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Abstract
“The forgotten organ”, the human microbiome, comprises 

a community of microorganisms that colonizes various 
sites of the human body. Through coevolution of bacteria, 
archaea and fungi with the human host over thousands of 
years, a complex host-microbiome relationship emerged in 
which many functions, including metabolism and immune 
responses, became codependent. This coupling becomes 
evident when disruption in the microbiome composition, 
termed dysbiosis, is mirrored by the development of 
pathologies in the host. Among the most serious con-
sequences of dysbiosis, is the development of cancer. As 
many as 20% of total cancers worldwide are caused by a 
microbial agent. To date, a vast majority of microbiome-
cancer studies focus solely on the microbiome of the 
large intestine and the development of gastrointestinal 
cancers. Here, we will review the available evidence 
implicating microbiome involvement in the development 
and progression of non-gastrointestinal cancers, while 
distinguishing between viral and bacterial drivers of cancer, 
as well as “local” and “systemic”, “cancer-stimulating” 
and “cancer-suppressing” effects of the microbiome. 
Developing a system-wide approach to cancer-microbiome 
studies will be crucial in understanding how microbiome 
influences carcinogenesis, and may enable to employ 
microbiome-targeting approaches as part of cancer 
treatment.
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Core tip: “The forgotten organ”, the human microbiome, 
comprises a community of microorganisms that colonizes 
various sites of the human body. A complex host-micro-
biome relationship has emerged in which many functions 
became codependent. This coupling becomes evident 
when disruption in the microbiome composition, termed 
dysbiosis, is mirrored by the development of pathologies 
in the host. Among the most serious consequences 
of dysbiosis, is the development of cancer. As many 
as 20% of total cancers worldwide are caused by a 
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microbial agent. Here, we will review the available 
evidences implicating microbiome involvement in the 
development and progression of non-gastrointestinal 
cancers. Developing a system-wide approach to cancer-
microbiome studies will be crucial in understanding how 
microbiome influences carcinogenesis, and may enable 
to employ microbiome-targeting approaches as part of 
cancer treatment.
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INTRODUCTION
Bacteria, viruses, archaea and fungi coevolved with 
the human body for thousands of years. This resulted 
in diverse and extensive host-microbiome interactions, 
which influence multiple host physiological processes, 
including metabolism and the function of the immune 
system[1]. Disruption of the microbial community, termed 
dysbiosis, is suggested to constitute a major risk factor 
for an increasing array of diseases including metabolic 
syndrome and immune disorders as well as several 
forms of cancer. 

Carcinogenesis is a process inflicted and influenced by 
many mechanisms. However, up to 20% of the cancers 
worldwide are believed to be caused or modulated by 
a microbial agent[2,3]. Of the various involved microor-
ganisms, viruses are best studied for their role in 
carcinogenesis. Therefore, multiple mechanisms through 
which viruses promote development of tumors have been 
deciphered. The roles of archaea and fungal members of 
microbiome in cancer formation are much less studied, 
while only recently studies emerged focusing on bacterial 
involvement in cancer formation and progression. 

This review will provide some conceptual examples of 
how different organ-specific microbiomes may modulate 
the carcinogenic processes through involvement of specific 
members or, alternatively, through changes observed 
in the microbial community as a whole (summarized 
in Table 1). An early example of an individual bacterial 
member that contributes to carcinogenesis is Helico
bacter pylori (H. pylori). H. pylori colonizes the gastric 
mucosa in 50% of humans and causes cancer in 1%-3% 
of colonized individuals. It thus is recognized by the 
International Agency for Research on Cancer as a bone-
fide carcinogen[4]. However, further experiments in germ-
free mice showed that infection by H. pylori alone was 
not sufficient to promote neoplastic transformation. Mice 
mono-associated with the bacteria developed gastritis 
and subsequent neoplasia at a much slower rate than 
their fully colonized counterparts, suggests that H. pylori 
may require cooperation by other commensal microbiota 
members. In other cases an entire dysbiotic microbiome 

community was suggested to drive tumor development. 
One such example is colorectal cancer (CRC) that is 
transmissible by dysbiotic microbiota[5,6]. As such, germ-
free mice are partially protected from disease, and 
treatment with broad-spectrum antibiotics ameliorates 
cancer development. Identifying the pathogenic bacterial 
“drivers” of cancer in these cases and differentiating 
them from secondary microbial alterations remains a 
major challenge to the field.

Most studies have focused on the effect of the micro-
biota on gastrointestinal cancers and these are reviewed 
in detail elsewhere[7-11]. In this review, we will discuss 
research into the carcinogenic properties of microbial 
agents in the non-gastrointestinal organs. We review 
these associations per body-site, and highlight the 
substantial effect microbial involvement may have on 
all stages of cancer development in the skin, breast, 
urogenital tract, lung, liver and pancreas.

SKIN
The human skin is the largest organ in the body and 
hosts a complex and heterogeneous microbiota. Until 
recently, the studies of the skin microbiota focused on 
bacteria, using culture-based assays. However, it has 
recently been appreciated that the skin is inhabited 
by a massive, unculturable bacterial ecosystem, as 
well as by fungi and viruses[12-14]. Together, these com-
prise the skin microbiome, which may have diverse 
effects on a multitude of skin-specific physiological 
and pathophysiological processes, including ones that 
promote the development of skin cancer.

Viral involvement in skin cancer
The skin virome has rarely been investigated, in part 
because most skin-associated viruses are not culturable 
and do not display consensus sequences that can be 
used for high throughput next generation sequencing 
techniques[15]. Several viruses are known to inhabit 
the healthy skin, but can also induce malignant trans-
formation.

