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Abstract
Twenty-five years ago, Nembrot and colleagues reported 
amplification of the estrogen receptor alpha gene (ESR1)  
in breast cancer, initiating a broad and still ongoing scien-
tific debate on the prevalence and clinical significance 

of this genetic aberration, which affects one of the most 
important genes in breast cancer. Since then, a multitude 
of studies on this topic has been published, covering 
a wide range of divergent results and arguments. The 
reported prevalence of this alteration in breast cancer 
ranges from 0% to 75%, suggesting that ESR1  copy 
number analysis is hampered by technical and interpreter 
issues. To date, two major issues related to ESR1 
amplification remain to be conclusively addressed: (1) The 
extent to which abundant amounts of messenger RNA 
can mimic amplification in standard fluorescence in situ 
hybridization assays in the analysis of strongly expressed 
genes like ESR1, and (2) the clinical relevance of ESR1 
amplification: Such relevance is strongly disputed, with 
data showing predictive value for response as well as 
for resistance of the cancer to anti-estrogen therapies, 
or for subsequent development of cancers in the case of 
precursor lesions that display amplification of ESR1. This 
review provides a comprehensive summary of the various 
views on ESR1 amplification, and highlights explanations 
for the contradictions and conflicting data that could 
inform future ESR1 research.
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Core tip: The estrogen receptor alpha gene gene (ESR1) 
is one of the most important genes in breast cancer, 
but the prevalence of ESR1  amplification is matter of 
ongoing debate. A number of studies suggest that 
technical issues and lack of standards contribute to the 
discrepant findings. Future studies should focus on the 
potential clinical relevance of this phenomenon.
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INTRODUCTION
In 1990, when Nembrot et al[1] reported on amplification 
of the estrogen receptor alpha encoding gene ESR1 
in breast cancer, it was not possible to foresee that, 
two and a half decades later, conflicting data on the 
prevalence and possible clinical significance of this 
alteration would lead to an ongoing debate[2,3]. The 
relevance of the controversy results from the importance 
of the gene for the treatment of breast cancer. ESR1 
encodes the estrogen receptor alpha (ERα), which is a 
cellular receptor for the steroid hormone estrogen, a key 
molecule that regulates the growth and differentiation 
of the mammary gland[4-8]. ERα is activated by estrogen 
and drives cell proliferation in breast cancer[9-11]. About 
two thirds of breast cancers express ERα at the time of 
diagnosis, making the ERα-protein the most frequently 
applied clinical biomarker and molecular therapy target 
for this tumor type[9,12-15]. 

Gene amplification is a critical mechanism for onco-
genic activation of a gene[16,17], and is believed to be a marker 
for oncogene addiction[18,19]. The success of Herceptin® in 
treating breast and gastric cancers in which the ERBB2 
gene [that encodes the human epidermal growth factor 
2 (HER2)] is amplified has impressively demonstrated 
the clinical value of gene amplification[20,21]. The report 
of frequent ESR1 amplification as a candidate marker 
for optimal response of proliferating breast disease to 
anti-estrogenic Tamoxifen monotherapy, thus attracted 
considerable attention in the scientific community[22-29]. 

However, the accounts of ESR1 amplification were 
challenged from the outset. Watts et al[30] used the same 
method as Nembrot et al[1], but reported an unexpected 
lower incidence of copy number increase in 1991. 
This already suggested that differences in laboratory 
protocols, interpretation of results, and tissue sampling 
may represent major challenges in the analysis of ESR1 
amplification. To date, articles that present a wide range 
of diverging data and arguments[22,31], continue to be 
published, and debate or address the topic of ESR1 
amplification. An intense dialog flared up following the 
report that frequent ESR1 amplification was detected in a 
large series of breast cancers and that regarding clinical data 
suggested a particular benefit of Tamoxifen treatment 
for these patients[24-26,28,29,32-38]. This controversy was 
especially evident in response to the suggestion that 
pre-mRNA artifacts could explain the conflicting results 
reported in a 2012 fluorescence in situ hybridization 
(FISH) study on ESR1 amplification[3,22,23,39,40], which 
appeared to be a self-fulfilling prophecy concerning mRNA 
artifacts that were discussed as far back as 2008[36]. 
Conclusions ranged from no ESR1 amplification in breast 
cancer[38] and reports of ESR1 amplification being 
“fictional”[39], to reports of frequent prevalence, with 
predictive significance for response or resistance to anti-
estrogen therapy[24-26,40,41]. In addition, whether amplifica-
tion of ESR1 is an early or late event, and whether it can 
be implemented as a potential marker for prophylactic 
anti-estrogen treatment[3,42], is also unresolved.

