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Given the lack of beneficial treatments in glioma, there is a need for prognostic models for therapeutic decision making and life
planning. Recently several studies defining subtypes of glioma have been published. Here, we review the statistical considerations
of how to build and validate prognostic models, explain the models presented in the current glioma literature, and discuss ad-
vantages and disadvantages of each model. The 3 statistical considerations to establishing clinically useful prognostic models are:
study design, model building, and validation. Careful study design helps to ensure that the model is unbiased and generalizable to
the population of interest. During model building, a discovery cohort of patients can be used to choose variables, construct mod-
els, and estimate prediction performance via internal validation. Via external validation, an independent dataset can assess how
well the model performs. It is imperative that published models properly detail the study design and methods for both model
building and validation. This provides readers the information necessary to assess the bias in a study, compare other published
models, and determine the model’s clinical usefulness. As editors, reviewers, and readers of the relevant literature, we should be
cognizant of the needed statistical considerations and insist on their use.
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In clinical practice, neuro-oncologists need tools to help pa-
tients understand their prognoses based on clinical and biolog-
ical measurements. Prognostic models estimate the probability
that a specific event (eg, progression, death) will occur in the
future. Such models are important to patients, their families,
and physicians, as they can inform therapeutic decision making
and life planning as well as be used for stratifying patients in
clinical trials.

Recently several studies have defined subtypes of glioma
using combinations of molecular markers and have shown
that patient’s with different molecular subtypes have different
survival.1 – 6 Most used markers that were defined a priori, while
one used an agnostic approach to identify molecular markers
that defined groups of gliomas with different outcomes. Here,
we review how to build and validate prognostic models, explain
the models presented in the current glioma literature, and dis-
cuss advantages and disadvantages of each model. We then
summarize the results of current glioma models and provide
considerations for the development of future prognostic mod-
els for clinical use.

Study Design

The 2 fundamental steps for establishing prognostic models are
model building and model validation. Prior to beginning either
step, which patients are to be studied must be carefully deter-
mined. If the entry criteria for the study are too broad, impor-
tant prognostic variables could be missed due to the
heterogeneous selection of patients, resulting in a model with
poor prognostic ability. However, if the entry criteria are too
specific, then the results may not be generalizable to a wider
population and thus unusable. Additionally, if the goal is to
develop a prognostic model using genomic data, the impor-
tance and availability of other relevant clinical and pathologic
data must be considered; for example, age, gender, disease
stage/grade, and treatment all affect survival. Ultimately, the
most important aspect of study design is to first consider the
primary objective of the prognostic model and, likewise, identify
the population for whom the prognostic model will be applied.

The preferable study design for building prognostic models is
a cohort of patients collected prospectively, which allows the
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collection of all pertinent clinical and biological measurements
in addition to a planned adequate sample size.7 However, a co-
hort design usually is not practical for diseases with long dor-
mancy or for a rare disease such as brain cancer. As a
substitute for a cohort design, data collected as part of a clin-
ical trial can be used to develop prognostic models. While clin-
ical trial data are convenient, it is imperative to consider the
primary objective of the corresponding clinical trial and, impor-
tantly, the inclusion and exclusion criteria that were used. That
is, the primary objective of a clinical trial is typically to compare
treatment therapeutics, and thus inclusion and exclusion are
defined with respect to this primary objective. Thus, using clin-
ical trial data to develop a prognostic model requires careful
consideration to ensure that the results will be generalizable
to the patient population of interest. As an alternative, a retro-
spective design is commonly used for rare diseases. While ret-
rospective data collection allows for longer follow-up times, the
accuracy of the data is dependent on recall of risk factors, and
missing data are common.

In addition to deciding whether to use prospective or retro-
spective data collection, the number of patients to analyze is an
extremely important consideration. While formal sample size
calculators exist, a general rule of thumb is that a minimum
of 10 events (eg, deaths in a survival analysis, the number of
observations in the least frequent group in a logistic regression
analysis) are necessary for each variable that will be considered
in the prognostic model.8 – 10 Estimating necessary sample sizes
for validation datasets is similarly important and discussed
below.

Model Building and Validation

After deciding on the cohort of patients to be studied and col-
lecting the data (referred to as the discovery dataset), the first
step of model building is to combine multiple predictors in a
statistical model. The second step is to assess how well this
model predicts future patients′ outcomes (ie, prediction perfor-
mance). Subsequently, the model should be further validated
with an independent (external) dataset.

Statistical Models

The most common statistical approaches used to develop
prognostic models include logistic regression for binary out-
comes (eg, progression vs progression-free survival at 6
months) to assess the probability of progression at 6 months
and Cox proportional hazards models for survival outcomes
to assess risk of death/progression as a function of time.11 Al-
ternatively, more algorithmic methods such as recursive parti-
tioning analysis can be employed for either type of outcome.
Recursive partitioning (RP) analysis methods, such as Classifica-
tion and Regression Trees (CART),12 are useful for separating pa-
tients into groups with similar outcomes. For example, RP
performs this task by starting with all patients in a dataset
(the “root node”) and splitting this group into 2 subgroups
(“daughter nodes”), with the aim of maximizing the homo-
geneity with respect to the outcome within each subgroup.
Further binary splitting occurs, and this process is continued
until there are a prespecified minimum number of observations
in a subgroup (node). Subsequently, a properly sized tree, as

determined by cross-validation (described below), is chosen.
The final subgroups are the “terminal nodes.” An advantage
of RP over logistic or Cox regression is that RP is less subjective
in selecting and combining variables, as the algorithm, rather
than the user, selects which and how the variables are includ-
ed. RP is useful for accommodating and modeling nonlinear re-
lationships, interactions, and variables with high correlation. It
should be noted that the terminal nodes are not guaranteed to
be statistically significantly different; RP does not provide stat-
istical tests for the variables or corresponding nodes.

