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Abstract

Standard time series structure learning algorithms assume that the measurement timescale is 

approximately the same as the timescale of the underlying (causal) system. In many scientific 

contexts, however, this assumption is violated: the measurement timescale can be substantially 

slower than the system timescale (so intermediate time series datapoints will be missing). This 

assumption violation can lead to significant learning errors. In this paper, we provide a novel 

learning algorithm to extract system-timescale structure from measurement data that undersample 

the underlying system. We employ multiple algorithmic optimizations that exploit the problem 

structure in order to achieve computational tractability. The resulting algorithm is highly reliable at 

extracting system-timescale structure from undersampled data.

1 Introduction

In many domains, measurement speed can be significantly slower than the causal or 

communication speeds in the underlying system. For example, fMRI experiments typically 

measure brain activity roughly every two seconds, but the causal and communication 

connections between neuronal layers operate much faster [8]. Similar observations can be 

made about systems in ecology, climatology, economics, genomics and proteomics, and 

cognitive science. Moreover, a discrepancy between the measurement timescale τM and the 

system timescale τS can make a difference: an apparent A → B connection at τM can be 

consistent with any possible connection at τS: A → B, A ← B, or no connection at all. Thus, 

it is critical that we not simply restrict our attention to learning connections at τM.

In this paper, we address the problem of learning the causal structure at τS from 

measurements taken at a slower sampling rate, also called “undersampled” data.1 We focus 

on cases in which the underlying system structure can be represented as a directed graphical 

model (without simultaneous influence). There has been very little prior work on the 

problem of structure learning from undersampled time series data, though there have been 

important prior explorations of learning when the measurement and system timescales 

diverge, or when causal influences operate on multiple timescales [3, 5, 9]. There are 

1Measurements taken at a faster sampling rate pose a computational challenge, but not a distinctive theoretical problem.
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multiple algorithms for learning graphical structure from time series data [6, 7, 11, 14, 15], 

but they all assume that τM is at least as fast as τS. Undersampling was explicitly addressed 

in [2], but they focused on the “forward” problem of undersampling: given a structure at τS, 

what structure will be realized at τM? That paper provided some preliminary theorems (used 

below) to characterize the backward problem, but not a usable algorithm for actually 

learning structure at τS from measurements at τM. In this paper, we introduce such an 

algorithm: the Mesochronal Structure Learning (MSL) algorithm (from Greek méso (μέσω) 

for “through” and chronos (χρóνoς) for “time”) (Section 3); and show that it can often learn 

significant τS structure from τM data (Section 4). First, however, we provide a precise 

statement of the problem.

2 Formal statement of the problem

We use a compressed graph representation of the underlying system structure.2 We assume 

that the system is first-order Markov,3 and so temporal information can be encoded directly 

in the graphical edges. This assumption also implies a form of “causal sufficiency”: 

specifically, there cannot be unobserved variables such that nodes in the current timestep (at 

the causal timescale) are conditionally associated once the variable values at the previous 

timestep are known. Let  be a directed graphical model over variables V such that Vi → Vj 

means , where superscripts denote (relative) time index. We exclude 

contemporaneous connections because τS can be arbitrarily fast.  can be cyclic, including 

self-loops, but the underlying system structure will be acyclic when “unrolled” through time. 

Let P (2V) be a joint probability distribution over Vt and Vt−1. We connect  and P (2V) 

through standard assumptions, though adjusted for this setting. Specifically, let pa(Vi) 

denote the parents of Vi in . The Markov assumption requires:  is independent of 

 conditional on . The Faithfulness assumption 

requires that these be the only independencies involving some .

Let {t0, t1, …, tk, …} denote the timesteps at the system timescale. We say that the system is 

sampled at rate u when the measured timesteps are {t0, tu, …, tku, … }. The system 

timescale is thus “sampled at rate 1.” We focus on cases of undersampling; that is, when u > 

1. Undersampling implies failure to observe intermediate steps on paths between variables, 

and so the measurement timescale graph  can be derived from the causal timescale graph 

. More precisely, Vi → Vj in  iff there is a path of length u from Vi to Vj in . 

