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Background. CD15, which is overexpressed on various cancers, has been reported as a cell adhesion molecule that plays a key role
in non-CNS metastasis. However, the role of CD15 in brain metastasis is largely unexplored. This study provides a better under-
standing of CD15/CD62E interaction, enhanced by tumor necrosis factor-a (TNF-a), and its correlation with brain metastasis in
non-small cell lung cancer (NSCLC).

Methods. CD15 and E-selectin (CD62E) expression was demonstrated in both human primary and metastatic NSCLC cells using
flow cytometry, immunofluorescence, and Western blotting. The role of CD15 was investigated using an adhesion assay under
static and physiological flow live-cell conditions. Human tissue sections were examined using immunohistochemistry.

Results. CD15, which was weakly expressed on hCMEC/D3 human brain endothelial cells, was expressed at high levels on meta-
static NSCLC cells (NCI-H1299, SEBTA-001, and SEBTA-005) and at lower levels on primary NSCLC (COR-L105 and A549) cells (P <
.001). The highest expression of CD62E was observed on hCMEC/D3 cells activated with TNF-a, with lower levels on metastatic
NSCLC cells followed by primary NSCLC cells. Metastatic NSCLC cells adhered most strongly to hCMEC/D3 compared with primary
NSCLC cells. CD15 immunoblocking decreased cancer cell adhesion to brain endothelium under static and shear stress conditions
(P<.0001), confirming a correlation between CD15 and cerebral metastasis. Both CD15 and CD62E expression were detected in
lung metastatic brain biopsies.

Conclusion. This study enhances the understanding of cancer cell-brain endothelial adhesion and confirms that CD15 plays a cru-
cial role in adhesion in concert with TNF-« activation of its binding partner, CD62E.
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Introduction Overall survival of NSCLC patients with brain metastasis is ex-
tremely poor.? The brain lacks a lymphatic vascular system

Metastasis to the Brain and, as such, the majority of circulating cancer cells are be-

Metastasis is a complex, multistep process that refers to devel-
opment of distant secondary cancers from primary lesions
elsewhere in the body.' * Metastasis to the brain occurs most
commonly from lung cancer (40%-50%), breast cancer (15%-
25%), and melanoma (5% -20%).“~® Non-small cell lung can-
cer (NSCLC) represents the highest number of cases of brain
metastases at initial presentation, and 20% -40% of NSCLC pa-
tients will develop brain metastasis during their lifetime.”®

lieved to metastasize to the brain via the blood brain barrier.'®
Other reported routes of entry, such as those for lymphoma, in-
clude choroid plexus and cranial nerves.! Intravasation and
extravasation through the blood-brain barrier are key steps
for brain metastasis to occur; and evidence points to the impor-
tant role of endothelial cells in both lymphocyte trafficking and
non-CNS cancer cell metastasis.'? Moreover, astrocytes are in-
volved in metastasis from lung to brain through expression of
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specific cytokines such as interleukin-8 (IL-8), interleukin-1 B
(IL-1B), interleukin-6 (IL-6), and tumor necrosis factor-a
(TNF-a).23 Although cancer cell extravasation has been inten-
sively studied, the molecular mechanisms underlying metasta-
sis to the brain are not fully understood.

CD15 and Metastasis to the Brain

CD15 or Lewis x (Lex) blood group antigen is a carbohydrate cell
adhesion molecule®” expressed on glycol conjugates on various
cells at different developmental stages. In particular, it is asso-
ciated with human polymorphonuclear granulocytes and
lung,*” breast,'® prostate, and kidney cancer cells.?” CD15 is
crucial in the cell-cell recognition process;*® it has been sug-
gested that its absence from human glioma cells might explain
why brain tumors rarely metastasize extraneurally.'” CD15 has
been recently identified as a potential cancer stem-like cell
marker in human and murine glioma spheroids.?%?* Signifi-
cantly, it is a marker for metastatic lung adenocarcinoma,*>%?
being correlated with metastasis to non-CNS sites. However,
the functional role of CD15 in metastasis from lung to brain re-
mains obscure.

