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Abstract

Objective—Connectionist theories of brain function took hold with the seminal contributions of 

Norman Geschwind a half century ago. Modern neuroimaging techniques have expanded the 

scientific interest in the study of brain connectivity to include the intact as well as disordered 

brain.

Method—In this review, we describe the most common techniques used to measure functional 

and structural connectivity, including resting state functional MRI, diffusion MRI, and 

electroencephalography and magnetoencephalography coherence. We also review the most 

common analytical approaches used for examining brain interconnectivity associated with these 

various imaging methods.

Results—This review presents a critical analysis of the assumptions, as well as methodological 

limitations, of each imaging and analysis approach.

Conclusions—The overall goal of this review is to provide the reader with an introduction to 

evaluating the scientific methods underlying investigations that probe the human connectome.
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In “‘Disconnexion syndromes in animals and man” published 50 years ago, Norman 

Geschwind (1965a, 1965b) explicated how disparate brain regions communicate by 

observing the brain disorders of patients with focal lesions. His discovery of disconnection 

syndromes provided inspiration for contemporary connectionist theories of brain function. 
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Today, modern neuroimaging techniques have enabled the study of both functional and 

structural connectivity in the intact as well as disordered brain.

The purpose of the current paper is to introduce the reader to the modern imaging techniques 

used to measure functional and structural connectivity, including resting state functional 

MRI (rs-fMRI), diffusion MRI (dMRI), and electroencephalography and 

magnetoencephalography (EEG/MEG) coherence. The second section of the paper will 

emphasize the analytical approaches and assumptions, as well as the limitations, associated 

with these various methods for examining brain interconnectivity.

Approaches to Measuring Brain Connectivity

rs-fMRI

Functional connectivity is a descriptive measure for temporal correlations observed between 

spatially distinct brain regions (Friston, Frith, Liddle, & Frackowiak, 1993; Strother et al., 

1995). One such technique for studying functional connectivity, rs-fMRI, involves the 

acquisition of MRI data with the subject performing no specific task (Biswal, Hudetz, 

Yetkin, Haughton, & Hyde, 1997; Biswal, Van Kylen, & Hyde, 1997; Biswal, Yetkin, 

Haughton, & Hyde, 1995; Lowe, Rutecki, Woodard, Turski, & Sorenson, 1997; Peltier & 

Noll, 2002; Quigley et al., 2003). The method is based on the observation that low frequency 

(< 0.1Hz) spontaneous blood oxygen level dependent (BOLD) fluctuations appear to be 

temporally synchronous across spatially distinct brain regions, implying a pattern of neural 

connectivity within brain systems (an example involving the motor system is shown in 

Figure 1).

Spontaneous low-frequency oscillations have been observed in the regional cerebral blood 

flow and oxygenation of animals and humans using many different techniques, including 

laser Doppler flow (Golanov, Yamamoto, & Resi, 1994; Hudetz, Smith, Lee, Bosnjak, & 

Kampine, 1995), fluororeflectometry (Dora & Kovach, 1981; Vern, Schuette, Leheta, Juel, & 

Radulovacki, 1988), fluorescence video microscopy (Biswal & Hudetz, 1996), polarographic 

measurement of brain tissue (Cooper, Crow, Walter, & Winter, 1966; Halsey & McFarland, 

1974; Moskalenko, 1980), and near infrared spectroscopy (Obrig et al., 2000).

In a series of seminal studies, Biswal et al. (Biswal & Hudetz, 1996; Biswal, Hudetz, et al., 

1997; Biswal, Van Kylen, et al., 1997; Biswal et al., 1995) showed that BOLD weighted 

MRI timeseries data contain spontaneous low-frequency fluctuations that are highly 

correlated between the right and left primary motor cortex while subjects are at rest. BOLD-

weighted MRI allows the monitoring of hemodynamic fluctuations across the entire brain, 

allowing the study of low-frequency fluctuations over larger distances compared to those of 

optical studies. This led to many observations of synchronous fluctuations in this frequency 

domain in MRI timeseries acquisitions. These correlations are present between many 

different regions of cerebral cortex, which are part of distributed neuronal networks involved 

in common tasks. This synchrony has been shown to depend on the state of the brain (Lowe, 

Dzemidzic, Lurito, Mathews, & Phillips, 2000).
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Figure 1 shows the results of two typical resting-state fMRI studies of the cortical motor 

regions of the brain. The false color overlay shows regions of high temporal correlation to 

the very low frequency fluctuations in the left hemisphere primary motor area (black square) 

while subjects were resting. It is clear that the regions of highest correlation are the 

homologous regions in the contralateral hemisphere, as well as the medial motor regions. 

The source of these temporally correlated fluctuations is unknown, but is currently an area of 

active investigation. Biswal et al. showed that the correlations between homologous brain 

regions are reversibly diminished under hypercapnia, indicating that the effect is blood-flow 

modulated, similar to BOLD contrast (Biswal, Hudetz, et al., 1997). Further, as is 

demonstrated by Figure 1, regions of connectivity are not confined to a single vascular 

distribution. In a subsequent study, Biswal et al. demonstrated that the correlation patterns 

from BOLD-weighted MRI data were much more similar to task-activated regions from 

fMRI than the correlations from strictly flow-weighted data (Biswal, Van Kylen, et al., 

1997). The combined findings suggested that the BOLD fluctuations represent 

hemodynamic changes secondary to neural activity.