Undersampling can also introduce bidirected edges that represent unobserved common 

causes of variables at time t. For example, if Vi ← Vc → Vj in , then for all u > 1,  will 

contain Vi ↔ Vj since the unmeasured  is a parent of both  and . If the true system 

structure  and the sampling rate u are known, then there are efficient algorithms for 

computing the resulting (expected) measurement timescale structure  [2].

2This framework is mathematically equivalent to dynamic Bayesian networks [4, 12], so all results could instead be expressed using 
DBNs [2]. However, compressed graphs provide significant computational advantages for this particular problem domain.
3That is, the system-state at t is independent of all system-states at t − n for n > 1, conditional on the system-state at t − 1.
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The general problem of inferring  from data sampled at unknown rate u is 

computationally intractable at the current time, and so we principally focus on the special 

case in which u = 2 (though Section 4 shows how to generalize our algorithm to u > 2). That 

is, what can be learned about  if the input data is a time series in which every other 

timestep is unobserved? It is straightforward to see that  can be quite different from ; 

for example, if  is a directed cycle over three variables (e.g., X → Y → Z → X), then that 

cycle will have the reverse direction in . At the same time,  and  cannot be arbitrarily 

different; for example, if Vi → Vi in  (i.e., Vi has a self-loop), then Vi → Vi in . We 

now provide a multi-step algorithm for recovering as much information as possible.

3 MSL algorithm

There are a number of previously identified structural invariants of  that hold across 

sampling rates [2], but many of them provide only a coarse characterization of the structure 

of . We thus must search in a more direct fashion for the  that could have produced . 

The Mesochronal Structure Learning (MSL) algorithm has two distinct steps. First, one 

learns  from data, expert knowledge, or a combination of the two (Section 3.1). There are 

many different algorithms for learning causal structure at the measurement timescale (i.e., 

), and so we focus on the second step: infer the set of  that could possibly have 

produced (given undersampling) the learned  (Section 3.2). The  mapping is 

one-to-many, and so the MSL algorithm out-puts an equivalence class (possibly a singleton) 

of possible . The MSL algorithm is based on a conceptually simple inferential move, but 

requires significant algorithmic (Section 3.3) and practical (Section 3.4) optimizations in 

order to be computationally tractable.

3.1 Learning 

There are many different algorithms for learning the structure of  from time series data [6, 

7, 11, 14, 15], as the measurement and structure timescales are the same. One can also 

modify structure learning algorithms designed for i.i.d. data (e.g., the well-known PC or 

GES algorithms [1, 13]) for the special case of time series data in which the causal direction 

can be inferred from temporal information. We will mostly treat these algorithms as “black 

boxes” that simply provide an estimated  for input to the second stage. We cannot 

completely abstract away from details of those algorithms, however, since errors learning 

structure can result in errors by the overall MSL algorithm. We return to this issue in Section 

4, but focus for now on the algorithmically novel aspect of inferring causal timescale 

structure from estimated measurement timescale structure.

3.2 From  to 

Given a known  and undersample rate u, [2] provides an efficient method for computing 

. Thus, for an estimated ℋ2, there is an obvious brute-force approach: for all , compute 

the corresponding  and check if it equals the estimated ℋ2. The problem with this 

approach is equally obvious: it must survey every possible , of which there are  many. 

This brute-force strategy could potentially work for 3-, 4-, or even 5-node graphs, but 

rapidly becomes computationally completely infeasible. We thus pursue a different strategy.
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We focus throughout on the case of a single Strongly Connected Component (SCC): a 

maximal variable set S such that there is a path from every X ∈ S to every Y ∈ S. All 

systems with feedback are composed of SCCs, and so they are the most scientifically 

interesting systems when working with time series data. When a very weak additional 

condition holds,4 then SCC membership is invariant under undersampling (Corollary 7 in 

[2]). Thus, we can use  structure to reliably identify SCC membership in , and then do 

focused search over each SCC separately.

Theorems 4 and 5 in [2] show that, when u gets very large, such an SCC becomes a super-
clique: for every pair of nodes A, B (possibly A = B), we have A → B, A → B, and A ↔ B. 