The papilloma virus family: Papilloma viruses (PVs) 
infect undifferentiated keratinocytes in the basal layer of 
the stratified squamous epithelia, and in the cutaneous 
and the mucosal levels. Oncogenic PVs, including the 
human papilloma virus (HPV-16), are responsible for 
nearly all cases of cervical and anal cancer[16]. PVs are 
commonly part of the skin and mucosal microbiota 
of healthy individuals, suggesting commensalism or 
mutualism between PVs and their host cells[17]. Moreover, 
the majority of HPV infections are subclinical and do 
not cause any physical lesions[17]. However, in some 
cases chronic inoculation is established through immune 
escape mechanisms, and a low yet persistent amount 
of virions in produced. The oncogenic features that allow 
the virus to induce cell transformation are dependent 
on the virus’s E5, E6 and E7 oncogenes, which are 
exclusively present in oncogenic PVs. The E6 protein in 
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oncogenic PVs is able to induce degradation of the p53 
cellular protein, thus promoting uncontrolled cell growth. 
The E5 protein allows for evasion of the host’s immune 
surveillance and decreases the dependence of infected 
cells on growth factors. Finally, the E7 oncoprotein 
binds to the tumorsuppressive pRb, dissociating the 
transcription factor E2F from the pRb/E2F complex. The 
process induced by these three oncoproteins is slow, with 
progression from precursor lesions to invasive cancer 
usually requiring more than a decade[16].

More recently, another HPV member was found to 
be associated with an unusual form of skin cancer called 
Merkel cell carcinoma (MCC)[18], concisely reviewed in[19]. 
The Merkel cell polyomavirus (MCPyV) causes a rare but 
aggressive form of skin cancer and is present in about 
80% of MCC tumor specimens. The MCPyV genome was 
shown to integrate into the cellular DNA of some MCC 
tumors and their metastases. A majority of MCC tumors 
also display constitutive expression of the MCPyV large 
T-antigen oncoprotein[20]. This suggests involvement of 
MCPyV in the oncogenesis of MCC.

Bacterial involvement in skin cancer
The skin microbiome contains an entrenched bacterial 
population, forming a microbiome that features a high spatial 
and temporal stability[21-24]. The skin contains different 
skin microenvironments, defined by sebaceous, moist 
and dry areas and by the different follicle densities[25]. 
The cutaneous microbiome consists predominantly of 4 
bacterial phyla; actinobacteria, firmicutes, proteobacteria 
and bacteroidetes and six genera, propionibacterium, 
corynebacterium, staphylococcus, streptococcus and 
acinetobacter[23,26]. 

Several studies link commensal skin bacteria to 
malignant transformation. In one example, antibiotic-

treated mice showed an increased susceptibility to B16/
F10 melanoma, as well as lewis lung carcinoma, and 
exhibited a shortened mean survival time, suggesting a 
protective role of the skin microbiome in cancer develop-
ment in these models. In contrast, another experimental 
setting suggested that an intact commensal bacterial 
population, and specifically flagellated bacteria, may 
be required for malignant transformation in the murine 
skin[27]. In this context, toll-like receptor (TLR) 5 and its 
ligand flagellin linked between chronic inflammation, 
tissue damage and skin cancer. In the model described, 
bone-marrow chimeras lacking MyD88 and TLR5 in 
the hematopoietic cells exhibited protection against a 
chemical model of wound-induced tumor formation. 
When mice were treated with a broad-spectrum antibiotic 
regimen, the skin bacterial load was decreased and 
wound-induced tumor formation and tumor size were 
substantially reduced. Topical application of flagellin onto 
wounds increased tumor incidence in a dose-dependent 
manner and delayed wound closure. This indicates that 
MyD88 and TLR-5 signaling on radiosensitive leukocytes 
is required for tumor formation. Together, these examples 
suggest that the skin bacterial microbiome can play 
either a protective or a harmful role in cancerogenesis, 
depending on the physiological context and microbial 
composition.

BREAST
Breast cancer is the second leading cause of cancer-
related deaths in women: One in eight women develop 
the malignancy in their lifetime[28]. Despite considerable 
and significant progress has been achieved in breast 
cancer research, in most cases it’s etiology remains 
unknown[29]. Mammary glands are colonized by a distinct 
microbiota[30,31], but the role of microbial involvement in 

Cancer Mechanism Ref.

Protective role
   B16/F10 melanoma and LLC Microbiota was required for the development of anti-cancer immunity [87]

Commensal microbiota was essential for the development and anti-cancer activity of γδ-Th17 cells
   HCC Microbiota was required for immune system development [111]

Commensal microbiota was needed for the development of the immune system in the liver, which enables mice 
to clear HBV. A chronic infection with HBV is a major risk factor for HCC

Tumor-promoting role
   Skin cancer Dysbiosis causes a cancer-stimulating inflammatory response in the host [27]

Microbiota-derived Flagellin stimulates TLR5-MyD88 signaling which promotes skin cancer development
   Breast cancer Upon injection of a carcinogen, GF mice showed a lower cancer burden than SPF mice [43]
   Lung Dysbiosis causes a cancer-stimulating inflammatory response in the host [102]

E. coli/LPS in the lungs promotes lung injury and inflammation, which lead to an enhanced metastasis from 
the primary tumor to the lung

   Ovarian and breast cancer Dysbiosis inhibits anti-tumor immunity: Gut microbiota of TLR5-/- mice promoted the accumulation of MDSCs 
at the site of breast and ovarian cancers. MDSCs in their turn suppressed anti-cancer immunity

[44]

   Breast cancer Infection with a gastric pathogen promoted cancer-stimulating inflammatory responses [30]
In mice, infection with the gastric bacteria H. hepaticus led to an influx of neutrophils in the mammary gland 

that then promoted cancer. Treatment with antibiotics or the depletion of neutrophils significantly halted 
cancer development

   Liver Infection of mice prone to liver cancer with H. hepaticus led to a significant enhancement of carcinogenesis [114]

Table 1  The role of the microbiota in non-gastric cancers

LLC: Lewis lung carcinoma; HCC: Hepatocellular carcinoma; HBV: Hepatitis B virus; TLR: Toll-like receptor; MDSCs: Myeloid-derived suppressor cells.
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breast cancer remains at its infancy.

