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Abstract

Selective isolation and purification of circulating tumor cells (CTCs) from whole blood is an 

important capability for both clinical medicine and biological research. Current techniques to 

perform this task place the isolated cells under excessive stresses that reduce cell viability, and 

potentially induce phenotype change, therefore losing valuable information about the isolated 

cells. We present a biodegradable nano-film coating on the surface of a microfluidic chip, which 

can be used to effectively capture as well as non-invasively release cancer cell lines such as PC-3, 

LNCaP, DU 145, H1650 and H1975. We have applied layer-by-layer (LbL) assembly to create a 

library of ultrathin coatings using a broad range of materials through complementary interactions. 

By developing an LbL nano-film coating with an affinity-based cell-capture surface that is capable 

of selectively isolating cancer cells from whole blood, and that can be rapidly degraded on 

command, we are able to gently isolate cancer cells and recover them without compromising cell 

viability or proliferative potential. Our approach has the capability to overcome practical hurdles 
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and provide viable cancer cells for downstream analyses, such as live cell imaging, single cell 

genomics, and in vitro cell culture of recovered cells. Furthermore, CTCs from cancer patients 

were also captured, identified, and successfully released using the LbL-modified microchips.
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1. Introduction

Circulating tumor cells (CTCs) present in the bloodstream of patients with cancer, originate 

from primary or metastatic tumor sites, and are thought to mediate the hematogenous spread 

of cancer to distant sites [1–4]. Technological hurdles have limited their isolation and 

characterization because these cells are extremely rare (1 in 109 blood cells) and mixed with 

normal blood components [5]. Isolation of CTCs is of great interest in the scientific 

community due to their usefulness in analyzing the diagnosis and treatment of patients with 

epithelial cancers in lieu of invasive biopsies. In order to capture CTCs from the 

bloodstream, multiple isolation approaches have been discovered thus far, which in general, 

take advantage of differences in physical cell properties or known cell surface markers [4–

10].

Methods for CTC capture and release can be separated into macro- and micro-processes. 

The former group includes density gradient centrifugation [11], microfiltration [12–14], and 

use of antibody-modified magnetic beads [15–18]. Examples of the latter include use of 

lectin-modified microposts [19–21], DNA aptamers attached to silicon nanowires [22–24], 

antibody-modified photolabile linkers on glass substrates [25,26], APBA-functionalized 

multi-walled carbon nanotube films [27,28], interaction between calmodulin with a 

calmodulin-binding peptide in the presence of calcium, and cryogels [29]. Despite these 

many approaches, there remain several issues with the release processes that must be 

addressed to realize the full potential of CTCs as a diagnostic and research tool. First, the 

cells must be viable; unfortunately, many existing methods exhibit lower than acceptable 

yields in the release of unharmed living cells. Second, the phenotype of the cells must be 

preserved in order to accurately study the cells. Stresses from shear force, non-physiologic 

temperature variation, aggressive reagents such as trypsin and UV exposure are known to 

affect the phenotype of captured cells [6,30,31]. In addition, the method must achieve both 

high cell recovery as well as high cell purity. Finally, the method must be feasible for 

disposable point-of-care use even in remote areas; it must not require excessive lab 

equipment, or be limited to electrical and optical means of cell detachment.

We present a new method of capture and release of CTCs using a microfluidic device, 

the HBCTC-chip [1,3], modified with enzymatically degradable nano-films that are 

conjugated with antibodies to a variety of specific cell surface markers. We show that layer-

by-layer (LbL) [32–35] assembly as an effective method to coat nanometer scale film inside 

microfluidic devices with complex microstructures. We achieved 80% capture efficiency and 

95% release efficiency for spiked prostate cancer cells with heterogeneous levels of 
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expression of the surface antigen EpCAM, as well as CTCs in the blood samples of patients 

with metastatic lung cancer. The viability of released cells was demonstrated to be ~90%. 

For the patient samples tested, CTCs were detected, captured and successfully released using 

the biomaterial coated-microchip we developed. The CTCs in the patient blood samples 

were found to range from 3.4 to 4.9 CTCs/mL, while less than 0.5 CTCs/mL was found in 

control samples.

2. Materials and methods

2.1. Materials

Alginate (ALG) (Pronova UPMVG, 60% guluronate, 40% mannuronate, Mw = 120 k and 

280 k) was purchased from Novamatrix, Norway. Hyaluronic acid (HA, Mw = 200 k), 

poly(allylamine hydrochloride) (PAH, Mw = 60 k), poly-L-lysine (PLL, Mw = 50 k to 70 k), 

low molecular weight chitosan (LMWC, Mw = 15 k), diethylaminoethyl dextran (DEAED, 

Mw = 500 k) and all other reagents were purchased from Sigma Aldrich, USA.