(The last two do not apply when A = B.) That is, a super-clique is a maximally dense graph 

over the SCC. Moreover, these super-cliques are the worst-case for a “backwards” learning 

algorithm, as a huge number of SCCs imply a super-clique under (significant) 

undersampling. Thankfully, super-cliques rarely result for smaller undersample rates; 

typically, more can be learned at u = 2.

Given an estimated ℋ2 that is an SCC, every directed edge corresponds to a path of length 2 

in . More generally, if we have estimated ℋu for a known u, then each edge must 

correspond to a path of length u in . Thus, we can add u − 1 “virtual” nodes within each 

edge in ℋu, where each virtual node refers to some unknown, but actual, node in V. The 

virtual-to-actual node mapping can clearly be many-to-one, as u can be significantly larger 

than the size of V. This virtual node representation is shown in Figure 1.

The basic structure of this stage of the MSL algorithm is: (1) “identify” each virtual node 

with an actual node, thereby yielding a candidate ; and then (2) check if that candidate 

actually implies ℋu. As noted above, there is a computationally efficient algorithm for step 

(2); the computational challenge is efficiently considering the relevant possible 

identifications. We focus in the remainder of this section on the case of u = 2 as that is 

sufficient to reveal significant complexities. The overall algorithm-schema is importantly not 

limited to that case, however, and we provide a “proof-of-concept” for u = 3 in Section 4.

For e edges in ℋ2, there are ne possible node identifications,5 each of which results in a 

candidate . Moving directly to complete identifications can require examining an 

intractable number of  (e.g., if n > 30 and e > 100, as below). We thus instead sequentially 

identify virtual nodes, coupled with a (local) stopping rule based on the concept of a 

conflict, and a lemma (with corollary):6

conflict—  contains one or more edges that are not in ℋu.

Lemma 3.1. Conflict persistence—If a virtual node identification results in a conflict, 

then no further node identifications will eliminate that conflict.

4Every SCC S can be uniquely expressed as the union of a set of simple loops ℒS. Let gcd(ℒS) be the greatest common divisor of the 
lengths of those simple loops. The additional condition is that gcd(ℒS) = 1.
5In general, there are ne(u−1) possible identifications.
6All proofs are provided in Supplementary Materials.
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Corollary 3.2—If  conflicts with ℋu, then every supergraph of  conflicts with ℋu.

Thus, if any partial virtual node identification results in a  whose  contains an edge not 

found in ℋu, then we need not consider any further identifications that build off of that base. 

This naturally suggests a backtracking search on a search tree through the possible node 

identifications, as shown in Figure 2. More precisely, the basic MSL algorithm is:

1. Let  be the empty graph, and {E1, …, Ee} be an arbitrary ordering of edges in ℋu 

(Table in Figure 1)

2. In a depth-first manner over the edges, consider each possible node identification 

for the virtual nodes added to Ei and add the corresponding edges to 

3. Check whether a conflict is found after adding the edges arising from virtual node 

identification for Ei

4. If a conflict is found, then prune that search tree branch, backtrack by removing the 

Ei identification, and try the next possible node identifications for Ei.

The process is illustrated in Figure 2 for the graph in Figure 1. In the worst case, this 

algorithm obviously requires checking as many  as if we simply surveyed all possible 

simultaneous node identifications. In practice, however, the proactive pruning of branches in 

the search tree can lead to considerable speed-ups, especially in cases in which e is relatively 

large.

This algorithm is correct but not yet complete, as  can contain edges that do not have 

manifest in any way in . For example, if  is A → B, then  is simply the empty graph 

over A, B. In that case, there are no virtual nodes to identify, so the algorithm would 

correctly but incompletely return the empty graph as the only  possibility. More generally, 

especially for relatively dense ℋ2, the algorithm finds a suitable  prior to reaching the full 

depth of the search tree (i.e., without identifying all virtual nodes). One response would be 

to simply force the algorithm to fully traverse the tree, but this can be quite expensive when 

the branching factor is high (i.e., for dense ℋ2). Instead, we pursue a different strategy.

If the algorithm finds a suitable  before reaching a leaf of the search tree, then we know 

that every graph below it in the tree will be a supergraph of that  (since virtual node 

identifications can only add edges, not remove them). Thus, we only need to find all 

supergraphs of that  whose . That search is greatly aided by Corollary 3.2.