The precise physiological mechanisms that underlie the high correlations between 

functionally related brain regions are unclear. However, recent studies have shed light on the 

neural basis of the spatiotemporal correlations in BOLD fluctuations. These studies have 

provided direct evidence for neuronal signaling at or below 0.1 Hz and for the notion that 

spontaneous neuronal activity can reflect functional neural connectivity in the brain. 

Evidence for an electrophysiological basis for neuronal signaling at 0.1Hz and below has 

come from an electrophysiological study conducted in nonhuman primates (Leopold, 

Murayama, & Logothetis, 2003). These investigators showed that coherent fluctuations in 

the band-limited field potentials from neurons exist over long time scales (>10s) and large 

distances (>25mm). The band-limited potential, as defined by Leopold et al., is a measure of 

amplitude modulations of the power of the field potential fluctuations. The same 

investigators had previously shown that variations in local field potential of neurons 

correlates well with the BOLD signal (Logothetis, 2002; Logothetis, Pauls, Augath, Trinath, 

& Oeltermann, 2001). Thus this report (Leopold et al., 2003) constitutes possible direct 

observation of a neuronal source of the observed low-frequency BOLD fluctuations.

Support for the notion that spontaneous neuronal activity can reflect functional connectivity 

came from a study of cat visual cortex using voltage sensitive dye (Kenet, Bibitchkov, 

Tsodyks, Grinvald, & Arieli, 2003). These investigators observed surprisingly coherent 

spatial patterns in spontaneous firing with no retinal input. Some of the observed patterns 

were identical to the cortical activation patterns observed in response to stimuli designed to 

activate the exposed region of cortex. The authors concluded that the spontaneous 

dynamically switching cortical states indicate that spontaneous neuronal behavior can reflect 

functional connectivity within the brain.

An additional study, which performed simultaneous EEG and fMRI in resting subjects, 

related spontaneous brain activity and functional connectivity (Laufs et al., 2003). The 

correlation between EEG power in various bands was mapped voxel-by-voxel to the 

spontaneous BOLD fluctuations. The power observed in the alpha band of the EEG data 

strongly correlated (inversely) to a broad network of brain regions typically associated with 
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attentional and related cognitive processes. Additionally, positive correlations were observed 

between power in the beta band and BOLD fluctuations in retrosplenial, tempo-parietal and 

dorsomedial prefrontal cortices. The relationship between spontaneous BOLD fluctuations 

and EEG power in different networks at different bands presents additional evidence to 

suggest that, during rest, there exist separable networks of brain regions with correlated 

BOLD fluctuations.

One discovery that has had major implications for the widespread adoption of rs-fMRI as a 

measure of functional connectivity involved the work of Raichle and colleagues (Gusnard, 

Akbudak, Shulman, & Raichle, 2001; Raichle et al., 2001). Using quantitative positron 

emission tomography, they demonstrated the existence of a network of regions that 

consistently showed higher activity than other brain regions during the resting state. They 

referred to these regions as the “default mode network” (DMN). Many of these areas 

(posterior cingulate cortex and precuneus, medial prefrontal cortex, and angular gyrus) also 

showed significant deactivation during performance of specific tasks. This led to the basic 

postulate that the brain has a default mode of activity and performance of tasks interrupts 

this mode. Greicius et al. (2003) provided MRI support for the Raichle et al. hypothesis by 

showing that two of the DMN regions (ventral anterior cingulate and posterior cingulate 

cortices) showed significant low-frequency BOLD correlations during rest. Furthermore, 

they showed that, during execution of a cognitive task, the regions known to be involved in 

task performance showed inverse correlations with the posterior cingulate region. The DMN 

is now one of the most commonly studied resting state networks in the literature. In addition 

to the DMN, a very large number of additional brain networks have been identified. Cordes 

et al. (2000) published one of the first studies to identify multiple functional networks using 

rs-fMRI. Since then, visual, motor, auditory, attention, and language networks, to name just 

a few, have been identified in the resting brain.

rs-fMRI is now the predominant method for examining functional connectivity in humans 

due to the ease of acquiring the data and the generality of the analyses that can be performed 

on these data. It is important to realize that real-world BOLD data contain various non-

neuronal sources of spatiotemporal correlations that are artifactual. To draw proper 

conclusions, either the data must be corrected to remove these confounds or the analysis 

must take these confounds into account. This is accomplished either by modeling, regressing 

and subtracting the projected confound from the data or by including the modeled confound 

in the connectivity regression analysis. Further, additional data processing is used prior to 

connectivity analysis, including spatial filtering, temporal filtering, and spatial 

normalization. The choice of processing can have a dramatic effect on the analysis results 

and some processing methods that were popular in the past have been demonstrated to be 

associated with bias in the analysis. We note that artifact correction in fMRI and rs-fMRI 

data is the subject of a large body of literature. The intent of this review is to describe in 

general terms the most common artifacts with some basic approaches to correction. In the 

following paragraphs, we review analytical techniques that are necessary to remove artifacts 

and typical filtering techniques used to enhance the signal-to-noise ratio of the connectivity 

signature. Most common fMRI data analysis packages, such as AFNI, FSL, and SPM, 

include such correction methods.
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Motion Artifact—Head motion artifact is the most prevalent and difficult artifact because 

it is difficult to characterize and introduces non-neuronal spatiotemporal correlations. The 

oldest and most commonly used method to account for head motion is volumetric 

realignment. It is well known, however, that this does not entirely eliminate artifact. Various 

regression-based, or “second-order”, motion correction methods are used to reduce the 

residual covariance between the estimated head motion and the BOLD signals (Beall & 