2.2. Fabrication of herringbone CTC chip (HBCTC-chip)

Negative photoresist (SU-8, MicroChem) was photolithographically patterned on silicon 

wafers to create masters with two-layer features [3]. The first layer is the main microfluidic 

channel and the second layer forms the herringbone structures. The heights of SU-8 features 

are ranging from 25 to 75 μm on the masters. Polydimethylsiloxane (PDMS, SYLGARD 

184, Dow Corning) was poured, degassed, and cured in a conventional oven at 75 °C for 24 

h. The cured PDMS replicas were removed from the molds, oxygen plasma treated, and 

bonded to glass substrates to form the final devices.

2.3. Biotin modification of ALG and HA

Alginate and hyaluronic acid were modified with biotin hydrazide (Sigma B7639) using 

standard carbodiimide reaction [36]. Briefly, 1.0 wt% of ALG or HA solution was prepared 

in MES buffer, pH = 6.0. Per 50 mL of ALG or HA solution, 80 mg of biotin hydrazide, 360 

mg of 1-ethyl-3-[3- dimethylaminopropyl] carbodiimide hydrochloride (EDC, Pierce 

22980), and 204 mg of hydroxysulfosuccinimide (Sulfo-NHS, Pierce 24510) were added 

and reacted for 3 h, after which time the solution was dialyzed against deionized H2O for 48 

h and lyophilized. Alginate or hyaluronic acid was reconstituted at 2 mg/mL in deionized 

H2O prior to use.

2.4. Preparation of nano-films

Lay-by-Layer (LbL) assembly of charged polymers were applied to build nanofilms inside 

microfluidic devices [37]. Biotin modified ALG and HA were used to prepare anionic 

polymer solution, while PAH, PLL, LWMC and DEAED were used to prepare cationic 

polymer solutions. The initial experiments were performed using a simplified microfluidic 

device comprising a straight PDMS microchannel with the dimension of 400 μm (width) × 

100 μm (height) × 10 mm (length) sealed on a glass substrate. Briefly, glass substrate was 

treated with oxygen plasma for 5 min and immediately bonded to oxygen plasma treated 

PDMS replicas to form final devices. For LbL assembly of nano-films, a cationic polymer 

solution (2 mg/mL) was first injected into the inlet of the device to occupy all the inside 
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area, sit for 5 min for the absorption of polymers, then the solution was removed by air flow 

and the device was washed with 1 mL DI water for two times, then subsequent anionic 

polymer solution (2 mg/mL) was injected into the device and allowed a 5 min absorption 

time, after which the device was washed with DI water. This process was repeated 5 times at 

room temperature under sterile conditions.

2.5. Degradation of nano-films

To visualize the degradation of nano-films, a solution of 0.05 mg/mL Streptavidin Dylight 

650 fluorescent conjugates (Thermo Scientific) in PBS was introduced into the modified 

microchannels and stored at 4 °C for 4 h. Then the avidin solutions were removed and the 

devices were washed thoroughly with DI water. The fluorescent intensity of each film was 

recorded using a fluorescent-optical microscope (BX53, Olympus) at the same exposure 

time of 2 s. A 2 mg/mL enzyme solution (alginate layse or hyaluronate lyase in PBS 

containing 1 wt% bovine serum albumin, BSA) was introduced into the microchannel and 

kept flowing for 30 min at 2.5 mL/h. After thoroughly washing the microchannel with DI 

water, the fluorescent intensity of the film was recoded using the same exposure time of 2 s. 

All the images were analyzed using ImageJ (NIH), and the fluorescent intensities of 

different types of films were normalized to the maximum intensity, which was obtained from 

ALG/LMWC film before degradation. The change (%) of FI before and after degradation 

was calculated by comparing the change of normalized value of FI over the initial FI for all 

the film compositions.

2.6. Optimization of the degradation of ALG/PAH nano-film

A series of ALG/PAH nano-films were made using the method described above. Four types 

of 2 mg/mL ALG solutions were prepared as following: ALG with molecular weight of 132 

k at pH 4.5 and pH 7.2, as well as ALG with molecular weight of 280 k at pH 4.5 and 7.2. 

PAH used in this experiment was labeled with fluorescein. Film thickness was measured 

using an optical surface profilometer (Dektak 150, Veeco). Fluorescent intensities of four 

types of films were recorded at t = 0, 10 min, 20 min, and 30 min. The degradation 

efficiency (%) was calculated by comparing the change of FI over the initial FI. The 

morphology of films before and after degradation was determined using Atomic Force 

Microscopy (Dimension 3100, Bruker).