The supergraph construction step first tries to separately add each of the n2 possible directed 

edges that are not yet in . Each resulting graph that equals ℋ2 is added to the output 

equivalence class. The step then adds, in a depth-first manner, each edge that did not yield a 

conflict to the other new graphs, and backtracks whenever an edge addition creates a 

conflict.7 This step is extremely fast in practice for graphs of reasonable sparsity despite its 

worst-case factorial behavior. If no edges create a conflict—for example, when ℋ2 is a 

super-clique—then the running time is indeed Θ(n!). In that particular case, however, the 

7See pseudocode in the Supplementary Material.
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equivalence class has been analytically determined to be any size-n SCC with gcd=1 (see fn. 

4) [2, Theorem 4], and so the present algorithm is actually unnecessary.

The full MSL algorithm (including the supergraph step) has the following desirable 

property:

Lemma 3.3—The MSL algorithm is correct and complete: given ℋ2, it finds all and only 

 such that .

Unfortunately, preliminary experiments demonstrated that the algorithm can be very slow 

(see Figure 4 for a highlight of the problem) and take days even for smaller (n = 10) graphs. 

The order in which virtual nodes are identified can make a significant difference in runtime 

speed, but even improving those orders is insufficient to yield an algorithm that is usable on 

large graphs. Instead, we must exploit additional constraints and optimizations.

3.3 Using graphical constraints

The key intuition underlying the constraints in this section is that some virtual node 

identifications can be excluded without ever actually constructing-and-testing the 

corresponding . For example, suppose A → B → C in ℋ2. In this case,  must contain, 

for some X, Y: A → X→ B → Y → C. There is thus a length-2 path from X to Y in , and 

so  will contain X → Y. Hence, we only need to consider virtual node identifications for 

A → B and B → C in which the two identifications correspond to nodes with a directed edge 

between them in ℋ2. More generally, virtual node identifications can analytically constrain 

one another in ways that can be exploited in this algorithm.

Recall that the complexity of the MSL algorithm for u = 2 is approximately ne, where e is 

the number of edges in ℋ2. By identifying pairs of virtual nodes (that analytically constrain 

one another), we can potentially achieve a large reduction in the exponent in practice, since 

we will have to consider many fewer branches.

Two different types of structures in ℋ2 guide the pairwise identifications. First, consider all 

forks in ℋ2: pairs of edges X ← H → Y, where possibly X = H or Y = H (if there is a self-

loop plus another edge). If the two virtual nodes refer to the same actual node, then X and Y 
will have a common cause in the previous (causal) timestep, and so there will be a bidirected 

edge between them.8 Thus, if there is no bidirected edge between X and Y in ℋ2, then the 

two virtual nodes cannot identify to the same node. Hence, we only need to consider n2 − n 
possible identifications for that pair of virtual nodes.

The other relevant structure is the two-edge chain described at the start of this section, where 

the only pairwise virtual node identifications that are considered are those for which there is 

a corresponding edge in ℋ2.

In practice, the algorithm converts some elements of the edge list {E1, …, Ee} into edge-

pairs by first selecting (without replacement)} all forks in ℋ2, then selecting all remaining 

8Note that the converse does not hold: X ↔ Y in ℋ2 does not imply that the virtual nodes correspond to the same actual node.
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two-edge directed paths. The remaining edges have the usual n possible virtual node 

identifications.

Figure 3 shows a search space for the graph from Figure 1, and demonstrates the 

computational advantage of considering pairwise identifcations, as the number of possible 

identifications is significantly reduced.

In general, let {m1, …, ml} be the sets of virtual node identifications for each of the edges or 

edge-pairs derived from the preceding procedure. The computational complexity of using 

some edge-pairs is simply , where len is the number of possible identifications 

for that particular edge or edge-pair. Thus, the computational advantage, expressed as a log-

ratio, of using (some) edge-pairs is: . This advantage is 

plotted in Figure 4, which shows (on log-scale) the average log-ratio for 100 random 8- and 

10-node SCCs. The practical advantage of edge-pairs is potentially even greater, as Figure 4 

does not account for active pruning of the search tree.