PREVALENCE OF ESR1 AMPLIFICATION
Definitions and references
Various studies have published ESR1 amplification 
frequencies that range from 0% to 75% (Figure 1, 
Appendices A-D), depending on methods used, sample 
cohorts, and threshold definitions[31]. The amplification 
is typically described as occurring in a mosaic pattern, 
indicating heterogeneous and low level increases in copy 
number. Nuclei often show only few additional gene 
copies in tight clusters of the homogeneously staining 
region (HSR) type[40] (Figure 2). 

This pattern of amplification is of particular relevance 
for understanding the scientific debate on ESR1 amplifi-
cation in breast cancer. To gain clarity on the prevalence 
of gene amplification requires first that the term be 
defined. In general, “gene amplification” is defined as an 
increase in the gene copy number in a cell, independent 
of the ratio of gene copy number to centromere copy 
number[43,44]. However, as testing for human epidermal 
growth factor receptor 2 (HER2, ERBB2) became more 
frequent, the term “gene amplification” was reserved 
for amplifications with an average gene to centromere 
ratio of ≥ 2.0 or ≥ 2.2 (or > 6 copies per nucleus), 
simply because the threshold for predicting the response 
to therapy was determined at this level[45-47]. As a 
consequence, low level gene amplification - with a ratio 
less than 2.0 but greater than 1.0 - was neglected. 
However, for studies in which low copy number increases 
associated with gene amplification are investigated, 
the exclusion of amplifications with these low ratios[48] 
can have major consequences with respect to the pre-
valence of the genetic alteration, and can decrease the 
frequencies determined to considerably lower numbers in 
study cohorts, as shown in Figure 1 and Appendices A-D.

Low-level gene copy number alterations such as 
ESR1 amplifications often present as a continuum of one-
to-several additional ESR1 copies, and minor changes 
of the threshold cut off value can have a major impact 
on study outcome. For example, using a cut off of > 2.0 
instead of ≥ 2.0 for amplification calling, or a ratio 2.2 
instead of 1.8, can change the amplification frequency 
by almost 50%[22,49,50]. In a recent study done with use 
of next-generation sequencing (NGS), the threshold 
of ≥ 6 average copies [as recommended for ERBB2 
(HER2) testing[46]] in tissue samples with tumor purity of 
> 20% resulted in only 0.8% ESR1 amplification across 
samples[51].

The low level and heterogeneous character of ESR1 
amplification suggests that “classical ERBB2 (HER2)” 
thresholds may not be optimal for ESR1 analysis[26,40]: 
This is even more true when non-morphologic methods 
are applied for analyzing isolated DNA, wherein the 
choice of normalization references has a critical impact on 
analysis outcome. Indeed, several investigators employ-
ing quantitative polymerase chain reaction (qPCR) have 
demonstrated that the prevalence of ESR1 amplification 
depends massively on the choice of the reference genes 
or sequences[32,34,40], and have suggested that variable 
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deletion frequencies of reference genes are responsible 
for this phenomenon[32,34]. 

In fact, use of some assays with reference genes 
that have a lower frequency of deletion in breast 
cancer (approximately 18% vs approximately 30%) 
- according to The Cancer Genome Atlas (TCGA)[52] - 
also led to the detection of lower frequencies of ESR1 
amplification (ASXL2, EIF5B and PVR vs ESR2). Note, 
however, that when reference genes such as PIEZO2 
(FAM38B) are used, which have higher deletion fre-
quencies (approximately 30%), the frequency of ESR1 
amplification remains low[34], suggesting that factors 
other than reference gene alterations may also contribute 
to the outcome of qPCR studies. This is also exemplified 

in cases when two qPCR assays lead to different ESR1 
amplification results, even though the different reference 
genes (ESR2 and SOD2) used had similar deletion 
frequencies (approximately 30%) according to TCGA. 