Viral involvement in breast cancer
Until recently, most studies looking into microbial modula-
tion of breast cancer have been focused on specific 
viruses. The results, however, remain inconclusive. 
While HPV infection has been reported by some groups 
are associated with breast cancer development[32-34], 
others have failed to find such correlation[35,36]. Some 
groups have reported that up to 50% of breast tumors 
to be EBV-positive[37-40], while others have been unable 
to detect the virus in breast tumors altogether[41,42]. 
Therefore, additional studies are needed to clarify 
the potential contribution of viral infections in breast 
carcinogenesis, and its modulatory mechanisms of 
activity. 

Bacterial involvement in breast cancer
In parallel to viral infections, a number of studies 
suggest a link between bacterial infections and breast 
cancer. Involvement of the commensal microbiome 
was first suggested in a study in which injections of a 
carcinogen (DMAB) in various body sites of germ free 
rats resulted in a significantly lower cancer burden 
in the breast tissue and colon, but not in the skin, as 
compared to conventionalized rats[43]. Of note, this 
study did not delineate whether the observed effects 
were linked to the local breast microbiome, or to distal 
microbial communities such as that of the gut. More 
recent studies have sought to clarify this issue. Xuan 
et al[31] surveyed the microbiota in tumors or normal 
adjacent tissues from 20 estrogen receptor (ER)-positive 
breast cancer patients as well as in tissue from healthy 
donors. This study indicated that there is a 10-fold 
decrease in the absolute numbers of bacteria between 
cancer and control tissues. Moreover, the authors 
observed changes in the compositional abundance of 
bacterial species in tumor compared to control tissues. 
While the genus Sphingomonas was found to be more 
abundant in normal tissues, the tumor tissue hosted 
Sphingomonas yanoikuyae in increased numbers. Other 
members of the skin microbiome, such Staphylococcus 
and Corynebacterium, did not vary significantly between 
normal and tumor tissues. Nonetheless, these data 
suggest that mammary tumors bear a different microbial 
composition than the normal tissue. Significant microbial-
associated effects on tumor progression are supported by 
a recent study, which showed an accelerated mammary 
malignant progression in TLR5-responsive mice. In this 
model, malignant progression of mammary tissue in 
p53-ablated and oncogenic K-ras-activated mice was 
measured on the background of TLR5 deficient mice[44]. 
Absence of TLR5 signaling in these mice resulted in a 
divergent microbial composition and reduced tumor 
progression. In TLR5 proficient mice, on the other 
hand, microbial signaling through TLR5 increased IL-6 
secretion and the number of gamma delta T cells as well 
as tumor growth. Thus, the commensal microbiome 
was suggested to be able to induce tumor-promoting 

inflammation in a TLR5 dependent manner. 
While the above studies focus on the whole micro-

biome composition and not on specific microbial “drivers” 
or “modulators” of cancer, a study by Lakritz et al[30] 
implicated a specific bacterium, Helicobacter hepaticus (H. 
hepaticus), in the progression of mammary malignancy. 
In this report, mice with a predisposition for breast 
cancer were infected with H. hepaticus. Compared to 
non-infected controls, infected mice showed increased 
mammary tumor burden characterized by extensive 
neutrophil infiltration. Depletion of neutrophils entirely 
inhibited tumor development[30]. Together, these data 
suggest that both the whole microbiome composition as 
well as specific bacteria can contribute to breast tumor 
progression by promoting inflammation, and that they 
can do so via multiple pathways.

UROGENITAL TRACT 
Urogenital cancers include cervical, renal, bladder and 
ovarian carcinomas. Very few studies focusing on the 
roles of the microbiota in urogenital tract tumors have 
been published to date[45]. Nonetheless, there is some 
emerging evidence towards the possibility that chronic 
viral infections may promote the development of renal 
cell carcinoma and bladder cancer. 

Cervical cancer
The most frequently occurring and the best studied of 
cancers of the female urogenital tract is cervical cancer. 
The most highly associated risk factor for cervical 
cancer is viral infection by the HPV family. Mucosal HPV 
serotypes infect the basal epithelial cells of the anogenital 
mucosa via micro-abrasions in the epithelial lining[46]. 

Vulval, vaginal, penile, cervical, and anorectal areas are 
affected. Cervical and anal squamous cell carcinoma 
develop at sites of squamous metaplasia; cervicovaginal 
and anorectal squamous columnar junctions are there-
fore especially vulnerable to HPV infection leading to 
malignant transformation[47]. Although data are limited, 
antibodies developed during natural infection do not 
seem to offer full protection against reinfection, possibly 
because of low or waning titers of the virus[48,49]. By 
contrast, the available prophylactic HPV vaccines induce 
high concentrations of neutralizing antibodies - at least 
two-log scale higher as compared to natural infection-
induced concentrations, leading to a better immune 
memory[50,51]. The efficacy of the anti-HPV vaccine in 
cervical intraepithelial neoplasia associated with HPV 16 
and 18 in women naive for infection is high: 93% (95%CI: 
79.9-98.3) for the bivalent vaccine (HPV 16/18) after 35 
mo of follow-up and 98% (95%CI: 93.3-99.8) for the 
quadrivalent vaccine (HPV 6/11/16/18) after 42 mo of 
follow-up[52-54]. 