2.7. Surface modification ofHBCTC-chips with ALG/PAH nano-film

The surface of the inside wall of HBCTC-chips was modified with ALG/PAH nano-films 

through Lay-by-Layer (LbL) assembly as described above. Glass substrate was treated with 

oxygen plasma for 5 min and immediately bonded to oxygen plasma treated PDMS replicas 

to form final devices. Briefly, PAH solution (2 mg/mL, pH 4.5) was first injected into the 

inlet of the device to occupy all the inside area, sit for 5 min for the absorption, then the 

solution was removed by air flow and the device was washed with 1 mL DI water for two 

times, then biotin modified ALG solution (2 mg/mL, pH 4.5) was injected into the device 

and allowed a 5 min absorption time, after which the device was washed with DI water. This 

process was repeated 5 times at room temperature under sterile conditions. A solution of 

0.05 mg/mL Streptavidin in PBS was introduced into the device and stored in at 4 °C until 

use. Within 24 h of the experiment, 20 μg/mL biotinylated goat antihuman EpCAM (R&D 
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Systems) solution in PBS containing 1% BSA and 0.09% sodium azide were added to the 

devices. For coating IgG antibody, biotinylated normal goat IgG (R&D Systems) was in 

place of the biotinylated EpCAM. One hour prior to running the HBCTC-chip, devices were 

purged with 3% BSA with 0.05% Tween20 (Fisher Scientific) solution.

2.8. Cell line preparation

A human prostate cancer cell line, PC-3 (ATCC, VA), were cultured at 37 °C in F-12K 

growth medium containing 1.5 mM L-glutamine supplemented with 10% FBS and 1% 

Penicillin/Streptomycin with media changes every two days. Human prostate cancer DU 145 

and LNCaP (ATCC, VA), were cultured according to the protocols from ATCC. Cells were 

released from culture flasks through incubation in 0.05% Trysin- EDTA (Invitrogen, CA) at 

37 °C for 5 min. Prior to spiking into whole blood, all cells were labeled with a fluorescent 

cellular dye (CellTracker™ Orange, Invitrogen, CA) following the manufacturers’ protocol. 

The cell suspension was subsequently diluted to the desired concentration. Experiments 

were performed using PC-3 cells suspended in serum-free medium or spiked into healthy 

donor whole blood. For the mixed cancer cell population capture and release experiment, 

prior to spiking into whole blood, each cell line was labeled with a different fluorescent 

cellular dye (CellTracker™ Blue, Red or Green, Invitrogen, CA). A mixture of cells was 

spiked into whole blood with the concentration of each cell line of 5000/mL. Experiments 

were performed similarly to the method described above. Lung cancer cell lines H1975 and 

H1650 were cultured with RPMI Medium 1640 and supplemented with 10% FBS under 

similar conditions described above.

2.9. Cell capture and release

Spiked cell experiments in whole blood were performed with either the single channel 

devices or HBCTC-chips. Experiments with the HBCTC-chips were processed with the 

standard CTC processing machine [1]. Large HBCTC-chips were subsequently imaged and 

enumerated using automated image-processing system ((Eclipse 90i, Nikon, Melville, NY) 

under 10× magnification). All device preparations and processing conditions for the HBCTC-

chips were run as previously described. Capture efficiency was calculated as the number of 

spiked cells captured in the HBCTC-chip divided by the total number of cells flowed through 

the device. For the releasing experiment, the device was first washed with PBS, then the 

alginate lyase (2 mg/mL) in PBS containing 1% BSA was flowed through the device using a 

syringe pump (PHD 2200, Harvard Apparatus). The cell collection vial containing cell 

media was connected at the outlet of the device. Both cells remaining on the microfluidic 

device and in the collection vials were imaged and counted manually on a fluorescence 

microscope. Recovered cell viability was measured using a standard Live/Dead fluorescent 

assay (Life Technologies L3224) and compared to control cells that were never introduced 

into the microfluidic devices.

2.10. Immunostaining

Captured cells on were fixed with 4% paraformaldehyde and washed with PBS immediately 

following blood processing. The fixed cells were permeabilized with 1% NP40 and blocked 

with 2% normal goat serum/3% BSA before the addition of primary antibodies for 

immunostaining. The primary antibodies used for CTC targeting were rabbit wide spectrum 
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anti-cytokeratin (1:100, abcam), rabbit anti-MET (1:1000, BD Biosciences), anti-SOX2 

(1:50, BD Biosciences) and anti-EGFR (1:200, BD Biosciences). Anti-CD45 mIgG1 (1:100, 

BD Biosciences) was added to target white blood cells. Next, secondary immunofluorescent 

labeled antibodies were added to amplify the signal along with DAPI to label the nuclei. The 

secondary antibodies used were goat anti-rabbit Alexa Flour 488 (1:200, Jackson) and goat 

anti-mouse IgG1 Alexa Flour 594 (1:200, Jackson). Following staining, the devices were 

washed with PBS and stored at 4 °C until microscopy imaging. Released CTCs were 

immobilized on poly-L-lysine coated glass slides for 15 min prior to the staining protocol.

2.11. Study subjects and blood processing

Patients with advanced lung cancer were recruited according to a protocol approved by the 

institutional review board (IRB) at Massachusetts General Hospital. Blood specimens from 

healthy volunteers were collected under a separate IRB-approved protocol. Metastatic lung 

cancer patients treated at the Massachusetts General Hospital Cancer Center donated 10–20 

mL of blood on one or more occasions for analysis on the HBCTC-chip per our IRB 

protocol. All specimens were collected into Vacutainer (Becton–Dickinson) tubes containing 

the anticoagulant EDTA and were processed through the HBCTC-chip within 6 h of blood 

draw. Samples were run on the previously described microfluidic processing machine [3]. 