Lowe, 2014; Bullmore et al., 1999). The second-order motion correction methods vary 

dramatically in implementation from simple regression of the volumetric motion parameters 

to models based on voxel-specific motion parameter regression (e.g., motion of each voxel is 

calculated from the motion parameters). This still leaves considerable artifact, resulting in 

more contemporary approaches to minimize the effects of residual motion; for a recent 

review, see (Power, Schlaggar, & Petersen, 2015). One popular approach involves censoring, 

i.e. rejecting epochs of data surrounding large motions (Power et al., 2012). This has 

recently been called into question due to the lack of accurate motion metrics (Beall & Lowe, 

2014), an issue that applies to all current approaches to motion correction that use 

volumetric rather than slice-wise estimates of motion. Since fMRI is acquired one brain slice 

at a time, motion that begins partway through the acquisition of a brain volume will be 

confined to a subset of slices. Motion metrics based on the local motion of each acquired 

slice (Beall & Lowe, 2014) have demonstrated promise in correcting motion artifact in rs-

fMRI data. Another approach that does not rely on estimation of motion parameters is ICA-

AROMA, which uses independent components analysis (ICA) to identify and remove 

motion-related components (Pruim, Mennes, Buitelaar, & Beckmann, 2015). A more 

detailed discussion of ICA is presented below in the analysis section.

Physiologic Noise—Noise from heart and breathing cycles produces a spatially varying 

bias in the connectivity patterns and can generally reduce the specificity of network 

identification. The effect is highly variable across subjects and even sessions due to the 

variable overlap between the sampling frequency and the aliased physiologic cycles (Cordes, 

Nandy, Schafer, & Wager, 2014). Consequently, because physiologic rates can vary between 

populations and states, physiologic noise can result in subtle bias in group analyses, whether 

using hypothesis-based or data-driven techniques (Beall & Lowe, 2010). The ideal 

correction would be to model the exact physiologic signal and regress it from the data. 

However, the exact nature of the artifact induced by a breath or heartbeat is not accurately 

known and varies across the brain. The current gold-standard for correction is regression of a 

Fourier series expansion of the physiologic phases (Glover, Li, & Ress, 2000; Hudetz et al., 

1995), where the physiologic phases are obtained from monitored pulse and respiration 

signals synchronized to the acquisition. In many situations, it is difficult to monitor heart and 

respiration rates. In these cases it is possible to derive the physiologic traces from the data 

itself using ICA (Beall & Lowe, 2007; Perlbarg et al., 2007).

Spatiotemporal Filtering—Spatial filtering is used to increase signal to noise ratio 

(Lowe & Sorenson, 1997) and to account for across subject variability in spatial localization 

of function when performing between group analyses. The problem of cross-subject 

variability can also be dealt with using subject-specific ROIs for ROI-based analyses or 

using nonlinear transformations (Cox, 1996). Temporal filtering of resting state data can 
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increase the signal-to-noise ratio of the rs-fMRI effect. The low-frequency BOLD effect 

underlying functional connectivity is believed to occur at frequencies of approximately 

0.1Hz (the low-frequency cutoff used in literature ranges from 0.08–0.12Hz) and therefore a 

low-pass temporal filter is often used prior to analysis. This is based on the fact that the 

hemodynamic response of the BOLD effect has a very steep cutoff around 0.1Hz. Thus, any 

BOLD-derived signal should be slower than 0.1Hz. This was confirmed in a study published 

in 2001 (Cordes et al., 2001) and has also been observed in combined electrophysiologic and 

BOLD studies (Laufs et al., 2003). Higher-frequency connectivity effects have been reported 

in the literature, but their source is unclear (Boubela et al., 2013; Kalcher et al., 2014).

Detrending—Finally, since its inception, BOLD weighted timeseries data have been 

observed to have linear trends (Lowe & Russell, 1999). These trends are easy to address by 

simply regressing a linear (or higher) polynomial fit from the timeseries at each voxel.

dMRI

Diffusion MRI (dMRI) is unique in its ability to map, in vivo, the axonal connections that 

convey neuronal signals. As the other methods described in this article characterize 

correlations of neuronal activity, dMRI provides complementary information. While 

individual axons are too small to be resolved by dMRI, large bundles of axons such as the 

corpus callosum and arcuate fasciculus can be mapped across the entire brain. Analysis of 

these bundles, also known as fiber tracts or white matter fascicles, is used to assess structural 

connectivity. We will sketch the basic workings of structural connectivity analysis and 

highlight important caveats. Comprehensive reviews are available for further details 

(Johansen-Berg & Behrens, 2009; Jones, 2010; Tournier, Mori, & Leemans, 2011).

dMRI measures the ease with which water moves. With appropriate mathematical modeling, 

an intriguing host of information can be inferred about cellular properties from dMRI data. 

As water moves more easily along white matter fascicles than across, dMRI can be used to 

infer virtual dissections of entire fasciculi throughout the brain (Catani, Howard, Pajevic, & 

Jones, 2002). Furthermore, microstructural features such as cell dimension and shapes can, 

in principle, be measured (Stanisz, Szafer, Wright, & Henkelman, 1997). These two features 

of tissue, orientation and structure, are central to structural connectivity analysis. 