An important consideration, especially when using retro-
spective data, is how to accommodate missing data. Deleting
observations with missing data can lead to bias and reduces
the power of the model. One popular option for missing data
in logistic and Cox regression is to use a multiple imputation ap-
proach before beginning variable selection and model build-
ing.13 In multiple imputation, missing values are filled in with
plausible values based on the other variables in the dataset.
In RP, for each variable that the algorithm splits on, an ordered
list of “next best variables” is automatically generated. The next
best variable for making the current split is used in case the var-
iable for the current split is missing. Sensitivity analyses can be
performed to verify that the imputation did not skew the
results.

Another important consideration is that new prognostic
models should improve on previously established clinical mod-
els. For example, when looking at molecular markers for prog-
nosis, the models should be compared with models with
commonly available clinical variables known to be associated
with the outcome. Such variables include age, extent of resec-
tion, and performance status. Inclusion of these variables
should increase prediction accuracy as well as ease the intro-
duction of the model into the clinic.

Once a statistical model is selected, the analyst must
choose how many and which variables to include. This step is
referred to as variable/model selection, the goal of which is
to select the best subset of predictors. In logistic and Cox re-
gression, typical approaches are forward and backward selec-
tion. Backward selection begins with all variables in a model,
then one variable is removed at a time based on a prespecified
test and a nominal P-value or a criterion like the Akaike infor-
mation criterion (AIC). Forward selection begins with no vari-
ables in the model and adds one variable at a time based on
a test and P-value or the AIC. There are noted complications
with both forward and backward approaches14; therefore, a
mix of the 2 is preferred. Alternatively, statistical methods
that include automatic variable selection can be used, such
as branch-and-bound algorithm, RP, Lasso, and least angle re-
gression (LARS).15,16 Lasso and LARS are both model selection
algorithms that are an advanced form of forward selection.
Both algorithms are easy to implement via statistical software
such as R. As model building is a vast area of statistical research
and much of it is beyond the scope of this manuscript, the read-
er is directed to Hastie et al15 for further guidance.

Regardless of the model chosen, any assumptions of the
statistical model should be verified. For example, in Cox regres-
sion, proportional hazards must be verified. In all regression
models, the assumption of linearity of a continuous variable
(eg, the risk associated with age increases as age increases)
should be verified.
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Prediction performance assessment. Subsequent to model
and variable selection, the prediction performance of the cho-
sen model is assessed, that is, how well the chosen model pre-
dicts the outcome. Prediction performance is estimated via
calibration, discrimination, and misclassification.17 Calibration
is the agreement between the predicted risk probabilities and
the observed frequencies of the outcome. Calibration is typical-
ly assessed by plotting the observed versus predicted out-
comes; a 45-degree line denotes a perfectly calibrated
model. Discrimination is the ability of the model to differenti-
ate between those individuals that experienced the outcome
and those that did not. Typical measures of discrimination in-
clude R2 for regression models and the concordance index
(c-index) for logistic and survival models. Misclassification is
the correct/incorrect assignment into a risk group.

A difficulty with developing prognostic models is that due to
either the analysis and/or study design, the results may not be
reproducible. For example, a model may be “overfit.” Overfit-
ting means that a model is overly specific to the dataset
from which it was developed and therefore is not replicable in
an independent dataset or, more importantly, is not generaliz-
able to the broader population.18 – 20 There are 2 ways to check
a model for overfitting and generalizability: internal validation
and external validation. The best way to show that results are
reproducible is to assess a model in a completely independent
dataset (known as external validation, see below). However,
due to small numbers or difficulty with obtaining similar co-
horts, this is not always feasible.

Internal validation. Internal validation is a statistical tech-
nique to quantify overfitting and to get an unbiased estimate
of prediction performance without an external dataset. Resub-
stitution refers to when a model is built using all of the data
and subsequently prediction performance is evaluated on the
same data.17 – 19 Because resubstitution estimates model per-
formance on the exact same data that were used to construct
the model, estimates of prediction performance are biased,
and thus the model may not generalize to the broader
population.19,21

Other more favorable forms of internal validation include
cross-validation and bootstrapping.22 Bootstrapping and cross-
validation allow the model to be built on a subset of the data
and assessed on an entirely different subset.19,22 Bootstrapping
uses sampling with replacement such that the training set is
the same size as the discovery cohort but has repeated patients
(ie, the data from the same patient can appear multiple times).
The test set is all patients not included in the training set and
does not include any repeats. Alternatively, in 10-fold cross-
validation, each patient is randomly assigned to one of 10 par-
titions, or folds (Fig. 1). As a result, the 10 partitions are of
approximately the same size. For example, by default, RP
uses 10-fold cross-validation for selecting the best size tree
and estimating the prediction performance. For each of the
10 folds, a tree is built with the training set that contains all
but one of the partitions, labeled the test set. Therefore,
each partition acts as the test set exactly once. The prediction
performance for the tree built on the training set is estimated
with the corresponding test set and subsequently the esti-
mate from the 10 test sets are averaged. This allows a predic-
tion performance estimate for trees with various numbers of

terminal nodes, that is, 1 (the root node) to 20 nodes repre-
senting a sequence of nested subtrees. The tree with the
best prediction performance is chosen as the best size tree.
The goal of maximizing the prediction performance is to
choose the tree that will perform the best with an indepen-
dent dataset by not overfitting the discovery data. For this
chosen tree, the terminal nodes represent the stratification
of the observations into similar risk groups.