Briefly, a 5 mL aliquot of blood was placed in an air-tight conical tube on a rocker assembly, 

and blood was pneumatically driven through the chip at a flow rate of 1.5 mL/h. Then, 

the HBCTC-chips were flushed with 2.5 mL of PBS at 2.5 mL/h to remove any 

nonspecifically bound cells.

3. Results

3.1. Design of LbL nano-films for capture and release of CTCs

The Herringbone (HB) CTC-chip design [3] consists of a glass slide (25 mm × 75 mm) 

bonded to a polydimethylsiloxane (PDMS) substrate, containing eight microchannels with 

patterned herringbone structures on their upper surface [3]. The internal walls of the device 

are coated with nano-films that can be further functionalized with antibodies against 

EpCAM or other protein molecules. The overall height of the channel is 50 μm and the 

height of the HB grooves is 40 μm. As shown in Fig. 1a, cancer cells from whole blood were 

captured due to the interactions of EpCAM on the cell membrane surface with the antibodies 

that were conjugated on the wall of the devices. After capture of the CTCs, an enzyme 

solution was introduced into the device that rapidly degrades the nano-film, causing the 

CTCs to detach from the surface of the internal walls. The nano-film coated surface on the 

wall of the HBCTC-chip was formed through layer-by-layer (LbL) assembly of oppositely 

charged polyelectrolytes. The anionic polymers, alginate (ALG) or hyaluronic acid (HA), 

were modified with biotin groups through the conjugation of the free acids on the 

polyelectrolyte backbone with N-(3- aminopropyl) methacrylamide hydrochloride using 

standard carbodiimide coupling chemistry, in the presence of biotin hydrazide (Supporting 

Information Fig. S1). The biotin group can be used to conjugate EpCAM antibodies or other 

relevant antibodies against relevant tumor cell markers to the LbL film surface via biotin-

avidin linkers after the formation of the LbL films. Various cationic polymers 

(polyallylamine hydrochloride (PAH), poly-L-lysine (PLL), low molecular weight chitosan 
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(LWMC), and diethylaminoethyl dextran (DEAED)) were used to prepare LbL films with 

ALG or HA. The degradation of LbL films was achieved by exposure to bacterial enzymes 

(alginate lyase for ALG-based films and hyaluronidase for HA-based films, respectively), 

which cleave the backbone of the biopolymers [36]. Subsequently, captured cells detach 

from the surface upon the degradation and dissolution of the LbL films (Fig. 1a). Fig. 1b 

shows the interface between the captured cell and the LbL film. To visualize the formation 

of LbL films and the conjugation of streptavidin on the surface of HBCTC-chips, we used 

fluorescent-labeled polymer (FITC-PAH, in green color) and Avidin-DyLight 650 (in red 

color) for the initial testing. As shown in Fig. 1c, fluorescent microscope images in the green 

channel confirm that a smooth thin film was coated onto the surface inside the HBCTC-chip, 

and the colocalization of green and red signal indicate that the avidin linkages were 

successfully conjugated onto the LbL film.

3.2. Formation and degradation of LbL nano-films

As shown in Fig. 2a, each of the two anionic polymers ALG and HA was paired with one 

each of the following group of cationic polymers (PAH, PLL, LWMC, and DEAED) to form 

LbL nano-films on the inner walls of the HBCTC-chip. A preliminary test was performed in 

a simplified chip with one straight microfluidic channel sealed onto glass slide; the purpose 

of this study was to determine film compositions that would form uniform films and undergo 

significant degradation over a pre-determined timeframe. All films were made by repeating 

the deposition process five times during film preparation to generate five bilayers, followed 

by the adsorption of fluorescently labeled streptavidin, which binds to the biotin linker.

Fluorescent microscope images of eight different LbL film formulations are shown in Fig. 

2b, and the fluorescent intensity (FI) of each film before and after degradation was recorded 

and analyzed by ImageJ. Among these eight types of films, the ALG/LMWC film has the 

strongest FI, which was set as the maximum value of 100 and used to normalize the 

fluorescent intensity of other films. The images of the films made by ALG/PAH, ALG/PLL, 

ALG/LMWC, HA/PAH and HA/PLL indicate uniform fluorescence across the surface, 

suggesting that the films are smoothly and conformally coated onto the surface. The images 

of the films made by ALG/DEAED, HA/LWMC and HA/DEAED yielded noticeably large 

variations in fluorescent intensity in different areas on the surface, which indicates that the 

LbL films are not uniform for those three conditions. It is anticipated that the film 

breakdown would be dependent on the relative composition of the polyelectrolytes used and 

the assembly conditions. As shown in Fig. 2c, among those eight types of films, ALG/PAH 

film was found to have the largest change (67.7%) in the fluorescent intensity before and 

after degradation; for the purpose of fast release of cells from the film-coated surface, we 

chose ALG/PAH film for further optimization.