Vaginal cancer
The vagina harbors a unique microbiota that serves as 
an important line of defense against pathogens, includ-
ing sexually transmitted infections[55]. The dominant 

Pevsner-Fischer M et al . Microbiome in non-gastrointestinal cancers
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members of the vaginal microbiome Lactobacillus spp. 
were shown to provide broad-spectrum protection from 
pathogens through their production of lactic acid[56], 
bacteriocins (bactericidal proteinaceous molecules)[57], 
antagonistic bacteriocin-like substances[58], and biosur-
factants[59], that can adhere to mucus, a component of 
the barriers against pathogens[60] and disrupt biofilms[61]. 
Disruption of the protective microbiota configuration, 
termed bacterial vaginosis (BV) was shown in numerous 
studies to correlate with cervical cancer-inducing HPV 
infections[62-69]. BV affects one in three United States 
women[70] and is characterized by decrease in protective 
Lactobacillus spp., increased specie richness, and 
elevated numbers of anaerobic bacteria, including species 
of Gardnerella, Prevotella, and Clostridiales[71].

While numerous association studies showed a strong 
association between dysbiotic disruption of vaginal 
microbiota (BV) and HPV infections, the mechanistic link 
between the two events is yet to be explored.

Ovarian cancer
Chronic inflammation was previously suggested to be 
involved with the pathogenesis of Ovarian carcino-
genesis[72], yet this evidence remains sparse. Specific 
pathogens suggested to be indirectly associated with 
human ovarian cancer include Chlamydial HSP60-1 
IgG and M. genitalium, with IgG antibodies specific to 
these bacteria suggested to be associated with epithelial 
ovarian tumors in some patient subsets[73]. Possible 
involvement of impaired host-microbiome interactions 
in ovarian cancer was suggested from a study utilizing 
TLR-5 deficient mice that feature a dysbiotic microbiome 
configuration. These mice showed increased survival 
rates compare to WT controls when injected with syn-
genic ID8 ovarian tumor cells[44]. In addition, ovarian 
tumors of patients who were heterozygous for the 
dominant TLR5R392X polymorphism showed negligible 
induction of IL-8 transcript levels but significantly 
higher IL-17A transcript levels in response to flagellin 
as compared to control population. Furthermore, the 
proportion of long-term survivors was significantly higher 
among TLR5R392X carriers, all suggesting that host TLR5 
microbe interactions may play a role in ovarian tumor 
pathogenesis[44].

Bladder cancer
Until recently, the healthy urinary tract was considered 
sterile and bacterial presence in the urine of patients 
identified via culture-based methods was considered 
a sign of a urinary tract infection[45,74]. In recent years, 
however, the emergence of next generation sequencing 
of the microbiome has established the presence of a urinal 
microbiome in the healthy humans urinary tract[75-85]. 
Among them, several works describe the presence of 
a complex bacterial community with the predominant 
genera Lactobacillus, Prevotella and Gardnerella, with a 
considerable variation featured between individuals[79,83].

Bladder cancer is the most prevalent malignancy of 
the urinary system. In 2015, it is estimated that 75000 

new cases will be diagnosed, and more then 15000 
patients will die due from Bladder cancer in the United 
States[86]. The most important risk factors known for 
urothelial carcinoma are cigarette smoking and various 
occupational exposures. The nematode, Schistosoma 
haematobium infection was also associated with the 
development of squamous cell carcinoma of bladder 
due to chronic inflammation. Regarding microbiome 
involvement in urothelial carcinoma, a study compar-
ing the microbiome of urine specimens from healthy 
individuals and urothelial carcinoma revealed that 
Streptococcus was nearly undetected in normal samples 
but significantly elevated in 5 out of the 8 cancer 
samples. Pseudomonas or Anaerococcus were the most 
abundant genus in 2 out of the 3 cancer samples where 
Streptococcus abundance was low[87]. While descriptional 
in nature, this study suggests that urothelial carcinoma may 
be associated with altered microbiota of the urinary tract. 
More studies are needed to establish whether microbiome 
composition plays a causative role in bladder cancer.

Renal cancer
The role of the healthy microbiome on kidney cancer has 
not been studied to date. However, a number of studies 
suggested an association between viral infections and 
risk of renal cancer, yet these remain controversial and 
at times contradictory to each other[72,88,89]. One virus 
that has been implicated in RCC pathology is HPV. One 
study reported that 7 out of 49 RCC samples to be HPV 

positive[90]. A second study, including histology samples 
of 122 patients, found 30.3% of RCC tumor tissues to 
be HPV positive. Of these, 45% were positive for high-
risk (HR)-HPVs such as HPV-16 and HPV-18. Moreover, 
HR-HPV infection correlated with the expression of 
p16INK4a, a viral immunosuppressant. The authors 
hypothesized that HR-HPV infection may precede RCC 
and promote oncogenesis[91]. However, more research is 
required to test this hypothesis. 

In contrast, Newcastle disease virus has been 
suggested in in vitro studies to play a therapeutic role 
in RCC. This virus preferentially infects cancer cells and, 
upon infection induces apoptosis via the p38 MAPK/NF-
κB/IκBα pathway. Similar outcomes were obtained in 
other cancer types[92]. Future studies are needed to 
translate these in vitro findings to the clinical context. 