These assays highlight a huge difference (appro-
ximately half a dimension) in the dynamic range for 
the same samples, pointing to the impact of technical 
issues, in addition to the status of the reference gene, 
on study outcome[53] (Supplementary Tables S1-S3 and 
Supplementary Graphs S1-S4). 

Heterogeneity and counting
Tumor heterogeneity and plasticity have been increas-
ingly recognized over the last few years as common 
properties of cancer[54-64] that make molecular diagnosis 
difficult[22,29,40,57,58,64-66]. Heterogeneity is an obvious issue 
in the analyses of isolated DNA, where mixtures of cells 
with normal copy numbers and low level amplification 
may easily result in an “average” copy number that 
ranges below the definition threshold for the amplifi-
cation status or even within the background noise of 
measurement[40]. In the case of heterogeneous cancers 
analyzed with use of in situ methods (such as FISH), 
the choice of the tumor area(s) for analysis is of the 
utmost importance[40]. Accordingly, approaches that 
classify the tumor gene status based on a minimum of 
successful hybridized tumor cells[67] might fail to detect 
aberrations that are only present only in a minor portion 
of the cancer bulk. 

Signals and copies
Besides the purity and analyzability of tumor cells, 
the interpretation of FISH signals also contributes to 
analysis outcome. For example, automated FISH scoring 
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Figure 1  Prevalence of estrogen receptor alpha gene amplification in the literature. The fraction of altered cases (y-axis) is indicated across published studies 
(x-axis) and is shown separately for different detection methods. The studies are sorted in descending order of ESR1 amplification frequency, as detected. A: 
Prevalence of ESR1 amplification defined according to the diagnostic criteria for ERBB2 (HER2) amplification; B: Prevalence of ESR1 copy number increase including 
amplification and gain. For study citations see Appendices A-D. ESR1: Estrogen receptor alpha gene; MLPA: Multiplex ligation-dependent probe amplification; FISH: 
Fluorescence in situ hybridization; CISH: Chromogenic in situ hybridization.

Figure 2  Heterogeneous estrogen receptor alpha gene amplification 
detected by fluorescence in situ hybridization analysis. Green and red spots 
represent estrogen receptor alpha gene (ESR1) gene probe and centromere 
6 probe, respectively. White arrowhead points to tumor cell nuclei (blue) with 
increased numbers of ESR1 fluorescence in situ hybridization signals next to 
tumor cell nuclei without increased numbers of signals. From Moelans et al[40]. 
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systems are limited in their ability to count individual 
signals in tight clusters, and instead measure the ratio 
of fluorescence intensities[68]. But because fluorescence 
intensities and signal numbers can vary due to various 
technical issues that are independent of copy number, 
automated analysis may be considerably less sensitive 
than the human eye. This may be particularly true in 
the case of the low-level clusters that are typical of 
ESR1[31,32], because identification of individual gene 
copies is highly dependent on the interpretation of signal 
patterns. A major challenge in determining low level gene 
copy numbers that are also heterogeneously distributed 
is the identification of FISH signals that represent a single 
gene copy. For example, distinguishing dense clusters of 
multiple gene copies (which often appear as one large 
signal) from true single gene copies is difficult; and 
additionally it is virtually impossible to detect tandem 
gene duplications (which occur commonly in breast 
cancer genomes[69]) with use of established FISH scoring 
criteria that recommend that “doublets” (i.e., two tightly 
adjacent signals) be interpreted as a single gene copy. 

Such a FISH signal-counting recommendation is 
often applied, based on the interpretation guidelines 
for ERBB2 (HER2) FISH testing[70]. However, the recom-
mendation to count two adjacent signals as one is based 
on studies that determine numerical chromosome aberra-
tions, not focal changes in gene copy number[71,72]. This 
approach is warranted for chromosome enumeration 
that uses probes that do not hybridize within the 
centromere region: Following the s-phase of the cell 
cycle, chromosomes consist of two chromatids, each of 
which contains one gene copy. Accordingly, FISH analysis 
displays two signals nearby for these two gene copies[73] 
(Figure 3), even though chromosome number is not 
pathologically increased in these cases and such signals 
should be counted as one. 

In contrast to chromosome enumeration, the increased 
number of gene copies on one chromatid or chromosome 
is relevant for determining gene copy number: In this 
case, signal doublets should be considered to represent 
two gene copies. Studies that combine FISH and gene 
chip or Southern blot technologies show that FISH signal 
doublets represent two gene copies on one chromosome, 
and as such constitute gene amplification[74-77] (Figure 3 
and Supplementary Figures S1-S7).