3.3. Biodegradation of ALG/PAH LbL nano-films

Four types of ALG/PAH nano-films were further investigated to optimize the degradation of 

those films. Specifically, the films were prepared by varying the molecular weight (Mw = 

132 k or 280 k) of alginate polymer and the pH of alginate solutions (pH = 4.5 or 7.2) used 

for LbL assembly, with consistent molecular weight of FITC labeled PAH at 60 k; the pH of 

PAH solutions were kept at 4.5. As shown in Fig. 3a, the fluorescent intensity of all four 
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types of films decreased gradually as increasing the exposure time to enzyme solution from 

10 to 30 min, indicating those films underwent progressive degradation. The thicknesses of 

the films before degradation were determined by optical surface profilometer, and ranged 

from 25 nm to 40 nm (Fig. 3b). The fluorescence intensity changes of those films were 

recorded and the degradation efficiency was plotted at various time points. As shown in Fig. 

3c, over 50% of the ALG(280 k)/pH4.5 film was degraded in the first 10 min, and the film 

continually degraded over 70% after 20 min and then slowly degraded to up to 75% in 30 

min. From the Atomic Force Microscopy images shown in Fig. 3d and e, the ALG (280 k)/

pH4.5 film has a smooth surface with a surface roughness of 3.1 nm before degradation, 

while the surface roughness (RMS) increased to 5.5 nm and the film displayed a porous 

surface morphology after degradation.

3.4. Capture and release of spiked prostate and lung cancer cell lines

The capture and release of spiked prostate (PC-3, n = 3) and lung (H1650 and H1975, n = 3) 

cancer cells in whole blood was carried out on PAH/ALG modified HBCTC-chips. As shown 

in Fig. 4a, the image illustrates uniform blood flow in the device. The HBCTC-chip was 

scanned using an automated fluorescent microscopy system after washing out the non-

bonded cells, and the captured cells were recorded (shown in Fig. 4a) and counted. The 

capture efficiency was calculated to be 79.2% (prostate) and 78.9% (lung), which is similar 

to the capture efficiency that was achieved using non-degradable GMBS modified HBCTC-

chips [3]. The total number of non-specifically captured cells platform (i.e. CD45+ cells and 

DAPI only cells) was also determined using our microscopy platform, allowing us to 

calculate an average on-chip purity of 53% for our spiked cell experiments. More 

importantly, over 95% of captured cells were successfully released from the HBCTC-chip in 

30 min after flushing with an enzyme solution at the flow rate of 2.5 mL/h (Fig. 4c). Lower 

release efficiency was observed when decreasing flushing time or reducing the flow rate of 

enzyme solution to 1.0 mL/h. EpCAM (green) expression on the surface of PC-3 cells was 

confirmed by immunofluorescent staining, as shown in Fig. 4d for captured PC-3 cells and 

released PC-3 cells in Fig. 4e. Released cells also contained leukocytes and other types of 

blood cells, which were positive for CD45 (red) staining (Fig. 4f).

3.5. Cell viability of the released PC-3 cells

The viability of released cells was measured by a Live/Dead assay (Fig. 5a). The number of 

viable PC-3 cells in the mixture of blood cells was counted and compared to the total 

numbers of PC-3 cells that were captured on the HBCTC-chip. Cell viability (%) was close 

to 90% after cells were released and cultured in a petri dish for 30 min and decreased 

slightly to 88% after 2 h in culture at room temperature, which is similar to the cell viability 

of the control cells that did not go through the capture-release cycle (Fig. 5b). More 

importantly, released cells were cultured at 37 °C with 5% CO2 for 5 days; following this 

period, they readily adhere to the surfaces of the culture plate and proliferate, suggesting that 

the cells were not damaged after being captured and released. A hint of orange fluorescent 

signal on the cell surface (Fig. 5c) also suggests that those cells were originally stained and 

spiked into whole blood, as the fluorescent signal can retain in cells for three to six 

generations.
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3.6. Capture and release of mixed cancer cell populations spiked into blood

Three types of human prostate cancer cell lines LNCaP, DU 145 and PC-3 were stained with 

three different cell tracker fluorescent dyes, and spiked into blood samples. Using flow 

cytometry, the number of each type of cell in blood can be easily quantified (Fig. 6a). As 

shown in Fig. 6b, three types of prostate cancer cells were captured using the ALG/PAH 

modified HBCTC-chip. The relative intensity of the fluorescent signal in each channel is 

approximately 1:1:1, which is similar to the ratio used for spiking the blood. Fig. 6c is a 

representative heat map showing the distribution of captures of these three types of cells 

across an entire HBCTC-chip. Captured cells are observed throughout the entire chip, 

regardless of cell type. The density of captured cells is slightly higher at the top and bottom 

side of the chip than that in the center area of the chips. More quantitative data from the flow 

cytometer shows that the ratio of the three types of cells was maintained at approximately 

1:1:1 (the same as the initial spike ratio), which confirms that the capture and release process 

did not change the relative population of cell types in the blood.

