

Wang et al. Page 2

Stat Med. Author manuscript; available in PMC 2017 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



estimators, and identify the suitable sample size for each to ensure their satisfactory 

performance in controlling Type I error. Importantly, we develop an R package “geesmv” for 

public use with small samples. Also, we illustrate the application of our R package via a real 

data example in Section 4. The conclusion with a brief discussion and future work is shown 

in Section 5.

2. Method

2.1. Notation and GEE

Given longitudinal data consisting of K subjects, denote Yij as the jth response for the ith 

subject with ni observations, i = 1, 2, …, K, j = 1, …, ni, and Xij is a p × 1 vector of 

covariates. Yi = (Yi1, Yi2, …, Yini)′ denotes the response vector with the mean vector noted 

by μi = (μi1, μi2, …, μini)′ where μij is the corresponding jth mean for subject i. There exists 

within-subject correlation, but the observations across subjects are assumed to be 

independent. In addition, the marginal model specifying an association between μij and the 

covariates of interest Xij is given by

(1)

with g as a known link function, β an unknown p × 1 vector of regression coefficients. The 

conditional variance of Yij given Xij is Var(Yij|Xij) = ν(μij)ϕ with ν as a known variance 

function of μij and ϕ a scale parameter which may need to be estimated. Of note, ν and ϕ 

depend on the distributions of outcomes. For example, if Yij is a continuous variable, ν(μij) 

is 1, and ϕ represents the error variance; if Yij is a count variable, ν(μij) = μij, and ϕ is equal 

to 1. Also, the variance-covariance matrix for Yi is noted by , where Ai 

= Diag{ν(μi1), ⋯, ν(μini)}, and the “working” correlation structure Ri(α) describes the 

correlation pattern of observations within-subject with α as a vector of association 

parameters depending on the correlation structure. Several types of “working” correlation 

structures including independent , exchangeable 

, autoregressive (α = ρ, Corr(Yij, Yi,j+m) = ρm, j + m ≤ 

ni), Toeplitz , and 

also unstructured 

ones are commonly used. The estimation of α is based on an iterative fitting process using 

the Pearson residual  given the current value of β; also, the scale 

parameter ϕ is estimated by  with the total number of observations 

.
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The GEE method yields asymptotically consistent β̂, even when the “working” correlation 

structure (Ri(α)) is misspecified [7], and β̂ is obtained by the following estimating equation

(2)

where . Given the true value of β as βt and mild regularity conditions, β̂ is 

asymptotically normally distributed with a mean βt and a covariance matrix estimated based 

on the “sandwich” estimator by

(3)

with

(4)

by replacing α, β and ϕ with their consistent estimates, where  with rî = Yi − 

μ̂i is an estimator of the variance-covariance matrix of Yi [7, 21]. This “sandwich” estimator 

is robust in that it is consistent even if the correlation structure is misspecified. Note that if 

Vi is correctly specified, a consistent estimator for the covariance matrix of β̂ is given by 

, which is often referred as the model-based variance estimator [7]. Next, 

we will discuss the small-sample properties of GEE with several modifications on variance 

estimators and hypotheses testing.

2.2. Modified variance estimators of GEE with small samples

Due to the fact that the fitted value μ̂
i tends to be closer to Yi than the true value μi and when 

sample size is small,  in VLZ is biased downward for estimating , and the bias 

turns to be larger when the sample is much smaller; meanwhile, a greater variability may 

arise [16, 22]. Therefore, the hypothesis testing using VLZ tends to be liberal, and the 

resulting confidence interval is narrow. Table 1 provides a comprehensive summary of the 

recent modified variance estimators, and the details of the estimators are provided next.

I. VMK is the degrees-of-freedom corrected “sandwich” variance estimator proposed 

by MacKinnon [23]. This estimator incorporates the simplest adjustment by 

adopting an adjustment factor of , which is shown by

(5)
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When K → ∞, VMK →p VLZ. VMK corrects the bias, but meanwhile increases the 

variability.

II. VKC is a bias-corrected “sandwich” variance estimator under the assumption of 

correctly specified correlation structure proposed by Kauermann and Carroll [24], 

which is

(6)

with

(7)

where Ii is a ni × ni identify matrix, and the subject leverage Hii is a diagonal matrix 

with the leverage of the ith subjects, which can be calculated by

III. VPAN is proposed by Pan [20] given two additional assumptions satisfied: (A1) The 

conditional variance of Yij given Xij is correctly specified; (A2) A common 

correlation structure, Rc, exists across all subjects. The modified variance estimator 

is

(8)

with

(9)

VPAN pools data across all subjects in estimating Cov(Yi), which performs more 

efficient.