Gene chip challenges
Gene chip technology and NGS are powerful techniques 
for detecting genomic alterations with high accuracy and 
objectivity, compared to morphologic methods that evaluate 
results based on the interpretation of individual observers. 
Nevertheless, use of these methods is associated with 
serious pitfalls. In 2008, a published summary of gene 
chip analyses listed a huge range of amplification 
frequencies reported in different studies and different 
tumor populations, ranging from 7% to 35%, even for 
ERBB2 (HER2)[33]. Over the years, various limitations 
have led to a reconsideration of these methods. Most 
importantly, it has to be taken into account that the 

isolated DNA was analyzed as an average of many 
different cells. But also methodological limitations due 
to technology-related background of measurement and 
the quality of the gene chip hybridization (call rates) 
have to be considered[22,29,36,40,78]. The large amount of 
data involved in these studies also makes these methods 
strongly dependent on the specific computational 
approaches and algorithms that are used[78-80]. 

The general impact of the normalization reference 
and the computational method used to analyze raw 
data played a key role in the rediscovery of ESR1 ampli-
fication, based on the analysis of 22 breast cancers 
with use of Affymetrix 10K SNP gene chips[24,81]. This 
is illustrated in Supplementary Figures S1-S7 and the 
Supplementary Optical Dataset S1, as well as in a video 
documentation (Supplementary Video Clips S1 + S2).

TCGA provides the largest and most advanced gene 
chip copy number database for isolated DNA from 
tumor samples[82,83]. A meta-analysis of TCGA dataset 
offers new insights into ESR1 copy number alterations 
beyond the published FISH studies. For example, 
two tumor entities with the most frequently reported 
ESR1 amplification (by FISH analysis), i.e., breast and 
endometrial cancers[24,84], are top ranked also by Genomic 
Identification of Significant Targets in Cancer (GISTIC) 
analysis (2016-06-01 stddata_2015-04-02 regular peel 
off)[52]. For GISTIC, TCGA defines gene amplification 
as a linear copy number increase that exceeds the 
genome-wide median (adjusted to diploid) by more 
than 0.1 copies[83,85]. Overall, focal (smaller than half a 
chromosome arm) and high level (increase of more than 
one copy) ESR1 amplifications are determined by GISTIC 
in 15.6%, 5.9% and 1.9% of breast cancers (n = 1080), 
respectively. Furthermore GISTIC analysis demonstrates 
that ESR1 undergoes focal amplifications significantly 
(threshold q = 0.25) above the genome-wide average 
rate in breast cancer (q = 0.096)[52,86,87]. TCGA also 
confirms the existence of very small amplifications, 
with ESR1 and CCDC170 being the only genes in the 
GISTIC peak[52] (Figure 4): Although some peaks are 
due to structural alterations that involve only part of the 
ESR1 gene, others are limited specifically to entire ESR1 
gene and its flanking regions (Figure 4)[52,88], providing 
additional strong support for a clonal selection process 
that targets the ESR1 locus[86]. Amplifications that 
were limited to ESR1 - but included parts of CCDC170 
- were also found in another SNP gene chip study[81] 
(supporting Figures 1 and 5) and by NGS, in a breast 
tumor that was sensitive to estradiol treatment[89] (Figure 
5). Obviously, novel and publicly available databases 
such as TCGA collection[52] were not available at the time 
when the debate on ESR1 amplification started, but the 
latest upgrade is still not considered in all publications to 
date[90]. 

Fact or phantom
FISH allows the analysis of gene copy number variations 
at a single cell level, and its morphological localization. 

Holst F. ESR1  amplification review
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This makes FISH especially well-suited for taking tissue 
heterogeneity into account. But signal interpretation with 
use of FISH is dependent on observer subjectivity and is 
prone to influence by signal artifacts; FISH probes may 
also detect pre-mRNA transcripts of ESR1, and such 
hybridization could mimic DNA hybridization signals[39,40]. 
Such mRNA artifacts may lead to ESR1 amplification 
calling by FISH that is false positive in cases with 
amplification signals that are exclusively limited to the 
nucleotide sequence of ESR1[24]. These artifacts may also 
explain the lower rates of amplification found by other 
methods[39]. The significance of this phenomenon has, 
however, not yet been fully evaluated, and some reports 
indicate that it does not have a major impact: These 
include cases with ESR1 amplifications whose extensions 
have been mapped (by FISH) to the gene locus only[24]. 
For example, FISH amplification signals are detectable 
even after RNase treatment of the tissue section prior 
to the FISH analysis, indicating that DNA is targeted[40]  
(Figure 6). 