E-Selectin on Brain Endothelial Cells

CD62E is a cell-surface glycoprotein and CD15 ligand whose ex-
pression is induced by TNF-, IL-1B, and lipopolysaccharide.?®
Induction starts at CD62E transcription through an ATF-binding
element in the CD62E promoter.”® TNF-a activates NF«B, and
c-Jun NH,-terminal kinase (JNK1) and p38 signaling pathways,
which are both required for CD62E expression.?* TNF-a stimu-
lates high levels of CD62E, while IL-18 is less efficient on cul-
tured human umbilical vascular endothelial cells (HUVECs). In
addition, IL-3, TNF-a, and IL-10 stimulate CD62E expression
in HUVECs, human dermal microvascular endothelial cells,?*
and brain microvascular endothelial cells.?> 28

Role of CD15 and E-Selectin (CD62E) in Metastasis
to the Brain

Currently, no definitive model of the metastatic process of
cancer entry to the brain exists; previous studies in other tissues
indicate that circulating cancer cell extravasation occurs in a
similar manner to that of leukocytes, with sequential steps of
tethering, rolling, adhesion, and transmigration. Studies on me-
tastasis into colon and liver have suggested that interactions
between selectins and their ligands regulate cancer cell adhe-
sion.?? 3! CD62E interactions with its ligands are mediated by
the N-terminus homologous to the C-type listing domain.
CD62E overexpression correlates with metastatic behavior in
colon cancer, while CD62E immunoblocking significantly de-
creases metastasis from liver to pancreas®? and lung to breast
in mice®®* CD15 accumulates on the invasive edges of breast
carcinoma boli, suggesting its potential role in metastasis.**
Few studies have, however, focused on the role of CD15 in me-
tastasis to the brain. CD15 is rarely expressed on primary brain
tumor cells; this observation provides a plausible explanation
why glioma rarely metastasizes extraneurally.'?® Recently,
the first population-based analyses of lung cancer registries

in the USA and Canada, where data were collected for second-
ary metastasis, revealed that the brain is the most common
site of metastasis at initial diagnosis of stage IV lung cancer
(NSCLC), highlighting the importance of understanding en-
troncg mechanisms of circulating lung cancer cells into the
brain.

Materials and Methods

Ethics Statement

All cell lines established “in house” were conducted in accor-
dance with the National Research Ethics Service (NRES) instruc-
tions under Ethics permission 11/SC/00438.

Cell Culture

The human cerebral microvascular endothelial cell line (hCMEC/
D3) was donated by Professor Pierre Olivier Couraud (Institute
of Cochin, INSERM, Paris, France).>® hCMEC/D3 cells were
cultured in endothelial basal medium-2 (EBM-2) supplemented
vascular endothelial growth factor (VEGF), human epidermal
growth factor (hEGF), R3-insulin-like growth factor-1 (R3-
IGF-1), ascorbic acid, hydrocortisone, human fibroblast growth
factor-beta (hFGF-B), heparin (all from Lonza), and 2% human
serum (Biosera). Primary NSCLC cells (A549 and COR-L105)
were purchased from Sigma and metastatic NSCLC cells from
cervical lymph nodes (NCI-H1299) from ATCC. Low-passage
brain-metastatic NSCLC cell lines (SEBTA-001 and SEBTA-005)
were established in house using biopsies from patients with
lung-brain secondary tumors. All NSCLCs were cultured in
Dulbecco’s modified Eagle medium supplemented with 2%
human serum (Biosera) and maintained in 5% CO, and humid-
ifled atmosphere at 37°C. All cell lines were subjected to routine
mycoplasma testing, utilizing a kit from Lonza. Cell authentica-
tion was conducted using a microfluidic electrophoresis system
incorporating an Agilent 2100 Bioanalyzer (Agilent Technolo-
gies\) to analyze STR-PCR fragments from 10 human genomic
loci of human cell lines.?’

Antibodies
Primary Antibodies

Mouse monoclonal anti-CD15 (MEM-158) (Sigma) was used at
the following dilutions: 1:100 for immunocytochemistry (ICC)
and Western blot (WB) and 1:10 for flow cytometry and
immunoblocking. Mouse monoclonal anti-CD15 (Dako) was
used at 1:100 for immunohistochemistry (IHC). Mouse mono-
clonal anti-CD62E (Abcam) was used at the following dilu-
tions: 1:500 for ICC, 1:10 for flow cytometry, 1:500 for WB,
1:10 for immunoblocking, and 1:150 for IHC. Rabbit polyclonal
anti-ABCE1 (Novus,) was used as a loading control for WB at
1:500.

Secondary Antibodies

Fluorochrome-conjugated Alexa Flor-488 (Invitrogen) was used
for ICC and flow cytometry at 1:500, and horseradish peroxi-
dase (HRP)-conjugated IgG (Invitrogen) 1:5000 was used for
chemiluminescent detection in WB.
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Isotype Controls phosphate-buffered saline (PBS). Cells were then blocked with
10% serum in PBS (Sigma) and incubated with the primary an-
tibody for 1 hour followed by incubation with secondary anti-
body. Nuclei were counterstained with Hoechst Blue (Sigma).
Coverslips were mounted on slides using Vectashield (Vector
Laboratories) and viewed using a Zeiss Axio Imager Z1 fluores-
cence microscope. Images were captured using Volocity Image
Analysis Software (V 5.2, Perkin Elmer).