LUNG 
The human microbiota is the body’s first interface 
with environmental exposures. In this sense, the lung 
microbiota may play an important role in the body’s 
response to airborne carcinogens. The mechanisms of 
lung carcinogenesis are still not fully understood. The 
current most important risk factor for lung cancer is 
smoking. In non-smokers, suggested risk factors include 
environmental tobacco smoke, exposure to radon 
gas, cooking oil vapors, indoor coal and wood burning, 
asbestos, genetic factors, parasitic infections as well as 
viral and bacterial agents[93] that will be described below. 

Pevsner-Fischer M et al . Microbiome in non-gastrointestinal cancers
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Viral involvement in lung cancer
As in skin carcinoma, HPV has been associated with lung 
cell malignancies[94]. Studies suggest a link between HPV 
infection and lung cancer in non-smoking patients; it has 
been shown that epithelial changes in bronchial carcinoma 
closely resembled HPV-induced genital lesions[95]. Similarly 
to the mechanisms by which HPV contributes to skin 
cancer susceptibility, it is suggested that the molecular 
mechanism of transformation by HPV is mediated by its 
oncoproteins E5, E6 and E7. In addition, in vivo data show 
HPV integration, E6/E7 expression and down regulation 
of p53 in lung cancers, further supporting this classical 
oncogenic mechanism[96]. 

Bacterial involvement in lung cancer
C. pneumoniae is a gram-negative obligatory intracellular 
bacterium and a common cause of pneumonia[69]. C. 
pneumoniae can also cause other conditions, such as 
sinusitis, bronchitis, rhinitis and worsening of chronic 
obstructive pulmonary disease (COPD). However, infec-
tion can also be asymptomatic. The involvement of 
C. pneumoniae infection in lung cancer development 
and risk has been suggested by several studies[97-99]. 
However, the mechanisms for this association remain 
unclear[100,101]. Pulmonary infections with gram-negative 
bacteria have also been suggested to contribute to 
lung metastasis. Acute lung infection models induced 
by either infection with E. coli or administration of LPS 
increased cancer cell homing to the lung and enhanced 
lung metastasis[102]. Moreover, the broncho-alveolar 
lavage fluid from LPS or E. coli-injected mice induced 
the migration of transformed cells in vivo. The tumor 
cells migratory activity was blocked by AMD3100, a 
chemokine receptor-4 inhibitor, as well as by amoxicillin, 
an antibacterial agent. In addition, tracking of the 
metastatic tumor cell line in the mouse showed that 
bacteria injection enhanced early localization of the 
tumor cells to the lung.

The bacterium C. pneumoniae is a gram-negative 
obligatory intracellular bacterium and a common cause of 
pneumonia[101]. In addition to pneumonia, C. pneumoniae 
can cause other conditions, such as sinusitis, bronchitis, 
rhinitis, exacerbation of COPD. However, infection can 
also be asymptomatic. The association of C. pneumoniae 
infection with lung cancer risk has been suggested by 
multiple studies[97-99], although the mechanisms for this 
association remain unclear[100,103].

Pulmonary infections with gram-negative bacteria 
have also been suggested to contribute to lung meta-
stasis. Acute lung infection models induced by either 
infection with E. coli or administration of LPS increased 
cancer cell homing to the lung and enhanced lung 
metastasis[102]. Moreover, the broncho-alveolar lavage 
fluid from LPS or E. coli-injected mice stimulated 
migration of tumor cells in vivo. The tumor cells migratory 
activity could be blocked by AMD3100, a chemokine 
receptor-4 inhibitor, as well as by the antibacterial agent 
amoxicillin. In addition, in vivo tracking of the metastatic 

tumor cell line showed that bacterial injection enhanced 
early dissemination of the tumor cells to the lung. 

In contrast, antibiotics-treated mice were shown to be 
more susceptible to tumor development in the lungs after 
inoculation with B16/F10 melanoma or a lung carcinoma 
cell-line. In this model, commensal bacteria were found 
to be essential for the function of γδ-Th17 cells in the 
lung, and the absence of these cells increased the 
susceptibility to lung carcinoma and B16/F10 melanoma 
development[87]. This indicates, that the antitumor 
defense of the host through γδ-Th17 cells is dependent 
on an intact microbiome composition. Therewith, lung 
cancer is an excellent example of the healthy microbiome 
playing a protective role in tumorigeneis, whereas when 
dysbiosis develops, pathogenic or pathobiont bacteria 
may promote, in certain contexts, cancer development.

LIVER
Primary liver cancer is the fifth most diagnosed form of 
cancer in males, and the second most frequent cause 
of cancer death worldwide. Seventy percent to ninety 
percent of the primary liver cancer cases can be classi-
fied as hepatocellular carcinoma (HCC)[104,105]. With 
mortality to incidence ratio of 0.95, the prognosis for 
patients with HCC is extremely poor[105]. In developed 
countries, chronic hepatitis B virus (HBV) and hepatitis 
C virus (HCV) infections account for approximately 43% 
of cases. However, the majority of patients develop 
HCC secondary to alcoholic liver disease (ALD) and non-
alcoholic fatty liver disease (NAFLD)[104]. It has recently 
been suggested that the microbiota plays an important 
role in HCC development. Although the liver, under 
normal conditions, is considered sterile, its environment 
is greatly influenced by the nutrients, metabolites and 
also toxins and pathogens derived from the gut via 
the portal vein. Therefore, the composition in the gut 
microbiota can greatly influence the functioning of the 
liver, by its myriad metabolic activities regulating the gut 
liver axis. Indeed, recent studies have suggested that 
the composition of the gut microbiota can both influence 
the development of diseases predisposing to HCC such 
as chronic HBV and HCV infections, ALD and NAFLD, and 
the transition from these diseases into HCC[106,107], yet the 
mechanisms driving these effects remain elusive.