3.4 Precomputation and other optimizations

The use of edge-pairs provides significant speed-up in the MSL algorithm (as seen in Figure 

4), but its worst-case complexity still makes it difficult to use the algorithm for n > 10. 

Moreover, around 10% of the graphs took many days to compute, and did not exhibit any 

noticeable structural difference in ℋ2 that could be used to predict computation time.9 The 

core problem is that much of the search tree eventually gets pruned, but structural features of 

ℋ2 do not support predictions about which parts will be pruned. If we can instead prune 

conflicting options prior to the traversal of the solution space, then we can potentially further 

reduce the search time.

The key algorithmic move is to expand the “analytic conflict checking” beyond just 

particular edge-pairs, to also pre-computing conflicts between multiple edge-pairs. In the 

extreme, there can be a (seemingly) possible virtual node identification that conflicts with 

every possible identification for some other edge or edge-pair, in which case the first 

identification can simply be removed from consideration. Moreover, this precomputation is 

independent of the evaluation order of the virtual node identifications, since a conflict 

between identifications mi and mj does not depend on the particular values i and j. This 

pruning thus also reduces the need for random restarts to be robust against evaluation order 

effects.

The MSL algorithm was therefore expanded to include significant pre-computation to 

further prune the initial search tree. Specifically, for each pair of edge-pairs, the algorithm 

constructs a  for every possible identification of both edge-pairs. If the resulting  results 

in a conflict with ℋ2, then we remove that pair of complex identifications from the search 

tree. This precomputation can considerably prune the search tree, perhaps even yielding (as 

in Figure 3) a search “tree” with only one branch. There is a cost because the resulting data 

9Even with random restarts to account for order differences in edge-pair selection, the algorithm still behaved similarly to the “only 
single edge” version.
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structure can be complex: it contains not only the reduced set of (complex) identifications 

for each edge-pair, but also splits those options into subsets depending on the particular 

(complex) identification used in the previous level of the search tree. This more complex 

structure is required because some possible identifications will be incompatible with only a 

subset of the identifications at the previous level, but we want to avoid checking them during 

the algorithm flow (since we already checked in the precomputation).

Further algorithmic speed-ups can be achieved by intelligently ordering the virtual node 

identifications (i.e., the levels of the search tree). In particular, the MSL algorithm will run 

fastest when search tree levels with significant breadth—that is, virtual nodes or node-pairs 

for which there are many possible identifications—are pushed further down in the search 

tree. If this is done, then pruning operations will remove more branches. In addition, each 

search tree node is also a “conflict check” point, and this ordering of search tree levels 

minimizes the number of search tree nodes, even if no branches are ever pruned. The 

benefits of intelligent identification ordering can be substantial for deep trees with small 

numbers of possible identifications for most of the edge-pairs.

These two optimizations—precomputation and intelligent search tree ordering—yield 

substantial benefits. We again computed the potential reduction in computation for randomly 

generated graphs (using the equation from Section 3.3). The “+ data structure” line on the 

left-hand plot in Figure 4 shows that the more optimized approach can achieve over 40 

orders of magnitude reduction in the number of conflict checks.

Each conflict check requires the algorithm to add edges to the constructed , compute , 

check for conflicts with ℋ2, and then remove the just-added edges in case of a conflict. 

These steps are computationally expensive, and so we can achieve further performance gains 

if we can analytically determine whether a complex identification creates a conflict before 

starting these operations. These checks are not precomputed, but rather are performed in an 

online fashion based on the constraints in the following lemmas (where  and 

denote the children and parents of A in , respectively):

Lemma 3.4—A virtual node V in  cannot be identified with node X if any of the 

following holds:

1.

2.

3.

4.

5.

6.
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Lemma 3.5—A virtual node pair V1, V2 for a fork  cannot be identified 

with nodes X1, X2 if any of the following holds:

1.

2.

3.

4.

5.

6.

7.

8.

9.

Lemma 3.6—A virtual node pair V1, V2 for two-edge sequence  E cannot 

be identified with X1, X2 if any of the following holds:

1.

2.

3.