Isotype control antibodies were used to confirm the specificity
of primary antibody binding. IgM isotype antibodies (Invitro-
gen) were used at 1:100 for ICC, 1:10 for flow cytometry, and
1:10 for immunoblocking for CD15 isotype controls and IgG iso-
type antibodies (Invitrogen) at 1:50 for ICC and 1:10 for flow
cytometry for CD62E controls.

Immunocytochemistry

ICC was performed according to a protocol previously estab-
lished in our laboratory.® Briefly, cells were seeded onto sterile  Cells were harvested by gentle scraping, followed by blocking in
coverslips at 1 x 10°/well and incubated at 5% CO, and humid- 2% goat serum/PBS (Sigma) and then probed with primary an-
ified atmosphere at 37°C. Cells were fixed with 4% paraformal-  tibody while nonspecific IgM isotype was added to the negative
dehyde (Sigma) for 3 minutes followed by 3 washes with  control. Cells were then washed with PBS and incubated with

Flow Cytometry Analysis
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Fig. 1. Extracellular expression of CD15 in brain endothelial and lung cancer cell lines. (A) Representative immunocytochemical images showing
extracellular expression of CD15 in human brain endothelial cells (hCMEC/D3), human non-small cell lung cancer cells (NSCLC) metastatic cells
obtained from cervical lymph node (NCI-H1299), brain (SEBTA-001 and SEBTA-005) and in nonmetastatic NSCLC cells (A549 and COR-L105). (B)
Semi-quantitative analysis of CD15 expression from confocal images (A) using Zeiss ZEN image software. (C) Representative flow cytometric
histogram. (D) Flow cytometric analysis of CD15 expression on hCMEC/D3, NCI-H1299, SEBTA-001, SEBTA-005, A549, and COR-L105. CD15 was
highly expressed on NCI-H1299 and SEBTA-001 with less expression on COR-L105 and SEBTA-005, which expressed relatively the same amount.
N=3,**P<.0001, **P<.001 and *P < .01. There was also less CD15 expression on A549 and hCMEC/D3 cells. (E) Western blot of proteins from the
cell lines showed highest CD15 expression in NCI-H1299, followed by SEBTA-001, SEBTA-005, COR-L105, A549, and hCMEC/D3. ABCE1 was used as
a protein loading control.
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secondary antibody, resuspended in PBS, and then transferred
to fluorescence-activated cell sorting (FACS) tubes (BD Biosci-
ences). Propidium iodide (Sigma) was added to samples for ex-
tracellular antigen detection. Analysis was performed on a
4-color-multiparameter FACS Calibur (BD Biosciences). Each ex-
periment was repeated 3 times in triplicate. The expression
level was assessed by percentage of positive cell population.

Isotype
control

pd

5 pg/mL 10 pg/mL

Not

stimulated

25 pg/mL

Counts

Western Blotting

WB analysis was performed using cell membrane extracts,
which were isolated using a cell fractionation subcellular pro-
tein fractionation kit for cultured cells (Thermo Scientific). Cell
lysates were separated in 10% acrylamide SDS-PAGE gel and
transferred to a PVDF high sensitivity membrane. Proteins
were detected using primary antibodies and horseradish
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Fig. 2. CD62E expression in TNF-a treated endothelial cells. (A) hCMEC/D3 cells were positively stained for CD62E extracellular expression at
different TNF-a and TNF-B concentrations (green). (B) Western blotting of hCMEC/D3 cultured in increasing concentrations of TNF-a and TNF-B.
(C and D) Overlay histogram of flow cytometric analysis of CD62E expression in hCMEC/D3 cells cultured with different concentration of TNF-a
and TNF-B. (E) Flow cytometric analysis of CD62E expression in hCMEC/D3. N = 3, ***P < .0001, **P <.001, *P<.01.
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Fig. 3. CD62E expression in TNF-« treated lung cancer cell lines. (A) Representative immunocytochemical images showing expression of CD62E in
cancer cell lines following treatment with TNFa (25 pg/mL). CD62E was highly expressed and well distributed across cell membrane of hCMEC/D3
cells, at lower levels on non-small cell lung cancer metastatic cells (NCI-H1299 SEBTA-001 and SEBTA-005) and primary NSCLC cells (A549 and
COR-L105). (B) Semiquantitation analysis of CD62E cells from confocal images (A) using Zeiss ZEN image software. (C) Overlay histogram of flow
cytometric analysis of CD62E expression in cells treated with TNFa (25 pg/mL). (D) Flow cytometric analysis of CD62E expression in NCI-H1299,

SEBTA-001, SEBTA-005, A549, and COR-L105. N=

peroxidase-conjugated secondary antibodies. Immunocom-
plexes were revealed using an enhanced chemiluminescence
reagent (Millipore). The blots were visualized and analyzed
with GBOX Chemi XT16 system (Syngene).