Viral contribution to HCC
The majority of HCC cases occur in patients previously 
suffering of chronic hepatotrophic viral infection, mainly 
HBV and HCV[108]. A unique feature of HBV infection is 
that while 95% of adults are able to spontaneously clear 
the virus, over 90% of neonates and approximately 
30% of children aged 1-5 develop persistent infec-
tion[109,110]. Possible involvement of the microbiota in 
this phenomenon was suggested from a study in which 
mice treated with oral antibiotics for 6 wk prior to HBV 
infection were no longer able to rapidly clear the virus[111]. 
Further experiments indicate that the microbiota in 
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young mice may induce HBV tolerance in the liver via 
LPS-TLR4 mediated secretion of IL-10 by kupffer cells 
(KC), whereas the mature microbiota shifts this balance 
towards clearance of the virus by stimulating KC-
dependent lymphoid organization and tissue priming 
in the liver[111,112]. Future studies are needed to further 
validate this interesting association, and to determine 
possible roles of the gut microbiota in the clearance of 
other hepatotrophic viruses such as HCV.

Both HBV and HCV infections contribute to the 
development of HCC by promoting a pro-inflammatory 
liver micro-environment, affecting cell cycle regulation 
and inducing ER stress, as has been extensively reviewed 
elsewhere[113]. However, a study by Fox et al[114] indicated 
that colonization with H. hepaticus in the gut was 
sufficient to promote HCC in HCV-transgenic mice, in 
the absence of either translocation of H. hepaticus to the 
liver or overt hepatitis. From its niche in the intestinal 
mucosa, H. hepaticus activated NF-κB dependent net-
works associated with innate and T-helper 1 (Th-1)-
type adaptive immunity, both in the intestines and in the 
liver. The resultant transcriptional changes promoted the 
development of pre-neoplastic and neoplastic liver foci in 
mice bearing an HCV transgene, while neither factor by 
itself was sufficient to induce tumor formation[114]. This 
demonstrates that H. hepaticus can alter hepatic immune 
regulation from its intestinal niche, in a manner that 
synergizes with viral tumorigenic factors. More research 
is warranted to uncover whether other changes in the 
intestinal microbiota can induce similar effect. 

Bacterial contribution to HCC
Chronic alcoholic consumption is considered a major 
risk factor for chronic liver disease and HCC. Already in 
1991 it was noted that patients with alcoholic cirrhosis 
displayed far higher levels of serum endotoxin than those 
with non-alcoholic cirrhosis, suggesting that alcoholic 
cirrhosis is associated with impaired intestinal barrier 
function[115]. Likewise, treatment of rats with antibiotics 
targeting Gram-negative bacteria drastically decreased 
serum endotoxin levels and liver injury in ethanol-fed 
rats[116]. These suggested that some of the features of 
chronic alcohol toxicity may be mediated by gut-asso-
ciated pathogen-induced molecular patterns released 
by the gut microbiota. These findings were further 
confirmed, with the finding that germ-free mice, which 
are devoid of a microbiota, are protected from ethanol-
induced liver disease[117]. Moreover, transplanting 
microbiota from alcohol-fed mice into naive germ-free 
mice was sufficient to induce liver injury and inflam-
mation. Furthermore, excessive alcohol intake lead to 
dysbiosis by an overgrowth of Gram-negative bacteria, 
that caused increased gut permeability. As leaky gut 
leads to increased availability of bacterial metabolites to 
the liver, as well as pro-inflammatory molecules such 
as bacterial toxins, LPS and even living microbes, this 
may explain how alcohol-induced dysbiosis could lead 
to ALD. Indeed, feeding mice a high-fiber diet partially 
prevented alcohol-induced dysbiosis, decreased gut 

permeability and mitigated the damage to the liver[117]. 
This model is supported by preliminary data from 
patients with alcoholic cirrhosis that show an increase in 
Gram-negative bacteria as well as an increased bacterial 
translocation to the liver[118], suggesting that microbiota-
targeting interventions may potentially mitigate alcohol-
induced liver damage.

Alcohol-induced liver cirrhosis is characterized by 
cellular injury, inflammation, and fibrosis coupled with 
compensatory cell growth and proliferation, conditions 
promoting tumor development[119]. Furthermore, ethanol 
can induce epigenetic changes in hepatocytes that lead 
to tumor formation[120]. There is evidence that ethanol-
mediated TLR4 signaling is crucial in the dedifferentiation 
of hepatocytes seen in HBV/HCV- and ALD-associated 
HCC. Ethanol-induced hepatic translocation of LPS and 
gram-negative bacteria may further synergize with these 
direct effects in activating the innate immune response. 
In agreement, diethylnitrosamine-induced liver cirrhosis 
was accompanied by dysbiosis. When treated with 
probiotics, a reduction in gut permeability and intestinal 
inflammation was observed together with a reduced 
incidence of cirrhosis and HCC in this model[121]. Together, 
these studies suggest that ALD-associated dysbiosis may 
contribute to HCC susceptibility. 

NAFLD, a component of the “metabolic syndrome”, 
is rapidly becoming a common cause of chronic liver 
disease in both developed and developing countries[122]. 
While most patients with NAFLD feature isolated liver 
steatosis, in approximately 20% of cases NAFLD evolves 
into non-alcoholic steatohepatitis (NASH), a progressive 
liver disease involving a combination of steatosis, hepato-
cellular damage, inflammation and fibrosis. NASH has the 
potential to develop into cirrhosis, which is a major risk 
factor for HCC as described above. In addition, there has 
been also a rising incidence of NAFLD-associated HCC 
in the absence of cirrhosis[122,123]. It is unclear to what 
extent the pathophysiology for NAFLD-associated HCC 
in the absence of cirrhosis differs from that in a cirrhotic 
liver. The microbiota has been described to contribute to 
this via two distinct pathways, which may play a role in 
either situation. 