As noted above, we apply these constraints in an online manner in order to prune branches 

of the search tree without having to add edges and check for conflicts. The resulting 

algorithm exhibits substantial reductions in runtime, enabling us to examine the MSL 

algorithm’s behavior for  ranging up to 35 nodes, as shown in the simulation testing 

described in the next section.

4 Testing and validation

As we argued earlier, SCCs represent the scientifically most interesting situations, precisely 

because they are ones in which feedback loops present a challenging learning task. In 

addition, although connections between SCCs are undoubtedly of interest, the formal results 

of [2] imply that we can reliably treat the SCCs relatively independently. We thus focus on 

single-SCC graphs in our synthetic data studies. Any SCC can provably be decomposed into 

a single simple loop with “ears” (i.e., sequences that branch off from, then return to, that 

simple loop) that build on top of one another. We thus use a simple ear decomposition 

skeleton to generate SCCs for our simulations.
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SCC generation procedure

For n nodes, first generate a single simple loop that passes through all nodes. Without loss of 

generality, we can assume that this ring graph passes through the nodes in sequential order. 

There are n(n − 1) possible edges that can be added to this ring graph, including self-loops 

for each node. We sample uniformly from those possible edges until the required density—

i.e., the fraction of the n2 possible edges that are actual—is achieved.10 We use overall 

density rather than average node degree to measure graph complexity because density is 

normalized by the number of possible edges, so we can (approximately) match graph 

complexity across different values of n.

We previously reported the theoretical maximum conflict checks for 8- and 10-node graphs 

for different versions of the MSL algorithm. We also report (in Figure 4) a comparison of the 

actual run times. We randomly generated 100 8-node graphs for each density in {15%, 20%, 

25%, 30%} and ran both the naive approach (virtual node identification for each edge 

separately) and the precomputation approach that takes advantage of edge-pairs and pairwise 

constraints. The box and whisker plot shows the distribution of the individual run-times 

expressed in minutes. Not only does the median execution time for 8-node graphs improve 

by an order of magnitude, but the naive approach also generates considerably more outliers 

that take much longer to compute. The run-times for the hardest graphs (which provide an 

empirical estimate on the run-time upper bound) are five orders of magnitude longer for the 

naive approach.11

4.1 Equivalence class sizes

We earlier noted that, when ℋ2 is a super-clique (i.e., every possible edge between each pair 

of nodes), then there will typically be a large number of  consistent with that super-clique. 

That is, the equivalence class will be quite large. One question is about the sizes of the 

equivalence classes when ℋ2 is not a super-clique. If the equivalence class is sufficiently 

small, then expert knowledge or further studies may be a tractable way to reach a unique 

solution.

To better explore the equivalence class sizes, we generated 100 random 6-node SCCs (using 

the above procedure) for each density from 20% to 60% in 5% increments, then analytically 

computed  and passed that to the optimized MSL algorithm. n = 6 is sufficiently large that 

brute-force inference is infeasible, but the graphs are still tractable for the optimized MSL 

algortihm even at high densities. This is a particular worry since the complexity of the 

search grows exponentially with the number of edges in . Figure 5 shows the sizes of the 

equivalence classes for the graphs at different densities.

Some of the most notable findings from Figure 5 are i) for densities up to 35%, the 

overwhelming majority of the equivalence classes are singletons; ii) for densities above 

50%, the equivalence classes often grow to quite large sizes; however, iii) those  graphs 

are incredibly dense, and so unsurprisingly are difficult to analyze tractably. The MSL 

10Note that the bare ring graph has a density of 1/n.
11This may be less relevant in practice, except for the unlucky 10% of researchers who happen to deal with the hardest graphs. 
Nonetheless, this difference is substantial, and shows the importance of the algorithmic optimizations.
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algorithm complexity depends exponentially on the number of edges in , and so 

increasing n for a fixed density rapidly leads to significant computational barriers. Figure 5 

suggests that densities above 35% will frequently lead to very large equivalence classes, and 

so we focus on lower densities for larger n.