Disconnection may be related to abnormal fascicle arrangements or injury to fascicles as 

reflected by abnormal microstructure. However, dMRI also has fundamental limitations. 

This imaging method cannot indicate the polarity of axonal connections, i.e., the direction of 

neural signals. Measures of tissue microstructure also depend heavily on the model 

assumptions. The measures of orientation and structure therefore lack the specificity of 

histological stains.

Analysis of structural connectivity is a multi-step process. First, a dMRI acquisition provides 

multiple images, each with a different degree of diffusion-related contrast. In diffusion 

tensor imaging (DTI) (Basser, Mattiello, & LeBihan, 1994), for example, at least seven 

different image volumes must be acquired. Second, a model synthesizes the set of images to 

yield measures of tissue orientation and structure on a voxel-by-voxel basis. In DTI, fiber 

bundles align along the principal axis of the diffusion tensor. Demyelination and axonal loss 
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correlate with the degree of diffusivity perpendicular to and parallel to the principal axis, 

respectively (Song et al., 2003). Third, tractography (Mori, Crain, Chacko, & van Zijl, 

1999a) takes the orientation information from each voxel and generates streamlines that 

represent long-range axonal connections between cortical regions. Finally, structural 
connectivity among different cortical regions can be assessed by counting the number of 

streamlines of a given pair of regions (Hagmann et al., 2007).

The basic sketch of steps outlined above provides a framework for understanding the 

enormous literature describing current research. First, dMRI acquisitions place strong 

demands on imaging hardware due to the duration of the scan, strong diffusion-weighting 

gradients and echo-planar imaging readout used to limit the duration of the scan. Quality 

control must be implemented to ensure that the imaging data are not corrupted by artifact 

(Oguz et al., 2014; Tournier et al., 2011). Unfortunately, erroneous conclusions may result 

entirely from image artifacts. The strong gradients induce strong vibrations that can shake 

electronic components that may be loose on the MR scanner, leading to spikes and increased 

levels of noise. If, for example, the spikes occur during the latter half of a longitudinal study, 

an increase in variance may be detected that results entirely from image artifact. Cardiac 

gating has been recommended to avoid pulsatility artifact, particularly in periventricular and 

brain stem regions (Skare & Andersson, 2001). A fingertip pulse plethysmograph is 

typically used. Such triggering, however, may fail among patients with compromised 

circulation to the extremities. One inherently difficult problem is motion. dMRI is, by 

design, sensitive to the motion of water. This sensitivity makes dMRI particularly 

susceptible to large amounts of head motion. If one group of subjects moves more than 

another (e.g., patient group greater than control subjects), artifactual between group 

differences may be detected (Yendiki, Koldewyn, Kakunoori, Kanwisher, & Fischl, 2013).

Among models, the diffusion tensor (Basser et al., 1994) is most widely used. As the model 

requires only 6 diffusion-weighted image volumes and one image without diffusion 

weighting, the acquisition time can be as short as one minute. However, at least 30 diffusion-

weighted image volumes are recommended to limit within subject noise in diffusivity 

measurements (Jones, 2004). From the tensor, one can derive a number of scalar summary 

parameters that can be used to assess tissue on a voxel-by-voxel basis. The principal 

eigenvector of the tensor can be associated with the orientation of white matter fibers in a 

voxel. Diffusivity along the principal eigenvector, called longitudinal or axial diffusivity, can 

correlate with axonal fragmentation. Diffusivity perpendicular to the principal eigenvector, 

called transverse or radial diffusivity, can correlate with demyelination. However, such 

interpretation depends highly on the injury or disease (Budde et al., 2007) and breaks down 

at locations with crossing fibers (Wheeler-Kingshott & Cercignani, 2009). The variance 

among diffusivities is described by fractional anisotropy (FA). Reduced FA is typically 

interpreted as reduced tissue integrity, but has been found to behave counter to expectations 

in the presence of crossing fibers (Douaud et al., 2011).

The limitations of the tensor model have stimulated a plethora of alternative models 

(Assemlal, Tschumperle, Brun, & Siddiqi, 2011) to more accurately capture the complexity 

of tissue structure. Crossing fibers have received much attention because modeling enables 

tractography of a wider variety of white matter fascicles than is otherwise possible (Behrens, 
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Berg, Jbabdi, Rushworth, & Woolrich, 2007). More recent work aims to quantify cellular 

properties such as axon diameters (Assaf, Blumenfeld-Katzir, Yovel, & Basser, 2008) and 

gliosis (Wang et al., 2011). These models require more extensive and demanding image 

acquisitions than the diffusion tensor model, resulting in long scans and more stringent 

hardware requirements. Computation time to fit the models can also be problematically long. 

The comparison of these models against quantitative histology (Barazany, Basser, & Assaf, 

2009; Wang et al., 2011) is more limited than for the diffusion tensor, hampering 

interpretation.

Tractography essentially works by connecting principal eigenvectors from diffusion tensors 

of contiguous voxels (Basser, Pajevic, Pierpaoli, Duda, & Aldroubi, 2000; Conturo et al., 

1999; Mori, Crain, Chacko, & van Zijl, 1999b), resulting in three-dimensional maps of white 

matter fascicles (Catani et al., 2002). By accounting for crossing fibers, otherwise occult 

fascicles can be identified (Behrens et al., 2007). Tractography has been used to investigate 

Wallerian degeneration. Pierpaoli et al. (2001) showed that white matter connected to, but 

distal from, an infarct demonstrated abnormal diffusivity consistent with injury. 