IV. VGST made an additional modification on Pan’s estimator by incorporating the bias 

of  for small K, which was proposed by 

Gosho et al. [25]. The modified variance estimator is written as:

(10)

with
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(11)

VGST also pools data across all subjects in estimating Cov(Yi). In particular, when 

K ≫ p and K is large enough, VGST approximately equals to VPAN.

V. VMD is another bias-corrected “sandwich” variance estimator proposed by Mancl 

and DeRouen [22]. Unlike VKC, this estimator does not assume a correctly 

specified correlation structure, and it is written by

(12)

with

(13)

where Ii and Hii are defined as the same as VKC. Note that to correct this bias in 

finite samples, Mancl and DeRouen [22] relied on the following approximate 

identity

but they ignore one term  from its first order Taylor’s 

expansion, leading to overcorrection.

VI. VFG indicated by Fay and Graubard [26] made a further adjustment on VMD by 

multiplying a scale factor, which is given by

(14)

with

(15)

where ηi = Ip − Ni. Note that the jjth diagnal value of  equals to (1 − min(b, 

{Ni}jj))−1, where  for a simple bias 

correction, and b is prespecified subjectively to avoid extreme adjustments when Ni 

is quite close to 1.
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VII.VMBN is a bias-corrected estimator recommended by Morel et al. [27] by 

incorporating correlation on the residual cross-products and sample size, provided 

as

(16)

with

(17)

where  and 

 with 0 ≤ r ≤ 1. Note that k is a factor 

to adjust the bias of empirical variance estimator of Cov(Yi) and δm given by Morel 

can be bounded by 1/d [27]. The default values for d and r are 2 and 1 respectively 

according to Morel et al. [27].

VIII.VWL is a combined variance estimator suggested by Wang and Long [16], which 

considered both the strength of VPAN and VMD for pooling information from all 

subjects and reducing the bias of the estimate for . The estimator is below

(18)

where

(19)

This estimator was confirmed to perform as well as or better than VPAN and VM, 

but the two additional assumptions specified above also need to be satisfied.

We now present theoretical comparisons among those variance estimators. As shown above, 

all variance estimators share the same two outside terms, i.e., . Thus, we 

focus on assessing and comparing the middle matrix, M, of different variance estimators. 

The derived covariance matrix for vec(M) are given in Table 2. It has been shown by Wang 

and Long [16] that Cov(vec(MLZ)) − Cov(vec(MWL)) and Cov(vec(MMD)) − 

Cov(vec(MWL)) are non-negative definite with probability 1, while Cov(vec(MPAN)) − 
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Cov(vec(MWL)) converges to 0 with probability 1 as K → ∞. For comparisons among the 

other alternatives,

Based on the above derivations, under mild conditions, Cov(vec(MLZ)) − Cov(vec(MMK)), 

Cov(vec(MLZ)) − Cov(vec(MKC)), Cov(vec(MLZ)) − Cov(vec(MFG)), and Cov(vec(MLZ)) − 

Cov(vec(MMBN)) will converge to 0 with probability 1, while Cov(vec(MLZ)) − 

Cov(vec(MGST)) is non-negative definite with probability 1 as K → ∞. Hence, these 

variance estimators are asymptotically equivalent. But when the sample size is small, VLZ 

tends to underestimate the variance. Therefore, the modifications through the bias-correction 

or degrees-of-freedom adjustment are mostly applied (Table 1). On the other hand, the 

efficiency gain by pooling data across all subjects to improve the estimator of Cov(Yi) 

instead of only using data from the ith subject, is incorporated in VPAN, VGST and VWL. 

Thus, VWL is the only estimator that takes into consideration both bias correction and 

efficiency improvement. Therefore, it is expected intuitively to outperform the other 

alternatives if the assumptions (A1) and (A2) are satisfied. In Section 3, extensive numerical 

comparisons via simulations will be conducted for further investigation.

2.3. Hypotheses Testing

For tests of hypotheses in GEE, the Wald test and score test have been popularly applied [16, 

20, 28]. However, when the sample size is small, the Wald test leads to inflated type I error, 

which seems too liberal [20, 28], and score test has smaller test size than the pre-specified 

nominal level [28]. Therefore, several modifications have been proposed to obtain improved 

finite performance for GEE, i.e., t–test and modified score test. According to Guo et al. [28], 
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the score test was modified under the context of small sample, which was shown to be less 

conservative than the t–test via simulation. Currently, we consider t–tests when the sample 

size is small, and the brief derivation is shown next.