In particular, we performed the same analysis (including run-times) for 8-node (Figure 6) 

and 10-node graphs (Figure 7). The results for 6-node graphs largely generalize. MSL is a 

fast and practical algorithm for these graph sizes, as demonstrated by the wall-clock run-

time measurements summarized in Figure 7. Note that these are quite challenging graphs, as 

shown in Figure 8. 10-node graphs with 30% density can have more than 65 edges in , 

and so the naive approach would have to consider 1065 virtual node identifications.

The MSL algorithm is also computationally tractable for significantly larger n. For 15-node 

graphs, it can readily learn  structures up to 25% density, though outlier cases can take 

multiple days to compute. Figure 9 shows results for 100s of random SCCs with density of 

10% for node sizes from 15 to 35. This density actually corresponds to quite challenging 

learning tasks. For example, a 35-node graph with 10% density can have nearly 400 edges in 

. Despite these large numbers of edges, the MSL algorithm rarely takes longer than an 

hour, even for 35-node graphs.

4.2 Generality of the MSL algorithm

The MSL algorithm is actually an algorithm-schema that can be generalized to different 

known u, though its complexity rapidly increases. We performed a “proof-of-concept” of 

MSL for u = 3 with 100 random 6-node graphs. In this variant, each  edge has two virtual 

nodes that must be identified. Figure 10 shows the equivalence classes for u = 3. 

Interestingly, we obtain similar results with singleton equivalence classes dominating at low 

densities, but a rapid increase in the proportion of larger equivalence classes.

4.3 Violations of the rate assumptions

If we know that u = 2, then MSL can successfully recover all graphs in the equivalence 

class. That assumption could easily be violated, however, as one might (for example) believe 
u = 2 when actually u = 3. Figure 11 shows results when MSL assuming u = 2 was applied 

to the  for 100 6-node graphs. Importantly, for  densities up to 30%, the MSL 

(assuming u = 2) algorithm fails to find a solution; that is, there is no  whose  matches 

the given graph (which is actually a ). One can thus infer that a key algorithmic 

assumption has likely been violated. Unfortunately, the testability of the u = 2 assumption 

does not seem to extend to higher densities, which further suggests focusing our attention on 

 with no more than 30% density.

4.4 From undersampled data to 

The above results show that the nonparametric  component of the MSL algorithm 

is correct and computationally efficient, enabling us to learn equivalence classes for SCCs 

with densities up to 30%. For finite sample data, we need to incorporate a stable, reliable 

algorithm to learn the ℋ2 structure. As noted earlier, there are multiple learning algorithms 

for this task (i.e., learning measurement-timescale structure), though they must allow for the 
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possibility of bidirected edges to encode correlation between variables at the same time. We 

have used both a restricted version of the PC algorithm [11] and direct optimization of log 

likelihood in a structural vector autoregressive (SVAR) model [10]. In our experiments, we 

found that SVAR optimization provided more accurate and stable solutions, likely because 

of errors in conditional independence tests used in the modified PC algorithm. The best 

choice for learning ℋ2 structure is an open research question. In the following, we only 

show results for the SVAR procedure.

We generated 100 random 8-node SCCs for each density in {15%, 20%, 25%, 30%}. These 

graphs are complex and interesting, but also are computationally tractable for the full MSL 

algorithm. For each random graph, we generated a random transition matrix by sampling 

weights for the non-zero elements of the adjacency matrix, and controlling system stability 

(by keeping the maximal eigenvalue at or below 1). This transition matrix was then used for 

a vector auto-regressive (VAR) model [10] with noise (standard deviation of 1) to generate 

data. Every other data sample was removed (to undersample at rate 2), and the resulting data 

was provided to the SVAR optimization to yield a candidate ℋ2. The MSL algorithm was 

then applied to this ℋ2 to obtain an equivalence class of  that can be compared to ground 

truth in terms of two error-types: omission error: the number of omitted edges normalized 

to the total number of edges in the ground truth; comission error: number of edges not 

present in the ground truth normalized to the total possible edges minus the number of those 

present in the ground truth. Figure 12 shows the results of these simulations. We also plot 

the estimation errors of the SVAR (on the undersampled data) to understand the dependence 

of MSL estimation errors on the estimation errors for ℋ2. Interestingly, applying the MSL 

algorithm does not significantly increase the error rates over those produced by the SVAR 

estimation.