3.7. Capture and release of CTCs from patient samples

The ALG/PAH modified HBCTC-chips were also used to isolate CTCs in blood samples of 

patients with metastatic lung cancer. To account for the heterogeneity that may exist within 

patient derived CTCs, the HBCTC-chips were conjugated with antibodies against EpCAM, 

as well as EGFR, and HER2, which are commonly expressed in lung and other epithelial 

cancers [38]. As shown in Fig. 7a, the identity of CTCs was confirmed by their positive 

expression of EpCAM, HER2 and MET as shown with a green fluorescent signal, in 

combination with the lack of expression of any red fluorescent signal for the blood cell 

leukocyte marker CD45. Fig. 7b is the micrograph of the same cell as shown in Fig. 7a, after 

release from the HBCTC-chip, indicating little or no change in cell shape or morphology. 

Fig. 7c shows the capture and release of cells from blood samples of lung cancer patients 

and healthy donors as controls. For four patient samples tested, the ALG/PAH HBCTC-chip 

isolated from 2.4 to 5.9 CTCs/ml, while less than 0.5 similarly stained cells/ml were found 

in control blood samples drawn from healthy individuals. This result is in agreement with 

previous studies [1–3].

4. Discussion

We previously demonstrated the effectiveness of microfluidic chips in capturing EpCAM-

expressing cells using antibody-coated microstructures [1,3]. Efficient cell capture was 

validated using cancer cells spiked into control blood and clinical blood samples from 

patients with prostate cancer [39]. However, for those previous studies, the captured CTCs 

could not be noninvasively released from the surface of the device, limiting the use of CTCs 

in functional assays and single cell sequencing. In the present work, we present a 

biodegradable nano-film that conformally coats the interior surfaces of the 

microfluidic HBCTC-chip, and can achieve high capture efficiency but also release of the 

captured cells without sacrificing the viability of the cells. The nano-film was constructed 

from the layer-by-layer (LbL) assembly of weakly charged polyelectrolytes with opposite 

charges [32,33]. In particular, at least one of the film components was a native biological 

charged polysaccharide by design. This component of the film was readily functionalized 
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with biotin linkers via free acid side groups, enabling simple conjugation with antibodies 

against a variety of cancer cell surface markers.

Specific antigen–antibody interactions between the cancer cells and the inner surface of 

the HBCTC-chip ensure high capture efficiencies, which is in good agreement with our 

previous studies [2,3]. More importantly, the nano-film coating on the inner wall of HBCTC-

chip can undergo degradation over short time periods through exposure of the surface to 

mild natural enzyme solutions that breakdown the polysaccharide film component within 30 

min [36]. The degradation of the nano-film led to the near-quantitative release of the 

captured cancer cells from the HBCTC-chip. As illustrated schematically in Fig. 1a, small 

fragments of the nano-film may remain attached to the surface of the released cell, which 

was observed in fluorescence microscopy images (Fig. S2); the presence of small patches of 

film do not appear to prevent the adhesion, expansion and colonization of these cells, or to 

change any of the cell markers or characteristics, and in separate studies, similar kinds of 

LbL “backpacks” have been found to have no effect on final cell function [40]. LbL 

assembly is a unique and highly efficient means of constructing thin conformal nanoscale 

thin films on the inner wall of the HBCTC-chips; it enables the tuning of key functionalities 

such as degradation rate and antibody presentation while enabling the coating of complex 

microstructures within microfluidic devices (Fig. 1c) [37].

To ensure prompt degradation of the nano-film upon exposure to the enzyme solution, the 

sacrificial layers created inside the HBCTC-chip must be uniformly coated throughout the 

entire inner surface of the device. For this purpose, we studied the film formation and 

degradation of a library of film compositions, and the film composition with the best 

performance (smooth conformal coating and maximum degradation ratio) was chosen for 

further optimization (Fig. 2). The degradation kinetics of the polymer nano-film depends on 

the film thickness, charge density of the polyelectrolytes, effective mesh size of the polymer 

network, etc. For the ALG/PAH film, the higher molecular weight of ALG in the film and 

lower charge density of ALG (as alginate has a pka close to 3.5, ALG polymer in a pH 4.5 

solution is less charged than that in a pH 7.2 solution) resulted a slightly thicker film with a 

looser ionically crosslinked polymer network [41,42]. As a result, faster degradation and 

better degradation efficiency were achieved for coatings prepared under the above conditions 