Adhesion Assays

The CytoSelect Tumor-Endothelium Adhesion Assay Kit (Cell
Biolabs) was used to evaluate the adhesion potential of
tumor cells on a brain endothelial cell monolayer. Briefly, 1 x
10° brain endothelial cells (\CMEC/D3) were seeded onto fibro-
nectin (10 wg/mL) and grown to confluency. The endothelial
cell monolayer was first treated with 25 pg/mL of TNF-a

3, **p< 0001, **P<.001, *P < .01.

overnight to activate CD62E expression. Primary and secondary
lung cancer cell lines were tagged by a green fluorescent dye
(Cyto Tracker, Cell Biolabs). 1 x 10° cancer cells were then seed-
ed onto the activated hCMEC/D3 monolayer for 90 minutes.
Nonadherent cells were washed with PBS, and relative cell at-
tachment was determined using a POLARstar OPTIMA micro-
plate reader (BMG LABTECH,). The experiment was repeated 3
times in triplicate. In a separate method to evaluate adhesion,
we used ICC and confocal image analysis (see above). The
same conditions that were used in the CytoSelect adhesion
assay were repeated, except on coverslips, and prepared for
ICC. Semiquantification of adhesion was assessed using confo-
cal images and Zeiss ZEN software.

Neuro-Oncology

683



Jassam et al.: CD15/CD62E role in NSCLC metastasis to brain

A 8004 Metastatic NSCLC B  Without TNF-a
ok (Isotype) TNF-a
600- 2
Primary NSCLC O
dkdkdk e
kxk =
= 4004 CkE =
Q
=
200- HH s
| (I T
o &%

0' T T l‘l‘]"}]"‘il 'l}l.r =| 1
228zzzszs3338<¢< 3}
NANSSTITITvuvnn =T z ”

EEp et sa<CLaT '
R v e -
mmmamR2222 2200 i
SOV ppREEaREES 500 -
ZZ 7 mmnnnnU00Y T =
fhbrrhibsEEas22 S
caaRResaaes=22888 < -
SSoRESoo0QCU0pUU — b R
UUUUUL{UUL’:s.:mmLu‘ =] :
EEE22EEEE &G60 i -
22222::‘!: = =S - -~
TNF-00 - - + - =+ = = + = =« + - -+ §
TNFBp -+ - -+ =« = + =« =4 - - +- - > - i e
cell cultures P e
= B *h 8§ .
w il FS :
w
(—]
p—
=
=1
=)
o
o
=t
)
4--
=, B25pg/mL TNF-c [ NoTNF-a
2287
;a—-
;gf,- Heddk
Eg *E*x
= el ey
554' Fo ¥
g g .
]
£ E24
Sz | = L L = e
=g ] il i
g & 3 = 8 v g v oz o
z = 7 z z z
EETEZEZEEZE
ogoEgosEoSQ
z z -2 B z8 707
TNF-o« - + - + - + - + - +
Cell lines

Fig. 4. Non-small cell lung cancer (NSCLC) cell adhesion to TNF-a treated brain endothelial cells and the effect of CD15 immunoblocking. (A)
Qualitative adhesion of NSCLC cells on human brain endothelial cell monolayer. Primary and metastatic NSCLCs were incubated for 90 minutes
on a monolayer of activated hCMEC/D3 cells. Nonadherent cancer cells were washed away, and adherent cells were lysed and quantified via a
microplate reader at 480-520 nm. N = 3, P <.0001="**. The results showed the strong effect of CD62E, once stimulated by TNF-a on lung tumor
cells (red bars). Absence of TNF-a showed a significant decrease in cancer cell adhesion (white bars) (P<.001 =***). (B) Confocal images (top
panel) showing adhesion of green fluorescently labeled NSCLCs on brain endothelial cell monolayer(blue) and semiquantitation analysis of
confocal images (lower panel) using Zeiss ZEN image showing a significant increase in NCI-H1299, SEBTA-001, and SEBTA-005 adhesion to
TNF-a treated hCMEC/D3 cells. N =3, ***P <.0001, **P <.001, *P<.01. (C) Quantitative adhesion of human primary and metastatic NSCLC cells
blocked with CD15 mAb (red bar) and with nonspecific isotype IgM (white bar) to assess CD15 mAb-blocking efficiency and specificity. Adhesion of
NSCLC cells on a monolayer of hCMEC/D3 (grey bar) acts as a negative control. N= 3, P<.0001 = ***,
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Fig. 4. Continued.