The same resampling methods (such as cross-validation
and bootstrapping) can be used for further partitioning the
training set into learning and evaluation sets for variable/
model selection (Fig. 2). As shown in Fig. 2, the discovery data
can be split twice. The first split is for the purpose of estimating
prediction performance; the data are split into a training set
and a test set. A subsequent split of only the training set, into
learning and evaluation sets, can be used for variable/model
selection. For example, two-thirds of the discovery dataset
could be used for the training set, leaving one-third for the
test set. Subsequently, 10-fold cross-validation could be em-
ployed on the training set for variable/model selection. Once
the variables are chosen and a model built, the test set
would be used for evaluation.

The 2 splits into training/test sets and learning/evaluation
sets can occur multiple times via resampling tools such as
bootstrapping and cross-validation.22 By repeating the splits,
bias is reduced. Additionally, it allows the chance that every pa-
tient is included at least once in each of the 4 sets.21,22

There are several limitations to estimating internal validity.
Most importantly, it is frequently performed incorrectly. For ex-
ample, variable selection performed prior to using resampling
methods for variable/model selection induces biased estimates
of prediction performance. Thus, variable selection should be
done within the resampling process (eg, within each fold of
the cross-validation procedure) and not before implementation
of the resampling process (eg, cross-validation).22 – 24 Another
frequent error is that often discovery data are only split into a
training and test set once, which is referred to as the split sam-
ple method. It has been shown that the split sample method
results in biased estimates of performance due to the reduced
training set size that limits its ability to effectively select vari-
ables and fit a model.22 Additionally, internal validation does
not protect against biases due to problems associated with se-
lection and handling of the relevant biological specimens (eg,
different assays were used for a molecular marker for the tu-
mors from all alive patients vs those that were dead). Further-
more, if the patient population is not representative of other
patient populations, no amount of statistical maneuvering
will guarantee good performance of the model in other set-
tings. Thus, it is important to start with as representative a pa-
tient group as possible.

External validation. External validation means validating the
model via an independent dataset (eg, a different cohort from
another institution or study).22,25 If need be, a new cohort of
patients from the same institution, but diagnosed at a later
date, can be collected; however, this does not avoid the afore-
mentioned study design limitations for internal validity. That is,
there may still be inherent biases as to which patients come to
a particular institution or in the way tumor tissues are handled.
For sample size, a rule of thumb is to have an independent test
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set with 100 events and 100 non-events for binary outcomes or
100 events for survival outcomes.26 Smaller test sets can lack
the power to test differences in model performance.

To evaluate a model in an independent dataset, the same
model that was built from the discovery data is applied to
the external dataset and prediction performance is evaluated.

Fig. 1. Depiction of training and test sets for the iterations of 10-fold cross-validation.
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Typically, the prediction performance will not be as high as that
from internal validation. If the prediction performance is poor,
then instead of starting again or building a new model, the orig-
inal model can be updated.27,28 For example, if changes in

clinical practice have happened over time, specific adjustments
to a subset of predictors can be made. However, the updated
model should similarly be subsequently validated in an external
dataset.

Fig. 2. Framework on internal validation for allocating data into training, learning, evaluation, and test sets for the purposes of quantifying
prediction performance and variable/model selection.
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Recent Examples in Neuro-oncology

To illustrate the aforementioned statistical considerations, we
present several recently published models in the neuro-
oncology literature. In this section we detail the advantages
and disadvantages of each model and compare the prediction
performance of the models in an independent test set of glio-
ma patients (low-grade gliomas and glioblastoma multiforme
[GBM]) from The Cancer Genome Atlas (TCGA) and Mayo Clinic.
TCGA data are publicly available and include 127 grade II, 138
grade III, and 153 grade IV glioma patients with clinical and
biomarker data. Mayo Clinic data include 88 grade II, 112
grade III, and 117 grade IV glioma patients with clinical and
biomarker data. Unless noted, all studies defined overall sur-
vival (OS) as the time from diagnosis to death or last follow-up.
The patient and other features of these studies are summa-
rized in Table 1.

Panageas et al, 2014

Panageas and colleagues1 studied 587 patients with anaplastic
oligodendrogliomas and oligoastrocytomas with known 1p/
19q codeletion status from a retrospective database. Their
goal was to assess the prognostic value of 1p/19q codeletion
in the presence of other known important clinical variables
for the purpose of clinical management/prognostication. The
variables investigated included: age (continuous), history of
prior low-grade glioma (yes vs no), 1p/19q status (codeleted
vs not codeleted), histology (presence or absence of an astro-
cytic component), tumor lobe (frontal vs other), tumor hemi-
sphere (right vs left vs bilateral), gender, extent of resection
(biopsy vs debulking), postoperative treatment (radiation only
vs chemotherapy), and KPS status at diagnosis (≥70 vs ,70).