Furthermore, measures of tissue integrity along specific fiber pathways can correlate with 

functional disability (Lowe et al., 2006) and with resting-state connectivity (Lowe et al., 

2008; Lowe et al., 2014a).

EEG/MEG Coherence

Cortical electrical or magnetic fluctuations can be measured noninvasively with EEG or 

MEG sensors placed on or above the scalp, respectively. EEG and MEG are important tools 

for functional connectivity analysis since they provide a direct measure of cortical synaptic 

activity with high temporal resolution. Additionally, EEG and MEG provide complementary 
measures of functional connectivity, as EEG is preferentially sensitive to radially oriented 

cortical sources and MEG is sensitive to tangential sources (Cohen & Cuffin, 1983).

The functional connectivity of different cortical regions is often examined in the context of 

amplitude and phase similarities between signals derived from multiple EEG or MEG 

sensors. These similarities can be quantified statistically using coherence, i.e. the squared 

cross spectrum between two signals normalized by the power spectrum of each signal 

(Bendat & Piersol, 2000). Conceptually, coherence represents the ratio of the squared 

covariance of two signals and the variance of each signal, i.e. a squared correlation 

coefficient, providing a measure of the percentage of variance within a signal accounted for 

by a linear transformation of another signal (Nunez & Srinivasan, 2006). Increases in 

coherence between signals derived from EEG or MEG sensors may arise due to distributed 

cortical interactions, revealing functionally connected brain networks that emerge at the time 

scales of perceptual and cognitive events (Buzsaki, 2006; Engel, Fries, & Singer, 2001).

Within EEG or MEG multi-sensor recordings, it is important to consider whether coherence 

results from genuine cortical interrelationships or whether it results due to sensor pairs 

measuring activity from common sources. EEG potentials are spatially smeared by the 

volume conduction properties of the head, resulting in inflated coherence between EEG 

sensors within ~10 cm (Srinivasan, Winter, Ding, & Nunez, 2007). MEG signals are 

unaltered by volume conduction, but measure from common sources due to magnetic field 
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spread (Brookes et al., 2011). These issues are attenuated when spatial filtering and source 

modeling approaches are applied to estimate the distribution of cortical source potentials that 

contribute to MEG and EEG sensor measurements (for reviews, see (Michel et al., 2004; 

Schoffelen & Gross, 2009)). These approaches may complement each other in functional 

connectivity analysis, revealing coherent patterns that emerge at different spatial scales and 

source orientations (Nunez et al., 1999; Nunez et al., 1997).

Analytical Approaches to Functional and Structural Connectivity

Seed Based Analyses

The earliest observations of resting-state functional connectivity were made using what is 

now termed seed-based correlation (Biswal et al., 1995; Lowe, Mock, & Sorenson, 1998). 

These were serendipitous observations made while studying the noise characteristics of 

BOLD-weighted MRI timeseries data. Model-based methods, which provide more statistical 

power and cleaner hypothesis testing, are still very limited to this day due to the fact that 

there is no “signal” that characterizes the connectivity signature in resting state data, unlike 

activation-based fMRI. Seed-based correlation analysis remains a very popular technique for 

analyzing rs-fMRI data. The approach allows the investigator to interrogate the spatial 

regions of the brain that have a significant temporal correlation to the spontaneous BOLD 

fluctuations in a pre-specified seed region. In this section, we review typical analysis issues 

associated with performing seed based analysis of BOLD-weighted MRI timeseries data 

obtained during the resting state.

Seed-based correlation requires the selection of a seed region, whose connectivity to the rest 

of the brain is of interest. This is best done with activation-based fMRI using a task related 

to the function of interest. For example, connectivity related to hand motor function can be 

examined by acquiring both a resting state scan and a functional hand motor task activation 

scan (Lowe et al., 1998). The functional scan is used to localize function in the primary 

motor cortex and a seed region is determined from an activation map (see Figure 1). The 

mean timeseries in the resting state data averaged over several voxels around the seed region 

is used to estimate the spontaneous fluctuations in that region.

The use of anatomic localization alone has been shown to be problematic at providing 

reliable resting state networks (Cole, Smith, & Beckmann, 2010). However, there have been 

many studies of resting state networks that have been done using anatomic localization, most 

notably studies of the default mode network (Greicius et al., 2003). The problem is related to 

that described above when discussing group analyses. Spatial variation in the localization of 

function can vary considerable across subjects, especially in cortical regions. As with group 

voxel-level analyses, this is typically addressed by using spatial smoothing. A data driven 

method was recently introduced to combine anatomic localization with functional 

information present in the resting data itself to refine the seed location to improve the 

robustness of network identification (Lowe et al., 2014b). This obviates the need for spatial 

smoothing.

There are three types of seed-based analyses that are common in the literature: 1) simple 

Pearson correlation of the seed-derived timeseries with all voxels in the brain, 2) frequency 
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domain analysis of all voxels compared to seed-derived timeseries (Yang et al., 2007), and 3) 

inter-regional connectivity analyses to determine local interconnectivity (Zang, Jiang, Lu, 

He, & Tian, 2004). The first is the most common technique and will be described briefly 

here. The other methods are beyond the scope of this brief introduction to seed-based 

connectivity analyses and are mentioned for completeness.