Viability Assays

Cells were seeded at 1 x 10 in 96-well plates and incubated at
different concentrations (0, 5, 10, and 25 ng/mL) of TNF-a and
TNF-B. Similar experiments were performed using CD15 mono-
clonal antibodies (1:100). Cell viability was measured at differ-
ent time points using CellTiter 96 Aqueous One Solution cell
proliferation assay (MTS) (Promega). Absorbance was mea-
sured at 490 nm using a microplate reader.

Cancer Cell Adhesion Under Shear Stress and Live
Cell-imaging Microscopy

Vena8 endothelial biochips (channel volume: 2.69 pl) (Cel-
lixLtd) were used to assess tumor cells-brain endothelial adhe-
sion under shear stress. The chips were coated with 0.5 mm of
10 wg/mL fibronectin solution (Sigma) and incubated for
1 hour. 1.5 x 10° of hCMEC/D3 cells were seeded in each chan-
nel and incubated for 2 hours. The chips were connected to a
Microfluidic pump (CellixLtd,), and the whole unit was kept over-
night in an incubator at 37 °C, 5% CO, under shear stress flow
on perfusion mode with a 10 mL/hour volumetric flow rate
(2.5 dyn/cm?). The biochip was then connected to a Zeiss Axi-
overt 200 M inverted live cell (time lapse) microscope at 37°C,
5% CO,. Cancer cells (green fluorescently tagged) at 1 x
10° cells/mL were then pumped onto the hCMEC/D3 monolayer
at 2.5 dyn/cm? controlled by a Mirus Evo nanopump (CellixLtd)

and analyzed via Vena Flux Assay software. Live cell images
were taken once every 10 minutes over 72 hours to monitor
cancer cell adhesion on the brain endothelial cell monolayer
(37°C, 5% CO;). The images were collected, and movie se-
quences were generated using Volocity software (V5.4, Perkin
Elmer). The experiment was repeated 3 independent times in
triplicate.

Immunohistochemistry

Paraffin-embedded human normal brain and lung-brain meta-
static biopsy tissues were immunohistochemically stained for
CD15 (Dako) and CD62E (Abcam). These methods are de-
scribed in Supplementary material, S3.

Confocal Microscopy

ICC images were obtained using the X40 and X100 oil immer-
sion objectives of a Zeiss LSM 510 Meta Axioskop2 confocal mi-
croscope using lasers with excitation wave lengths of 405 nm
(blue), 488 nm (green), 568 nm (red), and 674 (purple) with
diode, argon, and HeNel lasers, respectively. Identical settings
were used to image negative controls in which primary anti-
body was replaced by a nonspecific Isotype.

Statistical Analysis

All experiments were performed 3 times, and data are ex-
pressed as+SE. Statistical analyses were performed using
1-way ANOVA followed by Tukey’s multiple comparison post
hoc tests using Graph Pad Prism 6 software for analysis.

Results

CD15 Expression in Cultured Brain Endothelial and
NSCLC Cell Lines

CD15 cell surface expression and localization were characterized
on brain endothelial cells, primary, and metastatic NSCLC cells
using ICC, flow cytometry, and WB analysis. Semiquantitation
of confocal images (Fig. 1A and B) demonstrated that, when
compared with isotype controls, CD15 immunoreactivity was
highest on metastatic lung cancer cells NCI-H1299 (P <.0001)
followed by SEBTA-001 and SEBTA-005, A549, COR-L1299, and
hCMEC/D3, respectively (Fig. 1A and B). There was no significant
difference between CD15 expression in hCMEC/D3 compared
with isotype control and A549. There was a significant increase
in CD15 expression compared with isotype control with positivity
levels of NCI-H1299: 79%, SEBTA-001: 54%, SEBTA-005: 39%,
COR-L105: 31%, A549: 23%, and hCMEC/D3: 19.69% (Fig. 1C
and D). There were no significant differences in CD15 expression
in hCMEC/D3 compared with A549 and COR-L105. Western blot
results were consistent with these analyses (Fig. 1E).