To classify patients into risk groups, the authors used RP,
where the final tree had 7 nodes, chosen by cross-validation.
As several of the terminal nodes had similar hazards, the au-
thors subsequently condensed the 7 nodes into 5 (Table 1,
Fig. 3A). The median OS ranged from 9.3 years for patients
younger than 60 with 1p/19q codeletion, to 0.6 years in
those patients 70 and older without 1p/19q codeletion. The au-
thors discussed that they did not perform external validation,
as potential datasets had too much heterogeneity in treatment
and exclusion criteria. Thus, we performed external validation
using the combined TCGA and Mayo Clinic data, restricted to
147 patients with anaplastic oligodendrogliomas or oligoastro-
cytomas (Table 1). In the TCGA + Mayo data, only the patients
without 1p/19q codeletion who were 60–69 or 43–59 years old
with non–frontal lobe tumor locations were statistically differ-
ent from those under 60 with 1p/19q codeletion (hazard ratio
[HR]¼ 3.3, P¼ .04; Fig. 3A, Table 1). In summary, while the me-
dian OS estimates differed between what was reported by Pan-
ageas et al1 and what was observed in the TCGA + Mayo data,
there is an overlap in the 95% confidence intervals. Additional-
ly, the survival curves (Fig. 3) demonstrate a similar trend. The
observed differences are most likely due to the fact that the
TCGA + Mayo validation set does not have enough events and
non-events overall as well as in each subtype to adequately
validate the model. Additional reasons could be differences in
treatment across the datasets or inclusion criteria of the 3 dif-
ferent studies.

The advantages of the Panageas et al1 prognostic model
were (i) the relatively large sample size for model building; (ii)
the objective nature of building a prognostic model, where
the authors did not choose how they defined the risk groups
but instead let the RP algorithm select the variables (from
those that the authors included, which can add subjectivity)
and combinations thereof; (iii) the inclusion of known prognos-
tic clinical variables (eg, age at diagnosis and tumor location);
(iv) internal validation via 10-fold cross-validation; and (v) a
restriction to 2 types of low-grade glioma as opposed to all low-
grade gliomas, which are known to be heterogeneous. The dis-
advantages were (i) the ad hoc combination of terminal nodes
based on similar hazards – this step reduces the objectivity of
the method and was performed after cross-validation preclud-
ing an accurate estimate of prediction performance29; (ii) the
lack of external validation; and (iii) the P-value for the log-rank
test was included but the hazard ratios and accompanying
P-values were not. One way to address the first limitation is
to include a multilevel categorical variable representing mem-
bership in the terminal nodes and then let RP group the termi-
nal nodes, in effect running RP twice. The last limitation is
important, as the P-value from a log-rank test can be ,.05 if
only one of the 5 groups is different from the other 4. That is,
a log-rank P-value ,.05 does not imply that all pairwise com-
parisons are significantly different from each other. Additional-
ly, a P-value, unlike a hazard ratio, does not provide an estimate
of the magnitude of difference. An alternative is to choose one
of the groups as the reference (this group should have a large
number of observations) and report the hazard ratios and con-
fidence intervals for each of the other groups in comparison to
the reference.

Labussière et al, 2014, Neurology

Labussière et al2 studied 395 newly diagnosed cases of
GBM with no history of seizure or previous low-grade glioma.
Their goal was to assess the prognostic value of telomerase
reverse transcriptase promoter (TERTp) mutations as well
as the association with common molecular alterations, includ-
ing isocitrate dehydrogenase 1 (IDH1) mutation, epidermal
growth factor receptor (EGFR) amplification, cyclin-dependent
kinase inhibitor 2A (CDKN2A) homozygous deletion, loss of
chromosome 10, O6-DNA methylguanine-methyltransferase
(MGMT) promoter methylation, and tumor protein 53 (TP53)
mutation.

The authors tested numerous possible combinations of
TERTp mutation and associated markers and concluded that
TERTp, IDH mutation, and EGFR amplification resulted in prog-
nostic stratification, but the others did not. One finding they
highlight is an interaction between EGFR amplification and
TERTp mutation, that is, among patients with TERTp mutation,
those whose tumor had EGFR amplification did better than
those without. Using the 3 resulting markers (TERTp, IDH, and
EGFR), the authors made 4 combinations (Table 1, Fig. 3B).
The median OS ranged from 1.1 years for the TERTp –wild
type (WT)/EGFR-amp group to 3.13 years for the TERTp-WT/
EGFR-WT/IDH-mutation (MT) group. Although the authors did
not include the number of patients in each of the 4 groups, it ap-
pears that there were approximately 8 deaths in the TERTp-WT/
EGFR-amp group and 10 in the TERTp-WT/EGFR-WT/IDH-MT
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Table 1. For recent published glioma model studies, the original definition of the model and reported median OS and results of the validation in TCGA + Mayo data

Author Journal, Year Grade IDH TERTp 1p/19q,
Codeleted

EGFR Age, y Lobe N Median OS, y (95% CI) n Median Mayo and
TCGA OS, y (95% CI)

Cox Proportional
Hazards HR

P

Panageas Neuro Oncol,
2014

III Yes ,60 256 9.3 (8.4–16.0) 62 11.17 (8.4–NA) 1 (baseline)
No ,43 174 8.9 (5.5–10.8) 49 11.13 (6.3–NA) 1.05 .88
No 43–59 Frontal 64 4.3 (2.9–6.0) 19 7.1 (4.3–NA) 1.96 .16
Yes ≥60
No 43–59 Not frontal 75 2.0 (1.6–2.3) 15 NA (0.97– NA) 3.3 .04
No 60–69
No ≥70 18 0.6 (0.5–0.9) 2 9.53 (NA–NA) 1.64 .63