In some cases, SVAR estimation errors result in an ℋ2 for which there are no possible .12 

For the simulations described in Figure 12, we deal with these cases by i) modifying MSL to 

accept (at the final step) those solutions that produce an undersampled graph that has the 

same directed edges as the estimated ℋ2; ii) restarting the simulation if a solution is not 

found. The former improves performance because bidirected edges often contain a weaker 

signal and are prone to mis-estimation, while the latter is to ensure comparability of results.

We have also modified the MSL algorithm so that, in these cases, it sequentially considers 

all neighbors of each ℋ2 in the Hamming cube constructed on the length  binary 

string that represent directed and bidirected edges. If MSL finds a solution for one of these 

neighbors of ℋ2, then we return it and compare to the ground truth as before.

We repeated our 8-node experiment successively checking neighborhoods from 1–5 steps 

away from the learned ℋ2. In the worst case, this can require over 5.2 × 107 additional MSL 

12Because the  map is many-to-one, there are multiple such ℋ2. In fact, the set of “reachable” ℋ2 is at most 
of the theoretically possible graphs.
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runs (for n = 8), so there can be a significant increase in run-time. The results are 

summarized in Figure 13. The increased complexity did not allow us to proceed to the 30% 

density. This time, however, we did not have to restart a single computation at densities or 

15% and 20% with only few rejected at 25%.

5 Conclusions

Many scientific contexts depend on learning the structure of a system at some timescale that 

is faster than the measurement timescale. Standard structure learning algorithms can extract 

the measurement-level structure, but that structure can be quite different from the structure 

of the underlying system. The apparent structure given undersampled data is not 

immediately informative about the actual structure at the causal or system timescale. We 

have presented the first computationally efficient algorithm for learning the equivalence 

class of system-timescale structures that could have produced the measurement-timescale 

data. The algorithm can, in theory, be applied for arbitrary known undersample rates u, 

though it is computationally intractable for u > 3. Nonetheless, we have shown that the MSL 

algorithm exhibits promising performance for u = 2, including reliably learning underlying 

structure over large node-sets. The MSL algorithm also provides a novel tool for 

investigating the sizes of those equivalence classes. We showed that small amounts of 

undersampling typically do not destroy much information, as the equivalence class for many 

 was a singleton. Undersampling greatly increases the complexity of structure learning, 

but does not make it impossible or infeasible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A 3-node SCC at undersampling rates 1 and 2, as well as its virtual nodes and their merging 

options.
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Figure 2. 
The search tree for 3-node SCC of Figure 1

Plis et al. Page 16

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Edge-pairs for 3-node SCC of Figure 1 and merging options for their virtual nodes: all 

possible options (raw) and the one that remain after constructing the pairwise data structure 

(pruned).
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Figure 4. 
Comparison of the search-space size (left) and computation time (right) between the naive 

backtracking and our approaches.
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Figure 5. 
Equivalence class size distribution among 100 randomly generated 6-node SCCs at a given 

density and examples of 6-node SCCs for each.
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Figure 6. 
Equivalence class size distribution for 100 randomly generated 8-node SCCs at a given 

density and examples of 8-node SCCs for each of the densities.
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Figure 7. 
Distribution of run-time (wall clock) and sizes of equivalence classes across densities of 10-

node graphs.
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Figure 8. 
Example 10-node graphs at different densities and their corresponding .
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Figure 9. 
Graphs with 15, 20, 25, 30, and 35 nodes at the density of 10%, their corresponding  and 

equivalence class size distribution as well as the running time summarizing the computation 

of 100 random SCCs per node size.
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Figure 10. 
Applying the MSL algorithm to the  problem: results for 100 random 6 node 

graphs per density. Example  and their corresponding  are shown for reference.
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Figure 11. 
Equivalence class size distribution for 100 randomly generated 6-node SCCs at a given 

density after the  MSL search when the input graph to the algorithm was in fact 
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Figure 12. 
The MSL estimation and search errors on synthetic data undersampled at rate 2.
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Figure 13. 
The estimation and search errors on synthetic data undersampled at rate 2 when the 

Hamming cube neighborhood search is used.
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