TNF-a Increases CD62E Expression in Human Brain
Endothelial Cells and NSCLC Cell Lines

TNF-a treatment of brain-derived endothelial cells (h\CMEC/D3),
resulted in an increase in CD62E protein expression in a
concentration-dependent manner compared with nonstimu-
lated cells (Fig. 2A-C and E). To ensure that this was a specific
effect of TNF-a, CD62E expression was further examined
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Fig. 5. CD15 mAb-blocking reduces adhesion of non-small cell lung cancer (NSCLC) cells under dynamic conditions. (A, left panel) A dynamic cell
adhesion assay was carried out on highly metastatic brain cells (SEBTA-001) using an AxioVert 200 M microscope (C. Zeiss) within an
environmentally controlled incubator. SEBTA-001 cells were incubated with isotype control (IgM) or CD15 mAb followed by perfusion of 1 x 10°
cells over a monolayer of h\CMEC/D3 cells at 2.5 dyn/cm? for 40 minutes. Phase contrast and fluorescent images were acquired at real time every
10 minutes with an X5 objective using Volocity software. Scale bar = 20 wm. (A, right panel) Representation of A, left panel in relative fluorescent
units of SEBTA-001 cell adhesion with and without CD15 mAb for 10, 20, 30, and 40 minute time points. (B-D) Confocal images of green
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in TNF-B treated hCMEC/D3 cells (Fig. 2A,B and D,E). ICC, flow cy-
tometry, and Western blotting were used to evaluate CD62E ex-
pression in brain endothelial cells cultured for 18 hours at 3
different concentrations of TNF-a and TNF@ (5 pg/mL, 10 pg/mL,
and 25 pg/mL). While CD62E expression was significantly
higher in TNF-a treated hCMEC/D3 cells compared with the
lung cancer cell lines (P <.0001), there were also significant
differences in CD62E expression within the group of lung cancer
cell lines that were also treated for 18 hours with 25 pg/mL
of TNF-a (Fig. 3A-D). Semiquantitation of confocal images
(Fig. 3A and B) demonstrated the highest CD62E expression
associated with hCMEC/D3 cells (Fig. 3B). CD62E expression in
hCMEC/D3 (73.88%) cells was significantly higher than CD62E
expression in all lung cancer cell lines tested (P<.0001).
CD62E expression in SEBTA-001cells was significantly higher
than NCI-H1299 (P<.01), SEBTA-005 (P<.001), and A549
(P<.0001). Flow cytometric analysis of lung cancer cells
revealed CD62E-positive cells in SEBTA-001 (34.17%), in
SEBTA-005 (27.6%), in NCI-H1299 (20.6%), in COR-L105
(32.7%), and in A549 (17.53%) (Fig. 3C and D).

CD15 and CD62E Mediate Adhesion of NSCLC Cells to
hCMEC/D3 Monolayer Under Static Conditions

We first wanted to determine if the TNF-a increased CD62E in
endothelial cells led to an increase in tumor cell adhesion.
hCMEC/D3 cells were plated and treated with TNF-a or TNF-B
for 18 hours, followed by several washes and the addition of
serum-free medium containing lung cancer cells prelabeled
with a green fluorescent dye (Cyto Tracker). Following a 90 mi-
nute incubation, co-cultures were washed, and cells were lysed
and evaluated for levels of fluorescence. hCMEC/D3 cells incu-
bated with TNF-« resulted in a significant increase in NSCLC ad-
hesion, with the highest relative fluorescent units being
associated with the NCI-H1299 cells followed by the lung can-
cer cells (Fig. 4A, P<.001). There was no effect on adhesion
when hCMEC/D3 cells were treated with TNF-B (Fig. 4A). To
rule out that a change in viability via TNF-a may have contrib-
uted to this increase in adhesion, viability assays were conduct-
ed. There was no change in hCMEC/D3 cell viability following
TNF-a treatment (Supplementary material, S1). However,
hCMEC/D3 cells treated with TNF-B demonstrated significantly
less viability when measured over 4 days (Supplementary ma-
terial, S1). The time course for the adhesion assay described
above consisted of an 18 hour incubation with TNF-a or
TNF-B, after which the cancer cell lines were added and allowed
to adhere for 90 minutes. Therefore the change in cell viability
seen with TNF-B at later time points would not have accounted
for the lack of adhesion (Fig. 4A). We used confocal image anal-
ysis in a separate method to evaluate adhesion. The same

conditions used in the assay above were repeated, except on
coverslips, and prepared for ICC. Semiquantification of confocal
images using Zeiss Zen software revealed that the metastatic
cell line NCI-H1299 cells were the most adherent, followed by
metastatic cells (SEBTA-001 and SEBTA-005) and primary
NSCLC cells (COR-L105 and A549) (Fig. 4B). These results sug-
gest a strong correlation between CD15 expression (Fig. 1)
and NSCLC cell adhesion. To determine whether CD15 plays a
key role in NSCLC cell adhesion to brain endothelium, an adhe-
sion assay was conducted in the presence of CD15 antibodies
or isotype (IgM) controls (Fig. 4C). CD15 mAb-blocking signifi-
cantly decreased metastatic (NCI-H1299, SEBTA-001, and
SEBTA-005) and primary NSCLC (COR-L105 and A549) adhesion
compared with nontreated cells. Furthermore, there was no sig-
nificant change in adhesion of cancer cells due to blocking with
nonspecific isotype (IgM) (P <.0001) (Fig. 4C). There were also
no observed toxic effects of antibody incubation with the vari-
ous cancer cell lines or the endothelial cell line (Supplemental
material, S2).