Also, in at least 50% of tested cancers, ESR1 amplifi-
cation identified by FISH can be confirmed by multiplex 
ligation-dependent probe amplification PCR[40] (Figure 6), 
and additionally, a qPCR could show that tumors with 
ESR1 amplification (determined by FISH) average sig-
nificantly higher ESR1 copy numbers than do tumors 
without ESR1 amplification (also detected by FISH) 
(Supplementary Tables S1-S3, Supplementary Graphs 
S1-S4)[53].

It is important to understand that failed validation 
of FISH-determined ESR1 amplifications by qPCR or 
gene chip analysis may be due to tumor purity and 
heterogeneity. Quantitative analysis of DNA isolated 
from tissue samples is always prone to underestima-
tion of gene copy numbers - especially when tumor 
samples are not microdissected. This is because, due to 
the presence of non-cancerous cells present in a tumor 
sample, cancer cell purity typically ranges between 
20%-80% in breast cancer, and is often overestimated 
in histological analyses[91]. The “contaminating” non-

A

B

C

Disomy

Split signals

Gene duplication

Figure 3  Estrogen receptor alpha gene single and split signal patterns and their supposed appearance as detected with fluorescence in situ hybridization 
assays. Green and red spots represent estrogen receptor alpha gene gene probe and centromere 6 probe, respectively. A: Normal disomy with two chromosomes 
and two gene copies; B: Normal disomy after s-phase with four chromatids and four gene copies; C: Disomy harboring mono allelic gene duplication with two 
chromosomes and three gene copies[38]. Photos from Moelans et al[40].
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cancerous tissue inevitably “dilutes” the tumor DNA, 
and leads to underestimation of changes in gene copy 
number[22,29,40,52,91]. Clearly this dilution effect is even 
greater when low-level and heterogeneous alterations 

(e.g., the ESR1 amplification) are analyzed[52,62,88]. 

CLINICAL SIGNIFICANCE OF ESR1 
AMPLIFICATION
Gains for expression
A causal relationship between ESR1 copy numbers and 
increased expression of ERα protein, which drives cell 
proliferation[9-11], provides the molecular underpinning 
of the potential clinical relevance of ESR1 amplification. 
Expression of the ERα-protein itself has long been used 
for decades as a biomarker for initiating anti-estrogen 
treatment in breast cancer[9]. However, regardless of the 
prevalence of gene amplification across a tumor type, the 
increase in copy number for a given gene is a well-known 
mechanism for increasing its expression[16,17,44,92,93]; 
accordingly, gene amplification is assumed to be a 
marker for a tumor’s addiction to the expression of the 
amplified gene[18,19].

Several reports, including those that use DNA-specific 
methods for ESR1 copy number determination, have 
documented a significant correlation between ESR1 gene 
amplification and ERα protein expression[24,25,28,50,67,83-97] 
(Table 1).

Nevertheless, it is important to keep in mind that other 

Chromosome 6 150.009.631-154.426.408

q25.1-2
CCDC170      ESR1

GISTIC peak

Figure 4  Architecture of the most focal estrogen receptor alpha gene amplifications in the cancer genome atlas. Segmented log2 copy number ratios in 38 
TCGA breast cancers represented as horizontal bars (red: Increased, white: Neutral/normal, blue: Decreased/deleted). Focal amplifications  that are smaller than the 
region  that is 2 Mb up and downstream of estrogen receptor alpha gene (ESR1) (150.009.631-154.426.408 bp) and that harbor any amplified ESR1 sequences in 
relation to their flanking regions are shown. The 15 cases at the top of the figure show amplifications that overlap any CCDC170 sequences and only parts of ESR1. 
In the lower 22 cases, the amplicon peak includes either the full ESR1 sequence, or parts of ESR1 without overlapping CCDC170. Positions of genes are indicated in 
dark blue; ESR1 as well as CCDC170 are highlighted in green. The position of the GISTIC-log10 q-value peak is indicated in magenta. The position of the significant 
GISTIC q-value (< 0.25) region is indicated as a separate magenta colored bar (95%CI)[52,83,86]. TCGA: The Cancer Genome Atlas; GISTIC: Genomic Identification of 
Significant Targets in Cancer.