Labussière
et al

Neurology,
2014

IV MT 1.15 213 1.12 (1.03–1.23) 1 (baseline)
WT Amplified 1.11 11 2.11 (1.50–NA) 0.52 .07

MT WT WT 3.13 16 2.80 (2.02–NA) 0.42 .005
WT WT WT 2.21 14 3.37 (0.33–NA) 0.89 .76

Labussière
et al

BJC, 2014 II–IV MT MT 122 .17 155 11.95 (9.2–NA) 1 (baseline)
MT WT 180 8.12 260 9.49 (7.09–13.27) 1.4 .1
WT WT 114 2.63 69 1.81 (1.55–2.89) 5.79 ,.001
WT MT 340 1.28 250 1.15 (1.08–1.27) 13.02 ,.001

Killela et al Oncotarget,
2014

II MT WT 57 10.89 (7.93–12.08) 121 10.9 (8.86– NA) 1 (baseline)
MT MT 46 17.13 (7.15–21.49) 78 20.3 (11.3–NA) 0.54 .08

III–IV WT MT 187 0.96 245 1.15 (1.04–1.240) 1 (baseline)
WT WT 50 1.43 58 1.77 (1.49–2.42) 0.52 ,.001
MT WT 82 4.75 139 6.74 (5.61–13.11) 0.14 ,.001
MT MT 40 10.42 77 8.54 (5.16–NA) 0.13 ,.001

Brat et ala NEJM, 2015 II–III MT Yes 84 8 74 20.08 (11.95–NA) 1 (baseline)
MT No 139 6.3 105 13.27 (9.42–NA) 1.58 .11
WT 55 1.7 21 2.49 (1.85–8.24) 6.38 ,.001

Eckel-Passow
et alb

NEJM, 2015 II–III MT MT Yes 69 20.3 (11.96–NA) 64 7.94 (6.5–NA) 0.68 .33
MT MT Mo 9 7.6 (5–NA) 5 2.15 (2.15 NA) 3.39 .24
MT WT No 96 14.25 (9.5–NA) 144 6.25 (5.28–9.75) 1 (baseline)
WT WT Mo 8 9.0 (2.2–NA) 20 1.66 (0.87–NA) 3.02 .02
WT MT No 13 2.2 (1.7–NA) 32 1.47 (0.73–NA) 14.03 ,.001

IV MT MT Yes 1 0
MT MT No 6 1.06 (0.5–NA) 1
MT WT No 8 3.18 (13–NA) 8 2.8 (2.02–NA) 0.26 .01
WT WT No 19 1.8 (1.4–4.5) 22 1.49 (0.43–NA) 0.55 .06
WT MT No 83 1.2 (1.11–4) 122 1.04 (0.90–1.17) 1 (baseline)

aValidated with Mayo data only.
bValidated with TCGA data only.
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group with multiple censorings, while the majority of
patients fell into the other 2 groups. Since external validation
was not performed, we performed external validation using
the TCGA + Mayo data, restricted to 254 GBM patients
(Table 1, Fig. 3B). It should be noted that we did not have

access to seizure history and thus we did not restrict to GBM
patients with a history of seizures. The TERTp-MT group had
similar median OS between the published paper and the
TCGA + Mayo validation, while the all-WT group differed by
more than a year.

Fig. 3. For each of recent published glioma model studies, the original Kaplan–Meier curves on the left-hand side and the validation in TCGA data
on the right-hand side.
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In the TCGA + Mayo data, only the TERTp-WT/EGFR-WT/
IDH-MT group was statistically different from the TERTp-MT
group (HR¼ 0.42, P¼ .005). In Labussière et al,2 the
TERTp-WT/EGFR-amp group did worse than the TERTp-MT pa-
tients and all died within 20 months. Conversely, in the

TCGA + Mayo data, the TERTp-WT/EGFR-amp group had more
favorable but not significantly different survival than the
TERTp-MT group (HR¼ 0.52, P¼ .07). In addition, in the pub-
lished manuscript, the all-WT group experienced intermediate
survival, but in the TCGA + Mayo data these patients began

Fig. 3. Continued.
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with a much worse survival, with 6 of the 14 patients dying by
5.2 months. In summary, the all-WT group and TERTp-WT/
EGFR-amp groups differed between what was reported by Lab-
ussière et al2 and what was observed in the TCGA + Mayo data
for the median OS estimates. Additionally, the survival curves

(Fig. 3B) demonstrate a similar trend for 2 of the groups:
EGFR-WT/TERTp-WT/IDH-MT and TERTp-MT. The observed dif-
ferences may be due to not excluding patient history of seizures
in the TCGA + Mayo data and/or there were not enough events
in the subgroups.

Fig. 3. Continued.
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The advantage of this prognostic model was the large data-
set. The disadvantages were (i) internal and external validation
were lacking; (ii) there was no adjustment for known prognostic
clinical variables; and (iii) no group sample sizes, HRs and cor-
responding CIs, or significance levels were provided. Interest-
ingly, the noted interaction between TERTp and EGFR was not
incorporated into the final 4 groups defined by Labussière et al.2

Labussière et al, 2014, British Journal of Cancer

Labussière et al3 studied 807 primary grades II– IV glioma
tumor patients. The authors did not state whether the GBM pa-
tients in this cohort overlapped with those in the Neurology
manuscript.2 Here, their goal was to assess the prognostic
value of TERTp mutations and to determine whether TERTp mu-
tation status provides additional prognostic value beyond IDH
mutation status.