CD15 mAb Blocking Decreases Adhesion of NSCLC
Cells Under Shear Stress

To determine if the adhesion results obtained from static ex-
periments would hold when experimental conditions were
conducted under shear stress, we used the Vena8 endothelial+
biochip and micropump (Cellix) and conducted live cell micros-
copy to determine the effect of CD15 immunoblocking on
dynamic adhesion of metastatic lung to brain cancer cells
(SEBTA-001) over a 40 minute time range with a perfusion
rate at 2.5 dyn/cm? of fresh medium (Fig. 5A). CD15 mAb-
blocking was shown to decrease the number of adherent can-
cer cells on the brain endothelial cell monolayer lining the
Vena8 biochip channel compared with nonblocked cells
(Fig. 5A, lower panel and side graph). The aggregation of the
SEBTA-001 cells seen in Fig. 5A (arrows) without immunoblock-
ing suggests homophilic binding of CD15 on cancer cells as well
as heterophilic binding between CD15 and CD62E. This is sup-
ported by confocal images of ICC performed on co-cultures of
green fluorescently tagged metastatic cancer cells (SEBTA-001)
adhering on a monolayer of activated brain endothelial cells
(Fig. 5B and C). Results showed prominent and condensed
expression of CD15 on adherent cancer cell surface and cell
processes (Fig. 5C arrows). Both CD15 and CD62E were also lo-
calized at the site of cancer cell-brain endothelial cell adhesion,
and CD62E was seen distributed on the activated endothelial
cells and co-localized with CD15 supporting heterophilic adhe-
sion sites between cancer cells and brain endothelial cells
(Fig. 5C arrows). To confirm CD15 and CD62E localization at
the site of adhesion, 3-dimensional confocal images created

fluorescently labeled adherent brain to lung metastatic cancer (SEBT-001) cells cultured on a monolayer of hCMEC/D3 cells (blue). (B) CD15
expression (red) on the edges of SEBT-001 (green). ICC images showed expression of CD15 (red) on the adherent cancer cells (green) on a
monolayer of human brain endothelial cells stained with Hoechst blue C: The merged image shows expression of CD15 (red) on adherent
tumor cells (SEBTA-001) (green) on an activated monolayer of human brain endothelial cells (blue) expressing CD62E (purple). (D) Optical
sections of 3-dimensional confocal image created from z-stack. The top and lower views represent one image at different angles through the
z-stack, showing an adherent SEBTA-001 expressing CD15 (purple) on an activated monolayer of brain endothelial cells expressing CD62E (red).
Right-side view represents an optical section through the depicted z-stack showing the precise interaction between CD15 and CD62E during

NSCLC-brain endothelium cell adhesion.
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from z-stacks (Fig. 5D) were analyzed in culturing SEBTA-001 on
a monolayer of endothelial cells.

CD15 and CD62E Expression in Human Biopsy
of Lung-to-brain Metastasis

Immunohistochemistry was conducted on paraffin-embedded,
formalin-fixed tissue sections of human lung metastasis to
brain biopsies using antibodies to both CD15 and CD62E (Sup-
plemental material Fig. S3). Both CD15- and CD62E-positive
cells could be seen throughout the tumor core, whereas neither
was detected in adult normal brain cortex. In patient 1, there
was an area of host tumor interface where CD15-positive
cells were detected within vessels, and CD62E was associated
with endothelial cells lining the vessels in the same patient.