0.2

0

0.2

0

CCDC170 ESR1

Normal

Tumor

Figure 5  Estrogen receptor alpha gene amplification in a breast cancer 
tumor responding to estradiol treatment. DNA copy number profiles (red) 
in relation to the genomic position of CCDC170 (blue) and estrogen receptor 
alpha gene (ESR1) (green) in normal and a breast cancer tumor tissue that 
harbors amplification of the ESR1 gene. The amplified DNA sequence extends 
from CCDC170 throughout the promoter region and the coding sequence of 
ESR1. The mapping of amplification was performed using read counts obtained 
during whole genome sequencing. Read counts above normal and max reads 
including ESR1 are indicated in increased darker red shading. Data and graphic 
illustration according to Li et al[89].

Holst F. ESR1  amplification review



166 April 10, 2016|Volume 7|Issue 2|WJCO|www.wjgnet.com

mechanisms in addition to amplification also regulate a 
gene’s transcription, and its translation into protein. In 
fact, some studies[1,34,39,98,99] challenge the correlation 
between ESR1 copy number and expression levels 
(Table 1). Nonetheless, it is clear that here, too, the 
majority of discrepant findings are likely due to technical 
and methodological reasons. These could include a low 
number of cases analyzed, false negative ERα expression 
test results, or lack of statistical power due to low 
frequencies of tumors with ESR1 copy number alterations 
detected. However, ESR1 amplification has been 
described in ERα-protein negative breast cancers with 
poor survival[99] and it is conceivable that general genetic 
instability drives ERα-independent 6q amplification in 
these tumors. Accordingly, such cases are unlikely to 
be associated with ERα-protein expression and could 
contribute to the findings that challenge the correlation 
between ESR1 copy number and ERα expression levels.

Response or resistance
The controversy about the relevance of ESR1 amp-
lification in breast cancer derives from claims that this 
genetic aberration is a potential predictive marker for 
optimal response to endocrine therapy. Three studies 
used FISH for gene copy number determination, 
and reported that breast cancer patients that who 
were treated with Tamoxifen, and who showed ESR1 
amplification in their tumors, had a better disease-
specific survival than did patients without this alteration. 
These studies also included a retrospective analysis of 
the Tamoxifen-only arm of the prospective randomized 
ABCSG-06 trial (Figure 7)[24,25,41]. Additionally, a qPCR 
study found a worst outcome for patients whose tumors 
were ERα-negative and had ESR1 amplification, while 
there was no association between to survival in patients 
with ERα-positive cancers that received Tamoxifen 
treatment[99]. In contrast, another study suggested that 
ESR1 amplification predicted resistance to Tamoxifen 
therapy[26], although the results were not reproduced in 

a follow-up study of the randomized Danish cohort of the 
BIG-98 trial[27]. 

These discrepant results can be explained by diffe-
rences in the kinds and mechanisms of amplification. For 
example, gene amplification driven by general genetic 
instability may be a marker for aggressive tumors[100] 
with unfavorable prognosis, that are less likely to respond 
to any therapy. Such amplifications, with lack of ERα 
protein expression[99], would dominate the results of 
survival analysis in aggressive tumor subsets[26]. Other 
tumors might amplify a gene specifically driven by the 
tumors’ addiction to the respective pathway[19]. Indeed, 
this mechanism has been suggested in two independent 
studies that observed focal ESR1 amplifications of low-
level copy number change in long-term estrogen-
deprived (LTED) MCF7 breast cancer cell lines, with use 
of DNA-specific gene chips and qPCR for ESR1 copy 
number determination. And yet another experimental 
study showed that breast-cancer-derived xenografts 
respond to estrogen treatment of tumor cells that harbor 
ESR1 amplification, as determined by NGS[89,101]. 