Without generality, a simple univariate hypothesis testing is taken as an example. Suppose in 

a clinical trial, the mean model is specified as μij = α + β × treatment. The hypothesis of 

interest for the treatment parameter β is given by H0 : β = 0 vs Ha : β ≠ 0. Thus, the test 

statistic for the Wald test is , where V̂ (β̂) can be replaced by any estimator 

mentioned above. For small samples, the t–test was proposed by Pan [20], and was also 

extensively studied by Wang and Long [16]. Denote κ and ν as the estimated mean and 

variance of V (β̂). It follows the derivation based on vec operator that the distribution of 

 is approximated with a Chi-square distribution , where the scale parameter 

and the degrees of freedom . The test statistic for t–test is , which is the 

same as the Wald test statistic with the degrees of freedom  [16, 20]. 

This satterthwaite-type degrees of freedom approximation incorporates the variability of the 

variance estimator, and thus performs better compared to depending only on the number of 

clusters in Li and Redden [18]. The outperformance of t–test over the Wald test was 

identified in the settings with small sample [16, 29].

3. Simulation Studies

In this section, we conduct simulation studies to numerically compare the finite small-

sample performance of nine types of variance estimators including the original “sandwich” 

variance estimator under different settings. Also, we focus on the Wald test and t–test for 

hypothesis testing to calculate the Type I error rate for each estimator, and further provide 

the recommendation on suitable sample size for each one to ensure test sizes at the nominal 

levels. In particular, three scenarios with continuous, count and binary repeated outcomes 

are considered. The models for data generation are below

(20)

where β0 = 0 and β1 = 0, i = 1, …, K with sample size K = 10, 20, 30, 40, 50 and j = 1, …, n 
with equal number of observations within-subject (i.e., cluster size) n = 5, 10, 20. The 

covariate xij are independent and identical distributed (i.i.d) from a standard normal 

distribution N(0, 1). The subject-level random effects bi’s are i.i.d. from  with 
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, and the random error εij ’s are i.i.d. from  with . The details for 

each scenarios are listed: 1) For the case with continuous outcomes, bi and εij are 

independent with each other, leading to the true exchangeable correlation structure with the 

correlation parameter as ; 2) For the case with count outcomes, based 

on the derivation by Guo et al. [28], the correlation parameter ; 3) For 

the case with binary outcomes, the correlation parameter 

 according to Guo et al. [28].

In particular, 1,000 Monte Carlo data sets are generated for each scenarios, where the 

parameter estimate β̂
1 along with nine variance estimates are calculated. For each set-up, 

three types of “working” correlation structures are used, independence, exchangeable and 

AR-1. The Wald and t–tests are both applied for hypotheses testing, and Type I error is 

calculated given the significance level of 0.05. Note that the degrees of freedom for t–
distribution vary across different variance estimators. For example, the average degrees of 

freedom for the first scenario with continuous outcomes, K = 10 and n = 5 are rounded by 

13, 13, 69, 69, 11, 14, 14, 22, 54 respectively, indicating the variability influence of variance 

estimators on statistical inference.

The partial results are shown in Figures 1–6, are summarized as follows: 1) The results 

based on Wald tests show that the use of robust variance estimator VLZ always leads to 

inflated Type I error when the sample size is small (i.e., ≤ 50), which is consistent with our 

expectation; however, the tests using the other estimators also have inflation to some extent, 

but the degrees of freedom are relatively smaller with VWL performing the best; 2) t–tests 

for hypotheses testing attain better performance than Wald tests in terms of the control of 

Type I error across all estimators. The estimator VLZ still leads to some degree of inflation. 

Interestingly, when the “working” correlation structure is specified correctly, VLZ achieves 

satisfactory performance even though the sample size is as small as 10; 3) For t–tests, the 

performance of variance estimators are substantially influenced by sample size K, while 

larger cluster size n leads to more conservative results; 4) Note that VKC performs worse 

than VLZ based on Wald tests as indicated by larger inflation on Type I error, but improves 

with increasing cluster size; In addition, some estimators, such as VGST and VMBN, perform 

conservatively for small samples; 5) Among all nine variance estimators, VWL has superior 

performance consistently across a variety of setups. Thus, it is a preferable estimator for 

GEE even when the sample size is as small as 10. Note that the results on the independent 

“working” correlation structure are not provided due to the similar trend as AR-1. In the end, 

according to our current numerical studies as well as literatures [16, 28, 29], we recommend 

the sample size requirements to preserve Type I error for all variance estimators as follows: 

VLZ(≥ 50), VMK(≥ 40), VKC(≥ 50), VPAN(≥ 30), VGST(≥ 20), VMD(≥ 30), VFG(≥ 40), 

VMBN(≥ 50), and VWL(≥ 10). Note that we also investigated the effect of cluster sizes via 

additional simulations (results available upon request), and found out that the higher cluster 

size n can somewhat improve the performance in preserving Type I error, but the effect is not 

as substantial as the sample size K. Due to the fact that in most practical longitudinal 

designs, the cluster size (i.e., the number of observations within-subject) is usually less than 
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30 [40, 41]. Thus, our recommendation can be applied in general cases (i.e., n ≥ 5) based on 

current extensive simulations.

