Table 2.
Estimate | se | t-value | df | p-value | LCL | UCL | |
---|---|---|---|---|---|---|---|
mir127 vs rnu6b | |||||||
EC | 2.67 | 1.13 | 2.37 | 22 | 2.68·10−2 | 0.336 | 5.01 |
EC&VA1 | 2.67 | 1.13 | 2.37 | 22 | 2.71·10−2 | 0.331 | 5.01 |
EC&VA2 | 2.67 | 1.13 | 2.36 | 22 | 2.75·10−2 | 0.325 | 5.02 |
Bootstrap | 2.68 | 1.05 | 1.00·10−3 | 0.876 | 4.82 | ||
mir127 vs rnu24 | |||||||
EC | 2.38 | 1.08 | 2.2 | 22 | 3.87·10−2 | 0.136 | 4.63 |
EC&VA1 | 2.38 | 1.09 | 2.19 | 22 | 3.91·10−2 | 0.13 | 4.64 |
EC&VA2 | 2.38 | 1.09 | 2.19 | 22 | 3.94·10−2 | 0.126 | 4.64 |
Bootstrap | 2.42 | 1.18 | 1.00·10−2 | 0.416 | 5.02 | ||
mir143 vs rnu6b | |||||||
EC | 1.17 | 0.846 | 1.38 | 22 | 1.82·10−1 | -0.589 | 2.92 |
EC&VA1 | 1.17 | 0.846 | 1.38 | 22 | 1.82·10−1 | -0.59 | 2.92 |
EC&VA2 | 1.17 | 0.847 | 1.37 | 22 | 1.83·10−1 | -0.592 | 2.92 |
Bootstrap | 1.15 | 0.794 | 1.44·10−1 | -0.341 | 2.7 | ||
mir143 vs rnu24 | |||||||
EC | 0.878 | 0.81 | 1.08 | 22 | 2.90·10−1 | -0.801 | 2.56 |
EC&VA1 | 0.878 | 0.81 | 1.08 | 22 | 2.90·10−1 | -0.802 | 2.56 |
EC&VA2 | 0.878 | 0.811 | 1.08 | 22 | 2.90·10−1 | -0.803 | 2.56 |
Bootstrap | 0.897 | 0.822 | 2.67·10−1 | -0.603 | 2.58 |
EC efficiency corrected LMM estimate ignoring the uncertainty of the efficiency estimates. EC&VA1 EC and variance adjusted LMM estimate using the delta method. EC&VA2 EC and variance adjusted LMM estimate using Monte Carlo integration. Bootstrap Estimate by the bootstrap described in Section “Inference for ΔΔCq by the bootstrap method” fitting the LMM and using the EC estimate. Bootstrap shows the mean and standard deviation of 4 bootstrap samples using the EC estimate. The last two columns show the 95 % lower and upper confidence interval limits