Furthermore, in one clinical phase Ⅱ study for eva-
luating anti-estrogen treatment, a focal ESR1 ampli-
fication appeared after therapy in one out of 49 tumors 
analyzed by NGS[102]. These functional studies provide 
strong evidence for the potential clinical relevance of 
ESR1 amplification as a mechanism of ERα pathway 
regulation. One additional study used LTED MCF7 cells to 
show a change of ESR1 gene status detectable by FISH; 
however, the FISH signals were RNase-sensitive and no 
ESR1 copy number increase was detectable by ESR1 
qPCR, suggesting that the FISH results may have been 
due to probe hybridization to abundant RNA[103].

Gene amplifications in human cancers are markers 
of the tumor’s dependence on the encoded protein, and 
point to a potential target of therapy[18,20,21,45-47,104,105]. How-
ever, the effects of therapy depend on effective target 
neutralization, and indicate that target levels must be 
relevant for effective inactivation by antagonistic drugs. 
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Figure 6  Effect of RNase treatment on fluorescence in situ hybridization signal patterns. RNase pretreatment resulted in a higher fraction of tumor cells that 
showed point-shaped fluorescence in situ hybridization (FISH) signals, when fuzzy clouds of estrogen receptor alpha gene (ESR1) signals detected by standard FISH 
were eliminated (A). ESR1 copy number ratios determined by multiplex ligation-dependent probe amplification (MLPA) (y-axis) of “not increased” ESR1 copy number 
(no), ESR1 copy number gain (gain) and ESR1 amplification (amp) determined by FISH (x-axis) according to ERBB2 (HER2) testing criteria (B). Results suggest an 
association of increased DNA copies of ESR1 determined by MLPA with increased ESR1 signals detected by FISH (B). MLPA ratios of groups “no” and “amp” as well 
as of “no” and “gain” are significantly different (see dot plot). Modified from Moelans et al[40].
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In other words, the success of therapy might depend on 
the fold change in the amplified gene’s copy number. 

Accordingly, gene amplification is a well-known 
mechanism that underlies drug resistance[106-113]. 
Even in the case of HER2 (ERBB2), the mechanism of 
“receptor overcrowding” (and thus the level of receptor 
gene expression) was believed to be responsible for 
turning a marker for response into one for resistance 
depending on the level of gene expression[113]. 

And while the threshold for therapy response was 
determined at a doubled gene dose in the case of ERBB2 
(HER2), amplifications of other genes [e.g., EGFR, ERBB3 
(HER3), and PIK3CA in lung cancer] might be relevant 

at lower levels[40,73,114-123]. This, as well as a tumor’s 
heterogeneity regarding the amplification status of a 
gene, should be taken into account when considering 
gene amplification as a maker for therapeutic response 
or resistance.

Early or late 
There is growing evidence that low-level gene copy number 
amplifications represent an adaptation by tissues to 
selective pressures[89,101], even in normal (non-transformed) 
cells[62]. It is obvious that such alterations in growth-
regulating pathways can increase the risk for cancerous 
outgrowth[10,93]. The appearance of ESR1 amplification in 
precancerous lesions, and their increased frequency 
during neoplastic transformation, suggest that such 
amplification is an early event that is potentially cancer-
initiating and that drives cell proliferation[3,24,42,124,125]; 
what is not as clear is whether ESR1 amplification alone 
is sufficient to transform cells. Nevertheless, detection 
of ESR1 amplification in breast cancer precursor lesions 
might help to identify patients at high cancer risk, and 
it has thus been suggested that such patients could 
benefit from prophylactic anti-estrogen treatment[3].

FUTURE DIRECTIONS AND CHALLENGES
Rat runs and maps of malignancy 
The debate on ESR1 amplification in breast cancer 
is mainly based on methodological issues, including 
technical limitations, quality of application, and inter-
pretation of results using the standard methods that are 
available today. The controversy about the frequency of 
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Figure 7  Kaplan-Meier plot for distant recurrence-free survival of 394 breast 
cancer patients treated with Tamoxifen. Patients with (blue) and without (red) 
estrogen receptor alpha gene amplification in primary tumor. From Singer et al[41].
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Ref. Patients (n ) ESR1 CNI (%) ERα-negative CNI (%) Method for CNI detection