4. Data examples with small samples

In this paper, we present the results using two real data applications to test our R program 

and compare the finite performances of different variance estimators under finite sample 

size, one with continuous outcomes and the other one with count outcomes. The first data is 

from a study of orthodontic measurements on children, which includes 11 girls and 16 boys 

measured at ages 8, 10, 12, and 14 [30]. The response is the measurement of the distance (in 

millimeters) from the center of the pituitary to the pteryomaxillary fissure, and the primary 

covariates of interest are age (in years) and gender (Male; Female). The objective is to 

investigate whether there exist statistically significant gender differences in dental growth 

measurements and their temporal trends as age increases. This example has been analyzed 

byWang and Long [16] for small-sample properties of several estimators. Here, we conduct 

comparisons by considering eight types of modified variance estimators in addition to the 

robust original “sandwich” estimator. Therefore, the mean model of GEE is given by

(21)

The scatter plot of orthodontic measurements is shown in Figure 7, where the black lines are 

for girls and the red lines are for boys. It turns out that the boys have higher measurements 

than the girls on average, and the measurements tend to increase with age. GEE analysis 

results, including parameter estimates and various variance estimators, are shown in Table 3. 

Both Wald and t–tests with the significance levels of 0.01 and 0.05 are applied for 

hypotheses testing. All variance estimators provide comparable results on hypotheses testing 

of  using Wald tests, but when using t–tests at the significance level of 0.01, different 

testing conclusions for gender are obtained, indicating that the choice of different small-

sample adjustments in variance estimators may affect the testing results.

The second example is from the randomized trial of progabide consisting of 59 individuals 

[31]. The subjects were randomly assigned to receive the anti-epileptic treatment 

(progabide) or placebo (control). The outcome is the number of epileptic seizures in each of 

four consecutive two-week intervals, and the variables recorded include age and baseline 

epileptic seizure counts (in an eight-week interval) prior to the treatment assignment and the 

indicator for treatment (Trt, 1=progabide; 0=control). In particular, for modeling fitting, the 

variable Baseline is noted by the baseline epileptic seizure count rate per week; Time is the 

number of weeks, which is valued by 2, 4, 6, and 8; Interval duration is the duration of each 

interval (i.e., 2 weeks), and log(Interval_duration) is treated as an offset variable in the 

model. The goal of this trial is to evaluate whether the anti-epileptic treatment is effective. 

We use the complete data set of all 59 subjects and a subset of 30 children, which are 

randomly drawn from the original complete data without replacement, to perform 

hypotheses testing and evaluate the small-sample properties of different estimators. Note that 

the interaction term of Trt and Time is also investigated, but is not significant, thus the final 

log-linear model for this study is given by
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(22)

The scatter plots of seizure counts by time intervals for progabide and control groups are 

shown in Figure 8, and indicate that the counts dramatically decrease after the treatment in 

the first two weeks and remain stable afterwards for both groups. The GEE-based parameter 

estimates as well as the square root of various variance estimates are shown in Table 4. No 

significant (progabide) treatment effect or temporal trend is detected using either complete 

data or subset data based on all variance estimators, but Baseline has significant effect on the 

seizure counts throughout. However, for subset data analysis, only slightly different 

conclusions of significance on temporal trend are obtained depending on the type of tests 

and the significance level. For instance, the tests of temporal effect using VGST, VMD and 

VWL are significant at the significance level of 0.05 but not at the significance level of 0.01 

based on Wald or t–tests, but VKC and VFG are significant only based on Wald tests at the 

significance level of 0.05. This data example shows that when the sample size is smaller 

(i.e., ≤ 30), the validity of hypothesis testing could be influenced by the bias of the variance 

estimators.

