Skip to main content
. 2016 Apr 11;17:159. doi: 10.1186/s12859-016-0997-6

Table 2.

DLBCL data: Method comparison for estimating the Δ Δ C q-value

Estimate se t-value df p-value LCL UCL
mir127 vs rnu6b
EC 2.67 1.13 2.37 22 2.68·10−2 0.336 5.01
EC&VA1 2.67 1.13 2.37 22 2.71·10−2 0.331 5.01
EC&VA2 2.67 1.13 2.36 22 2.75·10−2 0.325 5.02
Bootstrap 2.68 1.05 1.00·10−3 0.876 4.82
mir127 vs rnu24
EC 2.38 1.08 2.2 22 3.87·10−2 0.136 4.63
EC&VA1 2.38 1.09 2.19 22 3.91·10−2 0.13 4.64
EC&VA2 2.38 1.09 2.19 22 3.94·10−2 0.126 4.64
Bootstrap 2.42 1.18 1.00·10−2 0.416 5.02
mir143 vs rnu6b
EC 1.17 0.846 1.38 22 1.82·10−1 -0.589 2.92
EC&VA1 1.17 0.846 1.38 22 1.82·10−1 -0.59 2.92
EC&VA2 1.17 0.847 1.37 22 1.83·10−1 -0.592 2.92
Bootstrap 1.15 0.794 1.44·10−1 -0.341 2.7
mir143 vs rnu24
EC 0.878 0.81 1.08 22 2.90·10−1 -0.801 2.56
EC&VA1 0.878 0.81 1.08 22 2.90·10−1 -0.802 2.56
EC&VA2 0.878 0.811 1.08 22 2.90·10−1 -0.803 2.56
Bootstrap 0.897 0.822 2.67·10−1 -0.603 2.58

EC efficiency corrected LMM estimate ignoring the uncertainty of the efficiency estimates. EC&VA1 EC and variance adjusted LMM estimate using the delta method. EC&VA2 EC and variance adjusted LMM estimate using Monte Carlo integration. Bootstrap Estimate by the bootstrap described in Section “Inference for ΔΔCq by the bootstrap method” fitting the LMM and using the EC estimate. Bootstrap shows the mean and standard deviation of 4 bootstrap samples using the EC estimate. The last two columns show the 95 % lower and upper confidence interval limits