Discussion

Three-quarters of brain tumors are metastatic cancers originat-
ing from primaries in distant organs; the brain is known to be a
key target of secondary NSCLC, and 20%-40% of lung cancer
patients develop oligometastasis or multiple-brain metastases
during their illness.® Metastasis to the brain is a complicated,
multistep process requiring interaction between metastatic
cancer cells and target environment. However, these interac-
tions are not yet fully understood, particularly the adhesion
of cancer cells on brain endothelium in early stages of entry
into the brain. CD15 is a cell-adhesion fucosylated carbohy-
drate that is expressed on leucocytes and various types of
non-CNS cancer cells,®® but it is rarely expressed in the
human brain.3> Moreover, CD15 overexpression has been corre-
lated with a progression to metastatic stage. Indeed, signifi-
cant correlation exists between CD15 overexpression and
colorectal cancer metastasis through prominent CD15 expres-
sion on the invading edges of cancer lesions.? CD15 is involved
in the extravasation process through its interaction with selec-
tins, particularly E-selectin (CD62E), a glycosylated transmem-
brane and cellular adhesion molecule crucial for homing of
circulating cells through its expression on endothelial cells.*®
CD62E facilitates cancer cell adhesion to endothelial cells in
various cancers such as colon,®® breast,*° and lung.** Here
we hypothesized that CD15 and CD62E interaction is involved
in cancer cell adhesion during metastasis to the brain. Previous
studies have shown that human bone-marrow microvascular
endothelial cells play an important role in metastasis to the
brain via interaction between CD62E on endothelial cells and
its ligands on metastatic neoplasms.** However, most studies
have employed nonspecialized experimental conditions such as
human cells cultured in fetal calf serum, using nonspecific me-
dium and nonbrain-derived endothelium. In our study, we used
2% human serum and medium supplemented with specific
growth factors for each cell line to maintain cell differentiation
and characteristics.** We used human brain endothelial cells
(hCMEC/D3) established from temporal lobe microvessels
from an epileptic patient and then immortalized by introducing
human telomerase or SV40T antigen-employing lentiviral
vectors.*® HUVECs have previously been used to study metas-
tasis to the brain;*! however, functional differences were dem-
onstrated between leukocyte adhesion on HUVECs and

brain-derived endothelium.***> In the present study, CD15
was overexpressed on metastatic NSCLC cell membranes
(NCI-H1299, SEBTA-001, and SEBTA-005); while there was a
lower expression on primary NSCLC cells (COR-L105 and
A549). Moreover, CD15 was characterized on SEBTA-001 and
SEBTA-005 (established in-house metastatic NSCLC cell lines
obtained from brain). CD62E, the natural ligand for CD15, was
upregulated on brain endothelial cells (h\CMEC/D3) and cancer
cells in response to a TNF-a inflammatory stimulus. Both mAb-
blocking of CD15 and absence of CD62E/TNF-a correlated with
significantly decreased adhesion of cancer cells on brain endo-
thelium. Confocal microscopy revealed the expression of CD15
around adherent cancer cells and localized CD15/CD62E inter-
action at adhesion sites of cancer cells/brain endothelial cells;
these findings suggest that CD15 and CD62E play important
roles in adhesion of NSCLC cells to brain endothelium in static
conditions. We then explored the possible effects of vascular
blood flow by combining live-cell imaging and shear stress flu-
idics twinned with CD15 mAb-blocking under TNF-a immune
stimulus using an in vitro model developed from human cell
cultures maintained in a specialized environment to mimic in
vivo environment inside blood brain microvessels. For this, a
microfluidic chip (Vena8-Cellix) was used with low shear stress
(2.5 dyn/cm?) and volumetric flow rates (10 mL/hour) mimick-
ing the low flow in brain microvessels.*® Under these condi-
tions, the adhesion of cancer cells was significantly decreased
by absence of CD15 or CD62E/TNF-a, suggesting the critical role
of CD15 and CD62E/TNF-a in cancer cell adhesion during early
stages of cancer cell extravasation. While in vivo data are lack-
ing for NSCLC, a recent study reinforced the importance of
CD62E in breast-to-brain metastasis in mice by showing that
the adhesion of breast cancer cells to brain endothelial cells
was enhanced by the presence of VCAM-1/VLA-4, ALCAM-1,
and IntegrinB,4.*” Our in vitro study has also shed light on the
functional characterization and localization of CD15 and CD62E
on the site of NSCLC seeding to the brain. CD15 expression lev-
els correlated with the adhesion of cancer cells to stimulated
brain microvascular endothelial cells. NSCLC metastatic cells
obtained from brain lesions (SEBTA-001 and SEBTA-005) were
more adhesive than the primary NSCLC cells (COR-L105 and
A549). These results are consistent with previous studies that
referred to the correlation between elevated level of CD15
and metastasis in different types of non-CNS cancer.??
CD15 mAb-blocking resulted in a decrease in the number of ad-
herent cells on stimulated brain microvascular endothelium
(hCMEC/D3) under both static and dynamic conditions. Thus,
this study indicates that CD15 is a possible target for prevention
of brain metastasis in NSCLC patients. While this in vitro exper-
imental model adds to our knowledge of metastatic cell adher-
ence to brain endothelium, there are limitations in that it does
not include other cell types that are known to be present. For
example, the influence of circulating neutrophils in brain me-
tastases and their role in this process is not known and is cur-
rently under investigation. Although little is known concerning
the histopathology of CD15 expression in CNS tumors*® and
human lung cancer to brain metastasis, there have been re-
ports of CD15 expression in NSCLC*? and more recently associ-
ations with lung cancer stem-like cells.”> A more rigorous
characterization of CD15 in human lung cancer to brain-derived
biopsy is now in progress.
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