Using the 2 markers, the authors made 4 combinations
(Table 1, Fig. 3C). The median OS ranged from 1.28 years
for the worst group (TERTp-MT/IDH-WT) to .17 years in the
best group (TERTp-MT/IDH-MT). Since external validation was
not performed, we performed external validation using the
TCGA + Mayo data, with all 734 gliomas (Table 1, Fig. 3C).
The groups had similar median OS between the published re-
sults and the TCGA + Mayo validation set. In the TCGA + Mayo
data, the TERTp-WT/IDH-WT (HR¼ 5.79, P , .001) and
TERTp-MT/IDH-WT (HR¼ 13.02, P , .001) groups had signifi-
cantly worse survival than the TERTp-MT/IDH-MT group, but
the TERTp-WT/IDH-MT group did not (HR¼ 1.4, P¼ .1). In sum-
mary, the median OS estimates were not substantially different
between the Labussière et al3 data and the TCGA + Mayo data.
Additionally, the survival curves (Fig. 3C) demonstrated very
similar relationships across the 4 groups. The ability to validate
the Labussière model is in part due to the fact that the TCGA +
Mayo data had numerous events both overall and within each
of the 4 subgroups.

The advantages of this prognostic model were the large
dataset and the simple classification into 4 groups using only
2 markers that were defined a priori. The disadvantages were
(i) the lack of internal and external validation; (ii) no confidence
intervals or significance provided among the 4 groups (via HRs
adjusted and unadjusted for known prognostic clinical charac-
teristics); and (iii) lack of consideration of known prognostic clin-
ical variables and other biomarkers.

Killela et al, 2014

Killela and colleagues4 studied 473 grades II–IV glioma pa-
tients from a repository at Duke University. Their goal was to as-
sess the prognostic value of IDH1/2 and TERTp mutations. The
outcome was OS defined as time from surgery (instead of diag-
nosis) to death or last follow-up; time from surgery was most
likely used, since secondary GBMs were included.

The authors formed 4 groups based on the presence or ab-
sence of the 2 markers and evaluated survival of each of the
groups separately by grade. They found that of the 112 grade
II patients, 103 (92%) could be identified by mutations in TERT
and IDH or IDH alone (forming 2 groups); whereas in the 121
grade III and 240 primary/secondary GBM patients, all possible
combinations of IDH and TERT were represented. The median
OS for grade II ranged from 10.9 years for the TERTp-WT/

IDH-MT group to 17.13 years for the TERTp-MT/IDH-MT group.
Since external validation was not performed, we used the
TCGA + Mayo data, with 199 grade II patients (Table 1,
Fig. 3D) for validation. The median OS values for the 2 groups
were similar between TCGA + Mayo and Killela et al.4

For the grades III–IV patients, the median OS ranged from
0.96 years for the TERTp-MT/IDH-WT group to 10.42 years for
the TERTp-MT/IDH-MT group. For external validation, we used
519 grades III–IV patients available in the TCGA + Mayo data
(Table 1, Fig. 3E). The median OS was similar among all groups.
The other 3 groups were all significantly different from the
TERTp-MT/IDH-WT group. However, it should be noted that
the TERTp-MT/IDH-MT group was not statistically different
from the TERTp-WT/IDH-MT group (HR¼ 1.1, P¼ .72). In sum-
mary, the median OS estimates were similar across the data-
sets, and the survival curves showed similar overall trends.

The advantage of the prognostic model was that it was
simple: 2 markers were defined a priori. The disadvantages
were (i) internal and external validation was not performed;
(ii) known prognostic clinical variables were not considered;
and (iii) HR for each risk group was not provided. It would be
important to verify that the patients who were included as sec-
ondary GBM cases were not also included as primary grade II or
grade III cases.

Brat et al, 2015

Brat et al5 studied 293 grades II–III gliomas from TCGA. Their
goal was to integrate multiple genomic data types (DNA copy
number, DNA methylation, and mRNA and microRNA expres-
sion) to discover molecular groups with distinct outcomes in
grades II–III. First, clustering was applied to each of the data
types separately. Subsequently, clustering of clustering was
performed, which yielded 3 molecular groups. Ultimately, the
authors decided that 2 known markers (IDH mutation and
1p/19q codeletion) could largely describe these 3 groups.

Using IDH mutation and 1p/19q codeletion, the authors
made 3 combinations (Table 1, Fig. 3F). The median OS ranged
from 1.7 years for the IDH-WT group to 8 years for the IDH-MT/
1p/19q codeleted group. We performed external validation
using only Mayo Clinic data, which included 200 grades II–III
gliomas (Table 1, Fig. 3F). If we had also used TCGA data we
would have performed resubstitution, which, as discussed
above, is not appropriate. In the validation Mayo Clinic data,
the median survival for the IDH-MT groups was much greater
than in the Brat et al5 training data. The IDH-WT group was sig-
nificantly different than the IDH-MT/1p/19q codeleted group,
while the IDH-MT and 1p/19q non-codeleted group was not
(HR¼ 1.58, P¼ .11). In summary, the median OS estimates
were greater in the Mayo Clinic data, and the survival curves
show similar overall trends.