Pearson correlation analysis involves calculating the normalized projection of a reference 

vector (i.e., seed voxel-derived timeseries) with another vector (i.e., timeseries from any give 

voxel). It can be expressed as:

where x⃗ is the timeseries at a given voxel and x⃗ref is the timeseries from the reference, or 

seed, region. A whole-brain map of this correlation can be produced. A threshold can be 

applied based on a desired false positive rate and rendered onto high resolution anatomy for 

display purposes (see Figure 1). Note that the Pearson correlation coefficient has an 

algebraic relationship to a Student’s t (Press, Teukolsky, Vetterling, & Flannery, 1993). 

Correlation coefficients are intuitive for assessing the level of alignment of the signals, but 

Student’s t’s are more intuitive for understanding the significance, or p-value, of the result.

Complex Network Analyses

Complex network analyses of human whole-brain structural and functional imaging data sets 

emerged about a decade ago (Achard, Salvador, Whitcher, Suckling, & Bullmore, 2006; 

Bassett, Meyer-Lindenberg, Achard, Duke, & Bullmore, 2006; Eguiluz, Chialvo, Cecchi, 

Baliki, & Apkarian, 2005; Gong et al., 2009; Hagmann et al., 2008; He, Chen, & Evans, 

2007; Iturria-Medina, Sotero, Canales-Rodriguez, Aleman-Gomez, & Melie-Garcia, 2008; 

Liu et al., 2008; Stam, 2004; Stam, Jones, Nolte, Breakspear, & Scheltens, 2007), in parallel 

with increasing conceptualization of the brain as a complex network of brain regions and 

interregional structural and functional associations (Bullmore & Sporns, 2009). Analyses of 

complex brain networks have coalesced around the notion of the connectome, defined as the 

complete organizational description of anatomical brain connections (Sporns, 2012; Sporns, 

Tononi, & Kötter, 2005) and more loosely extended to encompass organizational 

descriptions of complex brain functional connections, as well descriptions of complex brain 

connectivity in neurological and psychiatric disorders (Calhoun, Miller, Pearlson, & Adalı, 

2014; Kopell, Gritton, Whittington, & Kramer, 2014; Rubinov & Bullmore, 2013).

Complex brain networks represent the organization of whole-brain white-matter pathways, 

or whole-brain functional coactivation patterns and typically comprise hundreds of brain 

regions (vertices or nodes) and thousands of interregional connections (edges or links). As a 

rule of thumb, networks are deemed to be complex if their organization cannot be adequately 

described with visualizations (Newman, 2010). Complex brain networks contrast with other 

network models in cognitive neuroscience, which associate with a specific function (such as 

language), have few nodes, and are easily described with visualizations (Fox & Raichle, 

2007).
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Accurate definition of nodes in complex brain networks is an important problem, and affects 

the meaningfulness and interpretability of subsequent network analyses (Rubinov & Sporns, 

2010). Nodes should ideally be functionally homogeneous, spatially contiguous, cover the 

whole-brain, have high signal-to-noise ratio, and be reproducible between subjects 

(Craddock et al., 2013; Thirion, Varoquaux, Dohmatob, & Poline, 2014). Most current 

atlases are based on structural (e.g. cytoarchitectonic or transcriptomic) or functional (e.g. 

regional activity patterns) data sets, but no atlas simultaneously fulfils all the above criteria. 

High resolution structural or functional imaging may allow the appearance of such gold-

standard reference atlases in the next couple of decades (Amunts et al., 2013; Insel, Landis, 

& Collins, 2013).

Accurate definition of structural or functional brain connections is likewise an important 

problem, with similar implications for meaningfulness and interpretability. Anatomical 

connections typically represent white-matter tracts and are inferred with diffusion MRI and 

tractography or less directly with grey-matter-thickness covariance methods (Alexander-

Bloch, Giedd, & Bullmore, 2013; Behrens & Sporns, 2012; Evans, 2013; Hagmann et al., 

2010). Functional connections reflect patterns of statistical associations, irrespective of 

underlying anatomical connectivity, and are inferred with statistical measures such as the 

Pearson or partial correlation coefficients, mutual information, and lag-based measures such 

as Granger causality (Smith et al., 2011; Van Dijk et al., 2010). Bayesian network inference 

methods are used infrequently due to large network sizes, although methodological and 

computational progress may make these methods more relevant in the future (Seghier & 

Friston, 2013). Connections may have additional properties of directionality (afferent or 

efferent), weight (strong or weak), and sign (positive or negative) (Rubinov & Sporns, 

2011).

Analysis of complex brain networks leverage methods which have origins in graph-

theoretical analyses of social networks, but have been extensively and inter-disciplinarily 

expanded in the last two decades to describe properties of complex real-life systems in 

diverse scientific fields (Boccaletti, Latora, Moreno, Chavez, & Hwang, 2006; Newman, 

2003). Broadly, such analyses are divided into analyses of global, intermediate or local 

network organization. Analyses of global organization describe properties of the whole 

network, analyses of intermediate network organization describe properties of groups of 

nodes in the network, and analyses of local network organization describe properties of 

individual nodes.

Analyses of global network organization typically describe the propensity for whole-brain 

functional specialization and functional integration. Functional specialization is inferred as 

the extent to which network nodes form clusters and is computed with measures such as the 

clustering coefficient (the average number of triangles as a fraction of all connected triplets). 