(shown in Fig. 3b and c). On the other hand, the degradation of LbL coatings was also 

affected by the flow rate and the exposure time of enzyme solutions applied on the film 

surface. Since the release efficiency is directly correlated to the film degradation, we 

achieved over 95% cell release efficiency at 2.5 mL flushing rate in 30 min (Fig. 4c). To 

prevent damage to the CTCs due to high shear forces, flushing flow rates greater than 2.5 

mL/h were avoided. As for capturing CTCs, previous studies set a benchmark for optimal 

capture efficiencies using both spiked CTCs samples and patient blood samples [1–3]. When 

compared to our previously published performance data for the HBCTC-chip with the 

original non-degradable GMBS linkers, the LbL-nano coating modified HBCTC-chip 

maintained similar capture efficiencies (Fig. 4b), which suggests that a thin sacrificial nano-

coating did not affect the interactions between antigen molecules on the cell surface and 

enabled sufficient presentation of anti-EpCAM antibodies on the surface of HBCTC-chip.
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Affinity based capture of CTCs in microfluidic devices has been shown to provide valuable 

clinical information for cancer diagnosis, protein expression of cells, and cancer cell 

genomics [2,3,10,43–45]. However, these approaches for rare-cell isolation use irreversible 

attachment for the capture antibodies, introducing practical hurdles for downstream analysis 

where viable CTCs are required (such as live cell imaging, single cell genomics, and in vitro 
cell culture of recovered cells). Our LbL nano-coating modified HBCTC-chips can capture 

cancer cells with the same efficiency, but release live cells under very mild conditions and 

preserve high cell viability while maintaining cellular characteristics of the captured CTCs. 

As shown in Fig. 5b, the cancer cells that went through capture-release cycles have the same 

viability as the cancer cells that were stored in tissue culture microplates. Furthermore, the 

released cells can grow and proliferate under normal in vitro cell culture conditions for 

weeks (Fig. 5c). Previous studies have shown heterogeneity of CTCs in terms of their size, 

shape, and the density of EpCAM molecules on their surface [1,46,47]. For this study, we 

investigated the versatility of our HBCTC-chips for the capture and release of a mixed 

population of spiked prostate cancer cell lines (LNCaP, PC-3, and DU 145). To match the 

phenotype of our patient sample co-hort, spiked lung cancer cell lines (H1650 and H1975) 

were also tested using our methods. Our device showed efficient, simultaneous capture of all 

five cell lines regardless of size (shown in Fig. 6b and c, Fig. S5) and EpCAM expression 

[46]. Spiking 5000 cancer cells into 1 mL of whole blood, we were able to achieve an 

average of 80% capture efficiency while maintaining an on-chip purity of 53%. Although 

this purity value is more than sufficient for downstream molecular analysis of cancer cell 

lines [3], it may not be readily translatable to clinical samples since the exact number of 

CTCs present in a patient sample is unknown. Therefore, approaches that allow for the 

release and recovery of CTCs in solution are of extreme value since additional isolation 

strategies (e.g. single cell micromanipulation) can be used to investigate CTCs at the single 

cell level [48]. As such, we have achieved uniform, viable release of these five cancer cell 

lines (Fig. 6d, Fig. S6), demonstrating the that our release approach is independent of the 

number of bound surface antigens and should be amenable to several different tumor cell 

types.

To test the true clinical utility of our system, blood samples from metastatic non-small cell 

lung cancer patients were used to test our LbL-modified HBCTC-chips. Due to the unknown 

level of heterogeneity of surface antigens for lung patient CTCs, the HBCTC-chips were 

conjugated with a cocktail of capture antibodies (i.e. EpCAM, HER2, EGFR). This 

antibody-cocktail method has shown great success for capturing patient CTCs from our 

previous studies [38]. We were able to identify lung CTCs captured on the chip, as well as 

trace the same cell after it is released (Fig. 6a and b). CTCs were detected and identified for 

all the patient samples we investigated (Fig. 6c, n = 4). Although the number of clinical 

samples was limited, the number of CTCs released was comparable to the number captured 

on the device, suggesting minimal cell loss during the process. The CTCs are directly 

available following release without any additional steps for further downstream analyses.

5. Conclusions

In summary, we reported a novel approach for capturing and noninvasively releasing CTCs 

using microfluidic HBCTC-chips modified with biodegradable nano-films that conjugated 
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with antibodies to a variety of specific cell surface markers. Nanometer-scale films inside 

microfluidic devices with complex microstructures were created by layer-by-layer (LbL) 

assembly. Our HBCTC-chips show 80% of capture efficiency and 95% of release efficiency 

for both single spiked prostate cancer cells and a mixture of cancer cell lines with variable 