The advantages of this prognostic model were the large
dataset and the final simple classification that utilized only
2 markers. The disadvantages were (i) internal and external
validation were lacking; (ii) the classifier was derived subjec-
tively after doing many genomic analyses, including cluster-
ing and then combining those results into 3 groups; (iii)
given the subjectivity, this approach would be difficult to
reproduce.
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Of interest, concurrently, Suzuki et al30 published the same 3
groups as Brat et al5 (Fig. 3I) using a combination of TCGA and
Japanese patient data.30 They did not include an external val-
idation or estimates of median OS. In Fig. 3I, we show the same
curves as in Fig. 3F using the Mayo Clinic data only for valida-
tion, as the Suzuki et al30 training set included TCGA data.
The median OS appears similar for the IDH-WT group but differ-
ent for the other 2 groups.

Eckel-Passow et al, 2015

Eckel-Passow et al6 used 317 glioma patients from a Mayo Clin-
ic case-control series as the discovery set and then validated
the results in 2 datasets: 351 glioma patients from the UCSF
Adult Glioma Study (AGS) and 419 gliomas from TCGA. Their
goal was to assess the value of 5 glioma molecular groups de-
fined by 3 markers: TERTp mutation, IDH mutation, and 1p/19q
codeletion. The authors were interested in assessing the value
of these groups in terms of similarity of clinical variables, ac-
quired somatic alterations, and germline variants. They also
showed the age-adjusted survival experience of the 5 groups
stratified by grade (II/III vs IV).

Using the 3 markers, the 5 combinations accounted for
.95% of the Mayo Clinic glioma cases. For grades II–III, the
median OS ranged from 2.2 years for the TERTp-MT only group
to 20.3 years for the triple-positive group. In the published man-
uscript, 2 external test sets were utilized: UCSF AGS and TCGA.
Here, we used only TCGA data, which included 265 grades II–
III glioma (Table 1, Fig. 3G). Note, due to the small number of
TCGA cases in the triple-positive group, the baseline for calculat-
ing HRs was the IDH-MT only group, as it was the largest. All
groups had substantially lower median OS in TCGA validation
versus the Mayo study, which is what we also observed when
validating the results of Brat et al5 with Mayo data. In the vali-
dation TCGA data, the triple-positive and TERTp-MT/IDH-MT
groups were not significantly different than the IDH-MT only
group, while the triple negative and TERTp-MT only groups
were (HR¼ 3.02, P¼ .02 and HR¼ 14.03, P , .001, respectively).

For validation in the GBM subset, we used TCGA data with all
152 GBM cases (Table 1, Fig. 3H). Note, due to the small number
of TCGA cases in the triple-positive group, the baseline for the HR
was the TERTp-MT only group, as it was the largest. In the valida-
tion TCGA data, the TERTp-MT/IDH-MT group had only one obser-
vation, thus the estimate for the HR was not reliable. The IDH-MT
only and triple-negative groups were significantly different than
the TERTp-MT only (HR¼ 0.26, P¼ .01 and HR¼ 0.55, P¼ .0583,
respectively). In summary, the validation set of TCGA did not
have enough events in some of the subtypes to adequately vali-
date the model. However, the survival curves show the same pat-
terns, and the median OS is close in the GBM data. The differences
in median OS are the same as those reflected in the validation
of the Brat et al5 model, indicating a difference in the 2 cohorts.

The advantages of this classification scheme were the use of
a discovery dataset (Mayo Clinic) and 2 independent validation
datasets (UCSF AGS and TCGA), and Cox models with adjust-
ment for known prognostic clinical covariates were provided.
The disadvantages were that the groups were derived based
on 3 markers adding subjectivity, while additional important
prognostic markers (molecular and clinical) may have been
overlooked.

Discussion
Given the dearth of beneficial treatments in glioma (except for
some oligodendrogliomas), there is a need for prognostic mod-
els to assist neuro-oncologists and their patients in therapeutic
decision making and life planning. These models could also ad-
vance research in future treatments by appropriately stratifying
patients in clinical trials.

The 3 statistical considerations to establishing clinically use-
ful prognostic models are: study design, model building, and
validation. The most preferable study design is a prospective
cohort; nonetheless, retrospective cohorts are frequently
more convenient and allow for longer follow-up times. During
model building, a discovery cohort of patients should be used
to choose variables, construct models, and estimate prediction
performance via internal validation. Subsequently, external val-
idation should be utilized to assess how well the model per-
forms on patients from another institution or study.

Several models have recently been published in the neuro-
oncology literature. Herein, we reviewed 7 models, and since
most did not perform external validation, we performed exter-
nal validation using glioma patients from TCGA and the Mayo
Clinic. In this issue of Neuro-Oncology, Aldape et al review the
results of 2 of the papers that defined molecular groups of glio-
ma based on a combination of 3 well-recognized glioma mark-
ers: TERTp mutation, IDH mutation, and 1p/19q codeletion.5,6,30

Eckel-Passow et al6 defined 5 molecular groups based on TERTp
mutation, IDH mutation, and 1p/19q codeletion, while Brat
et al5 (and Suzuki et al30) defined 3 molecular groups based
on IDH mutation and 1p/19q codeletion. Three others have sim-
ilarly defined molecular groups using IDH and TERTp mutation3,4

in addition to considering EGFR.2 In a different approach, Pana-
geas et al1 combined clinical measures (age and tumor location)
with 1p/19q codeletion to define prognostic groups specifically
in anaplastic oligodendrogliomas and oligoastrocytomas.