Obesity has been associated with dysbiosis and 
increased gut permeability, allowing for more LPS to 
translocate into the liver, where it can trigger TLR signal-
ing resulting in NF-κB-dependent transcription of TNF-α, 
which drives NAFLD and NASH progression[106,124]. This 
state is further aggravated as leptin-mediated up-
regulation of CD14 leads to hypersensitivity to LPS-
signals in obese patients[125]. Furthermore, microbiota-
induced TLR9 signaling and dysbiosis-induced repression 
of inflammasome signaling can further promote the 
development of NAFLD and NASH[106]. In this context, 
increased activation of Kupffer cells via TLR4 further 
exacerbates steatohepatitis[126] and promotes the 
activation of hepatic stellate cells (HSCs). Activated HSCs, 
in turn, can contribute to liver fibrosis as well as secrete 
EGFR, which leads to increased proliferation of HSCs and 
may promote tumor formation[127]. Nonetheless, a study 
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by Dapito et al[128] suggested that the gut microbiota may 
not be required for HCC initiation. Instead, it plays a major 
role in the progression of the disease, as TLR4 signaling 
was able to increase the expression of the hepatomitogen 
epiregulin as well as to promote proliferation and prevent 
apoptosis. Both sterilization of the gut during late stages 
of HCC as well as using a TLR4-/- model greatly reduced 
the progression of HCC, suggesting new avenues of 
treatment[128].

Whereas mainly gram-negative bacterial LPS drives 
the pathways above, a second and independent process 
has been suggested to primarily depend on Gram-
positive bacteria. Yoshimoto et al[129] showed that an 
HFD-induced overgrowth of Gram-positive bacteria with 
the ability to produce the secondary bile acid deoxycholic 
acid (DCA) via 7α-dehydroxylation of primary bile acid 
lead to a marked rise in serum DCA levels[129]. DCA is 
known to cause DNA damage through the production 
of reactive oxygen species, as well as to promote liver 
carcinogenesis[130,131]. Furthermore, DCA can induce a 
state of senescence accompanied by the secretion of 
specific chemokines, called the senescence-associated 
secretory phenotype (SASP)[132,133]. Indeed, the authors 
showed DCA is able to induce SASP in HSCs in vivo. 
This phenotype then promoted HCC development in 
mice treated with a chemical carcinogen. By blocking 
DCA production or treating mice with vancomycin, an 
antibiotic preferentially targeting Gram-positive bacteria, 
the induction of SASP and the progression of HCC could 
almost completely be blocked. When antibiotic treatment 
was supplemented with DCA, the beneficial effect was 
lost. It should be noted, however, that treating lean mice 
with a carcinogen and DCA was not sufficient to enhance 
HCC development. This suggests that additional, obesity-
associated tumor-promoting factors may be required[129]. 
Nonetheless, some preclinical studies have showed that 
probiotic treatment can substantially alter bile acid levels 
by increasing fecal secretion and enhancing hepatic bile 
synthesis[134]. In humans, who unlike rodents cannot 
revert DCA into cholic acid, DCA can accumulate until it 
represents > 50% of the total bile pool[135]. Enhanced 
secretion of bile acids accompanied by hepatic bile 
synthesis might be a clean way to lower DCA levels, 
which in turn may substantially decrease the progression 
of HCC.

Increasing evidence suggests that the microbial 
composition plays a crucial role mediating liver damage 
in response to hepatitis infections, excessive alcohol 
intake or obesity. As HCC rarely occurs without previous 
liver disease, modulating the microbiota to prevent 
primary damage would be a potentially effective method 
of HCC prevention. However, even after liver disease 
has developed, the microbiota plays an important role 
in its progression and in creating a tumorigenic envi-
ronment, through bacterial signaling via toxins, LPS 
and metabolites. Although the bile acid-driven patho-
physiology seems specific to NAFLD-associated HCC, 
the LPS-TLR4 pathway appears common to all cirrhosis-
associated HCC entities. While human microbiome-HCC 

clinical correlations remain preliminary, they represent a 
potential new avenue for HCC prevention and treatment, 
which merits further studies. 

PANCREAS
Pancreatic cancer is associated with a poor outcome 
due to its rapid dissemination through the lymphatic 
system. This aggressive biology combined with a lack 
of biomarkers for early detection and resistance to 
conventional therapy results in a 5-year survival rate of 
only 5%[136]. 

Suggestions for possible microbial involvement in 
pancreatic cancer comes from studies that found an 
epidemiological association between periodontitis and 
tooth loss, and the risk for pancreatic cancer[137,138]. 
However, a study by Stolzenberg-Solomon et al[139] trying 
to correlate this with a specific bacterium known to 
play a role in tumor formation, Helicobactor pylori, was 
unable to validate the association. Unlike Stolzenberg, 
Farell et al[140] decided to study the entire composition 
of the oral microbiome in relation to pancreatic cancer. 
In this work, researchers identified a total of 56 clusters 
of bacterial species to be changed significantly between 
patients with pancreatic cancer and healthy controls. A 
combination of two bacteria, N elongata and S mitisas, 
was suggested as a possible biomarker for the detection 
of pancreatic cancer. Although these results may allow for 
a better detection of pancreatic cancer, further research 
is required to understand whether these changes in 
the oral microbiota are causative and contribute to the 
pathogenesis of pancreatic cancer.

