Skip to main content
. 2016 Apr 11;17:159. doi: 10.1186/s12859-016-0997-6

Table 1.

CIC data: Method comparison for estimating the Δ Δ C q-value

Estimate se t-value df p-value LCL UCL
MGST1 vs GAPDH
EC –8.62 1.62 –5.31 21 2.92·10−5 –12 –5.24
EC&VA1 –8.62 1.66 –5.18 21 3.89·10−5 –12.1 –5.16
EC&VA2 –8.62 1.67 –5.17 21 4.04·10−5 –12.1 –5.15
Bootstrap –8.66 2.06 1.00·10−3 –12.5 –4.41
MGST1 vs ACTB
EC –8.98 1.61 –5.57 21 1.57·10−5 –12.3 –5.63
EC&VA1 –8.98 1.65 –5.45 21 2.08·10−5 –12.4 –5.56
EC&VA2 –8.98 1.65 –5.45 21 2.10·10−5 –12.4 –5.55
Bootstrap –8.98 2.09 1.00·10−3 –12.7 –4.48
MMSET vs GAPDH
EC 0.679 0.585 1.16 21 2.59·10−1 –0.538 1.9
EC&VA1 0.679 0.587 1.16 21 2.60·10−1 –0.541 1.9
EC&VA2 0.679 0.589 1.15 21 2.62·10−1 –0.545 1.9
Bootstrap 0.688 0.678 3.12·10−1 –0.656 2
MMSET vs ACTB
EC 0.318 0.962 0.331 21 7.44·10−1 –1.68 2.32
EC&VA1 0.318 0.962 0.331 21 7.44·10−1 –1.68 2.32
EC&VA2 0.318 0.964 0.33 21 7.45·10−1 –1.69 2.32
Bootstrap 0.342 0.987 7.05·10−1 –1.68 2.13

EC efficiency corrected LMM estimate ignoring the uncertainty of the efficiency estimates. EC&VA1 EC and variance adjusted LMM estimate using the delta method. EC&VA2 EC and variance adjusted LMM estimate using Monte Carlo integration. Bootstrap estimate by the bootstrap described in Section “Inference for ΔΔCq by the bootstrap method” fitting the LMM and using the EC estimate. Bootstrap shows the mean and standard deviation of 2000 bootstrap samples using the EC estimate. The last two columns show the 95 % lower and upper confidence interval limits