Functional integration is measured as the propensity of the network for global 

interconnectedness and is computed with measures such as the characteristic path length (the 

average length of shortest paths between all pairs of nodes). The simultaneous presence of 

functional specialization and integration (relative to random control networks) defines a 

measure of small-world-ness, a non-specific marker of complex brain network organization 

(Bassett & Bullmore, 2006; Humphries & Gurney, 2008; Watts & Strogatz, 1998).
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Analyses of intermediate network organization typically partition the network into 

communities or modules, functionally specialized and densely interconnected groups of 

nodes, and are conceptually similar to independent components analysis (see below) and 

other clustering methods (Girvan & Newman, 2002; Meunier, Lambiotte, & Bullmore, 

2010). Analyses of intermediate network organization may also bipartition the network into 

a central and dense group of ‘core’ or ‘rich-club’ nodes and a sparsely interconnected group 

of peripheral nodes (Colizza, Flammini, Serrano, & Vespignani, 2006; van den Heuvel & 

Sporns, 2011). Importantly, unlike global and local measures of complex network 

organization, detection of community (and to a lesser extent core-periphery) structure often 

involves the use of non-deterministic optimization algorithms which may produce many 

possible solutions (Csermely, London, Wu, & Uzzi, 2013; Fortunato, 2010).

Analyses of local network organization typically quantify the importance of individual nodes 

in the network. Importance is a subjective notion, but is most commonly defined using 

measures such as degree (the total number of nodal connections), participation coefficient 

(the diversity of nodal connections), and the betweenness centrality (fractions of all shortest 

path traversing the node). The robust detection of hub nodes is a notable strength of complex 

network analysis and such hubs are increasingly implicated in diverse neurological and 

psychiatric disorders (Crossley et al., 2014; Harrington et al., 2015; Stam, 2014; van den 

Heuvel & Sporns, 2013).

The combined global, intermediate and local analyses of complex brain networks provide a 

comprehensive statistical description of structural and functional organization of the human 

brain. Inevitably, however, the quality and interpretation of such descriptions relies on the 

quality of the underlying brain imaging and on adequate definitions of nodes and 

connections. Increasing spatial and temporal resolution of human imaging is likely to move 

the analysis and interpretation of complex brain networks closer to biological processes 

underlying normal and abnormal brain structure, activity and function.

Independent Components Analysis (ICA)

ICA is a statistical method used to discover hidden factors (sources or features) from a set of 

measurements or observed data such that the sources are maximally independent. Within the 

context of neuroimaging, the algorithm has been widely implemented on EEG data, 

identifying independent time courses (for a review, see (Eichele, Calhoun, & Debener, 2009; 

Makeig, Debener, Onton, & Delorme, 2004)) or on fMRI data, emphasizing independent 

spatial maps (for a review, see (Calhoun & Adali, 2012)). We focus here on fMRI, where 

ICA reduces the original [voxels × time] observations into a linear mixture of spatially 

independent brain maps (components) and associated time courses (mixing matrix).

Since the model identifies latent fMRI sources whose voxels have the same time course, 

each component can be considered a measure of the degree to which each voxel is 

functionally connected (or correlated) to the component time course. These correlated 

patterns of activity likely result from activity within somewhat distinct brain modes or 

sources, which motivates their description as distinct brain networks with potentially distinct 

properties. For example, the statistical maps generated from cognitive tasks (with general 

linear modeling (GLM) resemble fMRI source maps, even when derived from data collected 
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in the absence of an explicit task (Calhoun & Allen, 2013; Calhoun, Kiehl, & Pearlson, 

2008; Smith et al., 2009).

The fMRI source spatial profile depends in part on the model order (i.e. the number of 

components estimated), with higher model orders resulting in a more detailed parcellation of 

distinct areas (Abou-Elseoud et al., 2010; E. A. Allen et al., 2011). Spatial maps also depend 

on the particular algorithm implemented in the ICA decomposition (for details on ICA 

algorithms see (Hyvarinen, Karhunen, & Oja, 2001; Stone, 2004)). For example, the 

Infomax algorithm can emphasize sparse independent fMRI maps, which aligns with the 

assumption of sparse and distributed cognitive activations, and the sparse and spatially 

specific artifacts that result from motion and cardiac activity (McKeown et al., 1998).

While there is considerable utility in conducting ICA at the subject level, it is difficult to 

identify common sources across subjects when performing the subsequent group analysis. In 

order to address this problem, extensions have been developed to incorporate information 

from multiple subjects within a single ICA decomposition (Beckmann & Smith, 2005; 

Calhoun & Adali, 2012; Calhoun, Adali, Pearlson, & Pekar, 2001; Esposito et al., 2005; Guo 

& Pagnoni, 2008; Schmithorst & Holland, 2004), as implemented within GIFT Matlab 

software (http://mialab.mrn.org/software/gift) and in MELODIC software (http://

www.fmrib.ox.ac.uk/fsl/). Following group ICA, individual subject time courses may be 

derived by back-reconstructing the group components onto the individual subject data, 

generating subject specific images and time courses for each component (Calhoun et al., 

2001; Erhardt et al., 2011).

While ICA provides a useful data-driven decomposition of functionally distinct networks, 

many cognitive processes emerge from the collective activity of multiple brain networks 

(Siegel, Donner, & Engel, 2012; Varela, Lachaux, Rodriguez, & Martinerie, 2001). Thus, 

there is considerable motivation in examining network interactions via associations among 

the time courses of networks derived from ICA. These interactions are revealed in part by 

examining cross-correlations between network or component time courses, resulting in a 

[component × component] cross-correlation matrix which represents the degree of 

associations among networks, or the functional network connectivity (FNC) (Jafri, Pearlson, 

Stevens, & Calhoun, 2008). Group ICA is an important processing step within FNC 

analysis, since it reduces the original [voxels × voxels] cross-correlation matrix into a more 

tangible [components × components] matrix that compares the relationship between the 

individual back-reconstructed time courses (See Figure 2).