5. Conclusions and Discussions

In this paper, we provide a systematic review of recent developments on modified variance 

estimators for GEE to improve finite small-sample properties, including the formulation of 

these modifications and their theoretical and numerical comparisons. In addition, to 

conveniently implement these modifications, we develop the R package “geesmv” which is 

available at http://cran.r-project.org/web/packages/geesmv/ for free-download and public 

access. We also discuss two main types of hypothesis testing for GEE,Wald and t–tests, and 

evaluate their corresponding Type I error when sample size is small. Through extensive 

simulation studies and two real data examples, we compared the performance of various 

variance estimators under different scenarios, and provide the guidance of the appropriate 

sample size for controlling Type I error. As indicated in our simulation study, in general, t–
tests based on the variance estimator VML perform robustly well across different set-ups. In 

particular, the degrees of freedom for t–statistic are more accurately approximated as 

compared to Li and Redden [18]. However, there are still several limitations for this work. 

First, the modifications discussed here for variance estimation are directly focusing on the 

“sandwich” variance estimator, but some other methods were also proposed but not covered 

here (i.e., improving the efficiency and robustness of parameter estimates) [28, 29, 32, 33, 

34]; Second, our recommendation on the appropriate sample sizes for each estimator for 

preserving Type I error is obtained through limited simulation studies under general set-ups 

(i.e., equal cluster sizes); however, this guideline may not be always applicable, for instance, 

the cases with unequal cluster sizes; Third, we only evaluate the Type I error, but the Type II 

error or the power warrants further investigations. It is also worth pointing out that the 

selection of an appropriate modification method relies on various aspects of the real 

application (i.e., study design or intra-subject correlation) [2, 4, 35].
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In addition to modifications on variance estimators and test statistics, another important 

issue, power analysis, tends to be challenging, for example, in a cluster randomized trial 

(CRT) with a small number of clusters [5, 36, 37]. Previous studies on sample size/power 

calculation included Liu and Liang [38], where the generalized score test was utilized to 

draw statistical inference and the resulting non-central Chi-square distribution of test 

statistic under the alternative hypothesis was derived. Afterwards, Shih provided an 

alternative formula on sample size and power calculation, which relied on Wald tests using 

the estimates of regression parameters and robust variance estimators [39]. This power 

analysis is valid only when the V (β̂) is unbiased and asymptotic normality is satisfied. 

While, when K is small, the estimated power tends to be overestimated. Hence, the 

modification on the power estimation is necessary to guarantee its unbiasedness, where an 

approximated t–distribution could be considered. Also, the adjustment of power estimation 

incorporating the variance estimators in Section 2 for efficiency improvement is expected to 

be advantageous. In the application of GEE method, other issues such as model selection or 

missing data under the circumstance of small samples or even with informative cluster sizes 

are also of interest. Thus, novel methodologies are still necessary and urged to develop for 

GEE to accommodate various data features for valid inference in real applications.
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Figure 1. 
Type I errors based on Wald and t–tests for continuous outcomes with the true correlation 

structure as exchangeable
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Figure 2. 
Type I errors based on Wald and t–tests for continuous outcomes with the true correlation 

structure as AR-1
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Figure 3. 
Type I errors based on Wald and t–tests for count outcomes with the true correlation 

structure as exchangeable
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Figure 4. 
Type I errors based on Wald and t–tests for count outcomes with the true correlation 

structure as AR-1
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Figure 5. 
Type I errors based on Wald and t–tests for binary outcomes with the true correlation 

structure as exchangeable

Wang et al. Page 20

Stat Med. Author manuscript; available in PMC 2017 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Type I errors based on Wald and t–tests for binary outcomes with the true correlation 

structure as AR-1
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Figure 7. 
Orthodontic measurements by subject over time
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Figure 8. 
Seizure counts over time for treatment and control groups. The dotted red line is the average 

number of seizure counts over time
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Table 1

Summary of eight modified variance estimators for GEE with small sample

Variance Estimator Modification Reference

VMK Degrees-of-Freedom adjustment MacKinnon (1985)

VKC Bias correction Kauermann and Carroll (2001)

VPAN Efficiency improvement Pan (2001)

VGST Efficiency improvement Gosho et al. (2014)

VMD Bias correction Mancl and DeRouen (2001)

VFG Bias correction Fay and Graubard (2001)

VMBN Bias correction Morel et al. (2003)

VWL Bias correction & Efficiency improvement Wang and Long (2011)
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Table 2

Covariance matrix of the middle part from nine variance estimators for GEE. 

; Gi = (Ii − Hii)−1 ⊗ (Ii 

− Hii)−1; .

Matrix M Covariance Matrix of vec(M)

MLZ

MMK

MKC

MPAN

MGST

MMD

MFG

MMBN

MWL
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