Table 2 summarizes the steps each study took for model
construction and assessment. It should be noted that
because this manuscript focuses on prognostic stratification
at the cohort level, our conclusions do not apply to prediction
at the individual level. Panageas et al1 correctly performed
model construction and prediction performance using internal
validation by applying 10-fold cross-validation for variable
selection within RP. In fact, the study by Panageas et al was
the only one that performed internal validation. However,
due to reasons they enumerate, they did not perform external
validation. Eckel-Passow et al6 were the only authors who
performed external validation; they tested their model in 2
independent datasets. While definitely preferred for the rea-
sons stated above, external validation may not always be fea-
sible. Thus, at a minimum, internal validation should be
applied in order to quantify overfitting and to get an unbiased
estimate of prediction performance. However, as we demon-
strated above, there are publicly available resources (eg, TCGA)
that allow external validation to be financially feasible. These
free resources should be taken advantage of when appropri-
ate. As previously noted, the proportional hazards assumption
should be verified for Cox models. However, most of these
studies did not specifically state that they verified this
assumption.
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Using the combined TCGA + Mayo data, we attempted to
validate all 7 models (Table 1, Fig. 3). While TCGA data were
specifically chosen because they are free and publicly available,
Mayo Clinic data were added in order to have an adequate val-
idation sample size. In doing so, we acknowledge that TCGA tu-
mors are typically large tumors and tend to have poorer
outcomes, as was observed herein. Another important limita-
tion of our validation is that some subgroups in the combined
TCGA + Mayo data had small sample sizes. As was seen in the
attempted validation of the Panageas et al1 and Labussière
et al2 models, the combined TCGA + Mayo validation set did
not have enough events. However, we included these valida-
tions to illustrate external validation and commented on the
limited sample sizes.

Overall agreements can be seen across the models. With re-
spect to predicting OS, based on studies published thus far, IDH
mutation and TERTp mutation are the most relevant markers,
as initially demonstrated by Labussière et al3 and Killela
et al.4 Examining the Labussière et al2 groupings defined
by IDH, TERT, and EGFR, it is apparent in the TCGA + Mayo val-
idation set that only the IDH-MT/TERTp-WT/EGFR-WT group had
a significantly different outcome than the TERTp-MT group
(HR¼ 0.42, P¼ .005). While Brat et al5 used IDH and 1p/19q
codeletion to define groups, there was no significant difference
in survival between the 1p/19q codeletion and non-codeleted
groups within the IDH-MT (HR¼ 1.58, P¼ .11). However, there
was a significant difference in survival between the IDH-MT/
1p/19q codeleletion group and the IDH-WT group (HR¼ 6.83,
P , .001). Similarly, while Eckel-Passow et al6 defined groups
based on TERTp, IDH, and 1p/19q codeletion, ultimately only
IDH and TERTp mutation defined groups that were significantly
associated with survival outcome. It is important to note that
since some of the molecularly defined groups have very few
subjects (eg, those with IDH-MT/TERTp-MT but lacking 1p/19q
codeletion), there is limited statistical power to determine
whether survival for these groups differs from that of other
groups.

While to date studies have reproducibly defined distinct OS
with tumor IDH and TERTp mutation status, there are likely ad-
ditional molecular markers as well as clinical variables that are
important in understanding the biology and development of
gliomas, as well as predicting response to treatment. For exam-
ple, Eckel-Passow et al6 demonstrated that 1p/19q codeletion
is important for defining groups that have distinct age at diag-
nosis and associations with germline risk variants. Additionally,
Cairncross et al31 demonstrated that 1p/19q codeletion and
IDH mutation significantly predicted better response to treat-
ment in grade III oligodendrogliomas and mixed oligoastrocy-
tomas than IDH alone. Future model building efforts should
include additional markers and seek to improve on the predic-
tive accuracy of models constructed using only commonly
available clinical variables, such as age, grade, performance
status (which is an intermediate endpoint), and extent of
resection.

In conclusion, as the neuro-oncology community moves to-
ward the goal of establishing prognostic models in glioma, it is
imperative that the published models properly detail methods
of both model building and validation. Guidelines for reporting
multivariate models for prognosis and diagnosis have recently
been enumerated.32 This will provide readers the information
necessary to assess bias in a study, compare other models in
the literature, and determine clinical usefulness. Without such
information, prognostic models should not be integrated into
clinical use. As editors, reviewers, and readers of the relevant
literature, we should be cognizant of the needed statistical con-
siderations and insist on their use.
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Table 2. A summary table illustrating which models were included, the applicable histological grades, discovery sample size, and number of risk
groups in model

Grades Discovery
Sample Size

Groupsa Model Building Model Validation

Model Variable
Selectionb

Internal
Validationc

Hazard Ratio for
Difference in Survival
across Groups

Performed
External Validationc

Panageas et al (Neuro Oncol 2014) III 587 5 Yes Yes No No
Labussière et al (Neurology 2014) IV 395 4 Yes No No No
Labussière et al (BJC 2014) II–IV 807 4 No No No No
Killela et al (Oncotarget 2014) II–IV 473 4 No No No No
Brat et al (NEJM 2015) II–III 293 3 Yes No Yes No
Suzuki et al (Nat Genet 2015) II–III 665 3 No No No No
Eckel-Passow et al (NEJM 2015) II–IV 317 5 No No Yes Yes

Additional information is included on whether a study used variable/model selection, internal and external validation, and reported HRs for the
difference between risk groups.
aExternal validation: assess the model via an independent dataset.
bVariable selection: from a large set of variables include only those that explain signal in the data.
cInternal validation: employ resampling methods to quantify overfitting and get an unbiased estimate of prediction performance.
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