Correlation or association found
   1 Nembrot et al[1]     22 27.3   0 Western blot
   2 Holst et al[24] 1652 36.1      1.3 FISH
   3 Tomita et al[25]   133 33.8   0 FISH
   4 Moelans et al[28]   135   8.1     27.3 MLPA
   5 Tsiambas et al[50]     60 21.6 - FISH
   6 Dunbier et al[95]     44 20.5   0 Gene chip
   7 Laenkholm et al[96]   220 42.4      8.8 FISH
   8 Singer et al[41]   394 47.5   1 FISH
   9 Lin et al[67]   150 12.7      5.9 FISH
   10 Pentheroudakis et al[97] 1010 58.8    12.5 FISH
   11 Li et al[93]   219 - - Gene chip
   12 Soysal et al[3]     58 15.5   0 FISH
No correlation or association not found
   1 Watts et al[30]     37   2.7   0 Western blot
   2 Reis-Filho et al[34]     70 11.4 25 Gene chip
   3 Vincent-Salomon et al[35]   341   0.9         66.70% Gene chip
   4 Moelans et al[125]     39 Approximately 20 - MLPA
   5 Ooi et al[39]     51   5.9   0 FISH/MLPA
   6 Markiewicz et al[99]   281 11.7    66.7 qPCR
   7 Chen et al[2]   301   8.6    46.2 FISH

Table 1  Published studies testing interrelations of estrogen receptor alpha gene (ESR1)  amplification with estrogen receptor alpha protein 
expression over cases, studies are separated for test results by correlation or association and no correlation or association found

Studies are separated with regard to correlation or association and no correlation or association. Frequency of ESR1 copy number increase (CNI), size 
(n) of study cohort, and proportions of ERα negative (ERα-) tumors in cases with ESR1 CNI, as available. MLPA: Multiplex ligation-dependent probe 
amplification; FISH: Fluorescence in situ hybridization; qPCR: Quantitative polymerase chain reaction.
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low level ESR1 amplifications in particular, highlights the 
need for methodically advanced and sensitive approaches 
that will allow consistent findings.

The power of high throughput screening methods 
for a bird’s eye perspective of the schematic landscapes 
has enabled us to draw integrated maps of malignancy. 
But cancer is not yet vanquished, and zooming in to 
details of these landscapes could open new dimensions 
of insights into hidden and undiscovered molecular path-
ways of malignancy (rat runs) that might be missed 
from a bird’s eye viewpoint.

A future perspective could comprise a combination of 
the existing cancer landscapes and detailed information 
derived from sensitive targeted approaches that will 
enable us to develop eagles eyes. Use of established 
morphological imaging methods such as FISH, as well as 
newly developed NGS-based approaches, could combine 
the objectivity of computational analysis algorithms with 
the resolution of single-cell analyses. These methods 
could integrate spatial and morphological, objective 
and high resolution measurement within tissues[126], 
and are in the process of being developed. Initial 
results have been published with use of single-nucleus 
sequencing[56,61,127], but challenges of using NGS data pro-
cessing and whole genome amplification still remain to 
be tackled[79,80,128]. 

Gnosis and medicine’s 5 sigma 
The reproducibility of research on potential drug targets 
is low - successful only in about a fifth of studies 
published[129-131]. While the established FISH method 
seems suggested to be a valuable approach for studying 
the clinical relevance of ESR1 amplification or gene 
status in breast cancer[3,24-26,40,41,50,96] (Figure 7), there is 
no established consensus on how the interpretation of 
signal patterns or of gene status classification thresholds 
and definitions. As such, the nature of the ESR1 gene 
status on the level of nucleic acids (DNA or RNA) might 
appear to be of secondary importance when considering 
a reproducible phenomenon that has an established 
standard diagnostic method and that is potentially 
applicable as a clinical marker[3]. In contrast, studies on 
the potential clinical significance and status definitions 
of detectable phenomena seem to be rather reasonable. 
In this context, the robustness and predictive power of a 
clinically applicable marker may be more important than 
its molecular properties.

Richard Horton recently commented that “much 
of the scientific literature, perhaps half, may simply be 
untrue”, pointing to the recent P-values of “5 sigma” set 
in particle physics. And the idea, that, regarding scientific 
publications, “something has gone fundamentally wrong 
with one of our greatest human creations”, highlights the 
need for open debates and paper critiques in science[132]. 
However, scientific debates will be rewarded when, 
besides the P-values and technical methodology, we do 
not lose sight of the goals of medical research[133].
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