EpCAM expression of surface markers. Our noninvasive release strategy can preserve cell 

viability to close to 90%. Using LbL-modified HBCTC-chips, CTCs from metastatic lung 

cancer patients were captured, identified and released. Our approach is ready amenable to 

translation on HBCTC-chips that are currently used for clinical applications, and can also be 

translated to a range of different device surfaces, from silicon and glass to plastic or paper, to 

generate low-cost detection devices.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Design of the nano-film for the capture and release of CTCs. (a) Schematics of capturing 

and releasing of CTCs using microfluidic HBCTC-chips modified with enzymatically 

degradable LbL nano-film coating. (b) Schematics of the interface between the 

functionalized surface of HBCTC-chip and surface of CTCs. (c) The structure of HBCTC-

chip and fluorescent microscope images showing the surface of HBCTC-chip modified with 

the LbL film and the avidin binding linkages, in green and red color, respectively. The black 

area at the bottom of the image is where the PDMS substrate sealed to glass slide. The scale 

bar is 100 μm.
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Fig. 2. 
Formation and degradation of LbL nano-films. (a) The molecular structures of anionic 

polymers and cationic polymers used. (b) Representative fluorescent images of LbL nano-

films before and after degradation. The scale bar is 200ìm. The degradation of the films was 

conducted by flowing an enzyme solution in the film-coated microchannel for 30 min at a 

flow rate of 2.5 mL/h. The scale bar is 200 μm. (c) The change of FI of the films before and 

after degradation. FI of all films was normalized by the FI of ALG/LMWC film before 

degradation, which was used as the maximum value of 100. Bars with a black box and a red 

box represent FI of films before and after degradation, respectively. Bars filled with white 

and gray color represent FI of films made by ALG and HA, respectively. The values of the 

change (%) of FI after the degradation of films are listed beside the bars.
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Fig. 3. 
Enzymatic degradation of ALG/PAH LbL films. (a) Optical fluorescent images of 

ALG/PAH LbL films at various time of degradation. The white dash lines were added at the 

edge of the film for eye guidance. The scale bar is 200 μm. (b) and (c) Film thickness and 

degradation of ALG/PAH LbL films made by various experimental conditions, respectively. 

2D (d) and 3D (e) Atomic Force Microscopy images of ALG/PAH LbL films before and 

after degradation, respectively. The film was made using ALG (280 k)/PAH at pH 4.5 for 

ALG solution. RMS roughness of the film was 3.1 nm before degradation and 5.5 nm after 

degradation.
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Fig. 4. 
Capture and release of spiked PC-3 cells. (a) Left: optical image of whole blood flowing 

through an HBCTC-chip. The concentration of spiked PC-3 cells in whole blood was 

5000/mL. Right: image shows a representative distribution of captured cells (shown as black 

dots) in the HBCTC-chip. The scale bar is 10 mm. (b) Capture efficiency of ALG/PAH 

modified HBCTC-chip in comparison with conventional HBCTC-chip. (c) Release efficiency 

at various degradation times and flow rates of enzyme solution. (d)–(f) Immunofluorescent 

staining of cell surface receptors for captured PC-3 cells in the HBCTC-chip (d), released 

PC-3 cells (e), and white blood cells (f), shown here is EpCAM expression in green, DAPI 

nuclear staining in blue, and CD45 expression in red. The scale bars are 20μm.
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Fig. 5. 
Cell viability of released PC-3 cells. (a) The viability of released cells were evaluated using 

a fluorescent LIVE (green)/DEAD (red) assay. PC-3 cells were pre-stained with cell tracker 

orange before spiking into blood. Live PC-3 cells show co-localization of orange and green 

colors. The scale bars are 100 ìm in the main image and 10 ìm for the zoom-in image, 

respectively. (b) Cell viability of PC-3 cells spiked in blood. White bars shown the control 

cells and gray bars shown captured and released cells. (c) Released PC-3 cells shown 

proliferation and maintained viable for culturing. Optical microscopy image was taken after 

five days of releasing from HBCTC-chip. The scale bar is 100 μm.

Li et al. Page 19

Biomaterials. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Capture and release of spiked populations of cancer cell lines. (a) A 3D flow cytometer 

image of three types of human prostate cancer cell lines that were stained with three 

different fluorescent dyes. Specifically, red for LNCaP cells, green for DU 145 cells and 

blue for PC-3 cells. (b) Representative fluorescent image of captured LNCaP, DU 145 and 

PC-3 cells, with the ratio of these three cell types of 1:1:1. The scale bar is 20 μm. (c) 

Representative heat map (top, combined with three florescent channels) and individual heat 

map (bottom) for single channel of an entire HBCTC-chip, showing the distribution of 

capture of LNCaP, DU 145 and PC-3 cells, from 2 mL of whole blood sample. (d) The 

percentages of these three types of cells that were captured on a HBCTC-chip, compared to 

those that were released from the HBCTC-chip and stored in a petri dish.
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Fig. 7. 
Capture and release of CTCs from patient blood samples. Immunofluorescent staining of 

cell surface receptors for captured CTC (a) and the corresponding released CTC (b) from 

patients with metastatic prostate cancer using ALG/PAH modified HBCTC-chip. Shown here 

are EpCAM, HER2 and MET expression in green, DAPI nuclear staining in blue, and CD45 

expression in red. The scales bar is 20ìm. (c) CTCs captured and released in blood samples 

from four lung cancer patients (Lu1 to Lu4) and two healthy donors (C1 and C2) using 

ALG/PAH modified HBCTC-chips.
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