Mitsuhashi et al[141] took an entirely different approach 
in studying the role of the local pancreatic microbiota in 
cancer development. From a large databank of pancreatic 
cancer tissue specimens, they tested samples for the 
presence of an oral microbe group, Fusobacterium, in 
the pancreatic tissue. Members of Fusobacterium have 
been implicated in periodontitis as well as pancreatic 
abscesses and CRC[142,143]. Mitsuhashi et al[141] detected 
Fusobacterium in 8.8% of the samples. Despite a lack 
of correlation between these taxa and the molecular 
characteristics of the tumor tissue, the Fusobacterium
positive patients featured a higher rate of cancer-
associated mortality than those without detectable micro-
bial inoculation[141].

While these two studies suggest there may be some 
role for the oral and/or local pancreatic microbiota in 
the pathology of pancreatic cancer, they remain purely 
correlative. Further research is required to determine 
the causative role and mechanisms of activity through 
which microbial infection influences the occurrence or 
progression of pancreatic cancer.

CONCLUSION
Among the microbes affecting cancer development and 
progression, viruses are a major pathogenic cause of 
carcinogenesis in non-gastrotintestinal tumors, through 
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some well-established molecular mechanisms[144]. 
In addition, specific bacterial pathogens have been 
described to induce or contribute to carcinogenesis in 
these entities. Bacterial mechanisms implicated in carcino-
genesis include directly DNA-damaging toxin secretion, 
induction of chronic inflammation and suppression of 
immune cell activation[4,145,146]. However, the promotion 
of cancer formation can also result from compositional 
and functional changes in the microbiome configuration 
as a whole. When considering the role of the microbiome 
in cancer, a distinction should be made between local 
and systemic microbiome-associated effects. Currently, 
most studies focus on local effects of organ-specific 
microbiomes, such as those illustrated for the lung micro-
biome that may contribute to the development of lung 
cancer. Nonetheless, research into HCC revealed that 
the gut microbiota might influence carcinogenesis at 
distal organs, such as the sterile liver. In this particular 
case, the liver is anatomically linked to the gut via the 
portal vein, thereby efflux of gut microbiome-secreted 
or modulated metabolites may provide a mechanism 
linking gut microbes to hepatic carcinogenesis. However, 
multiple other studies[147,148] recently suggested that the 
gut microbiome is also able to induce systemic and long-
term changes in the immune system, thereby providing 
possible mechanisms by which one microbiome may 
contribute to cancer pathogenesis even in anatomically 
distinct organs.

Another focus of intense research is aimed at decip-
hering the mechanisms governing microbiota compo-
sition, which are currently thought to be determined by 
a balance between the state of the host and particularly 
its immune system and the microbial configuration that 
inhabits it[106,107,149]. When one of these components 
is disturbed the altered “dysbiotic” microbiota may 
contribute to the emergence of multifactorial disease, yet 
the mechanisms regulating these alterations and their 
consequences remain elusive. Indeed, in this review, we 
show examples for how alterations in host microbiota 
interactions may be involved in cancer promotion and 
progression. For example, Host immune alterations, such 
as TLR-5 deficiency may lead to tumor progression by 
its altered microbiota components[128,150]. In other cases, 
a single microbial component, such as Hepatitis B or C 
virus, may directly promote carcinogenesis[108]. Finally, 
we provide examples suggesting that a pathogen or a 
pathobiont may alter the whole microbiota composition 
and function, thereby indirectly promoting cancer deve-
lopment. For instance, multiple independent studies 
showed that the composition of the vaginal microbiota 
differs between individuals infected or uninfected with 
HPV[65,112]. Future studies merit elucidation of causality of 
these associations in promoting carcinogenesis, as well 
as delineating the mechanisms driving these effects. 

Another currently unanswered question relates to 
the nature of microbe-microbe interactions in driving 
homeostasis or cancer susceptibility. Until recently, 
involvement of microorganisms in cancer development 
was an area of research dominated by studies implicating 

viral agents. This has recently changed as studies 
focusing on bacterial composition suggested that the 
bacterial microbiome may be involved, at steady state, 
in prevention of tumor development and when altered 
may participate in carcinogenesis. Studies focusing on 
the roles of interactions between the viral and bacterial 
microbiome components (such as phages affecting the 
composition of the bacterial microbiome) will add yet 
another complexity to our understanding of host-microbe 
interactions in cancer and merit further studies.

In summary, the host and the microbiome are in-
creasingly regarded as two integral components of 
the “holobiome”, and extensively interact through a 
complex communication network. As such, the host 
and its microbiome continuously affect each other and 
cooperate in inducing and maintaining a healthy steady 
state homeostasis. Alterations of the host-microbiome 
communications results in breech of normal interactions, 
and when coupled to host germ-line encoded disease 
susceptibility risks, may lead to emergence of multi-
factorial diseases, such as cancer. A more thorough 
understanding of the underlying mechanisms that govern 
this balance of protective and cancer-promoting effects of 
the host and its microbiome will highlight new therapeutic 
targets, offering novel avenues of therapy. In years to 
come extensive research will likely focus on the roles 
of the tumor and organ-specific microbiome in cancer 
development and progression, effects of one microbiome 
(such as the gut microbiome) on tumoregenesis in other 
locations, the effects of microbiome alterations (dysbiosis) 
on immune function and hence tumor immunity, and the 
possible roles of other commensal microbial kingdoms, such 
as fungi, archaea and parasites, and of environmental 
triggers in cancer biology.
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