Cross-correlations are examined either across the entire component time course, revealing 

static or aggregate measures of connectivity, or within shorter segments, revealing time-

varying changes in dynamic FNC (E.A. Allen et al., 2014; Chang & Glover, 2010; Sakoğlu 

et al., 2010). Static connectivity provides an approximate measure of functional associations 

across the entire time course, but is insensitive to dynamic changes in connectivity patterns 

which may emerge at shorter time scales (for a review, see (Hutchison et al., 2013)). Thus, 

FNC matrices may be calculated from successive ~40 – 60 second intervals and partitioned 

into groups of recurring connectivity patterns using multivariate approaches such as k-means 

clustering (E.A. Allen et al., 2014; Damaraju et al., 2014; Rashid, Damaraju, Pearlson, & 
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Calhoun, 2014; Sakoğlu et al., 2010), ICA (Yaesoubi, Miller, & Calhoun, 2015) or singular 

value decomposition (svd) (Leonardi, Shirer, Greicius, & Van De Ville, 2014). Many of 

these approaches implicitly assume that there are a handful of distinct connectivity patterns 

(i.e. states), that a single state is present at any given time, and that states recur over minute-

to-minute intervals. It will be important for future research to evaluate these assumptions. 

For example, a recent study suggests that dynamic FNC patterns were better described by 

overlapping states during rest, but by distinct states during tasks (i.e. silently counting, 

singing, or recalling events) (Leonardi et al., 2014).

Dynamic FNC analysis may compliment static FNC measures, each capturing different 

characteristics of network dynamics. For example, while static FNC provides an aggregate 

measure of connectivity, dFNC provides a parcellation into distinct states which can be 

characterized by the frequency and duration of occurrence (Calhoun et al., 2014). For 

example, individuals diagnosed with schizophrenia demonstrate a reduced presence of 

network connectivity states comprised of large-scale connectivity patterns. These patterns 

are characterized by increased connectivity among and across visual and somatosensory 

areas, and decreased connectivity among those regions and regions implicated in cognitive 

control, i.e. the supramarginal gyrus, precuneus, middle frontal gyrus, inferior frontal gyrus, 

cingulate gyrus, and inferior parietal lobule (Damaraju et al., 2014). These dynamics were 

obscured when comparing static connectivity differences between these patients and 

controls. The reduction of large-scale connectivity within schizophrenia could potentially 

underlie many symptoms, including the attention and perceptual deficits associated with the 

disorder (for a review, see (Heinrichs & Zakzanis, 1998; Mesholam-Gately, Giuliano, Goff, 

Faraone, & Seidman, 2009)). Thus, there is considerable utility in examining static and 

dynamic FNC among group ICA time courses and it will be important for further research to 

examine the correspondence between these patterns and distinct cognitive processes 

(Calhoun et al., 2014).

dMRI

Maps of whole-brain anatomic connectomes have been proposed to assess whole-brain 

patterns of connectivity (Hagmann et al., 2007). The anatomic connectomes demonstrate 

consistency in terms of scan-rescan reproducibility, correlation with resting-state functional 

connectivity, and bilateral symmetry. However, these anatomic connectomes likely leave out 

a number of important connections, particularly those that traverse fiber crossings, e.g., 

transcallosal connections between hand regions in motor cortex (Hagmann et al., 2008).

An important open question is the definition of anatomic connectivity. Fiber counts from 

streamline tractography are commonly used to represent anatomic connectivity. However, 

every tractography algorithm depends on a number of adjustable parameters. A slight 

adjustment of any of these can drastically change the fiber count. Measures of tissue 

integrity along a pathway can be used as an alternative to fiber counts and have been found 

to relate favorably to functional connectivity (Lowe et al., 2014a). Tract-based spatial 

statistics (TBSS) (Smith et al., 2006) adopts the latter approach to assess tissue injury, but 

does not use tractography to identify white matter fascicles. Rather, a scalar fractional 

anisotropy map is used in conjunction with an atlas to identify the fascicles, completely 
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avoiding the algorithmic instabilities associated with tractography. However, the regions 

identified by TBSS do not directly relate to cortical regions. More recent work involving the 

TRActs Constrained by UnderLying Anatomy (TRACULA) software (Yendiki et al., 2011) 

involves a registration-based approach, but constrains analysis to a limited set of well-

defined and reliable pathways, thus representing only a small fraction of the total pathways 

in the brain.
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Figure 1. 
a) Bilateral finger tapping task activation student’s t-score, thresholded, and overlaid on 

BOLD-weighted EPI, the black box indicates the maximum activated region, b) mean 

timeseries of the black box region in (a) superposed on the task timing (high regions are 

periods of finger tapping), c) whole-brain false color map overlaid on high resolution 

anatomy (overlay indicates regions of high correlation to the region defined by the black 

box), and d) timeseries of spontaneous BOLD fluctuations in the boxed region.
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Figure 2. 
Examples of within and among network connectivity information. The left panel shows 

brain regions parcellated from resting fMRI data using group ICA and the right panel shows 

the functional network connectivity matrix among these regions (cross-correlation).
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