
Mesochronal Structure Learning

Sergey Plis,
Mind Research Network & University of New Mexico, Albuquerque, NM 87106

David Danks, and
Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA 15213

Jianyu Yang
Mind Research Network & University of New Mexico, Albuquerque, NM 87106

Abstract

Standard time series structure learning algorithms assume that the measurement timescale is

approximately the same as the timescale of the underlying (causal) system. In many scientific

contexts, however, this assumption is violated: the measurement timescale can be substantially

slower than the system timescale (so intermediate time series datapoints will be missing). This

assumption violation can lead to significant learning errors. In this paper, we provide a novel

learning algorithm to extract system-timescale structure from measurement data that undersample

the underlying system. We employ multiple algorithmic optimizations that exploit the problem

structure in order to achieve computational tractability. The resulting algorithm is highly reliable at

extracting system-timescale structure from undersampled data.

1 Introduction

In many domains, measurement speed can be significantly slower than the causal or

communication speeds in the underlying system. For example, fMRI experiments typically

measure brain activity roughly every two seconds, but the causal and communication

connections between neuronal layers operate much faster [8]. Similar observations can be

made about systems in ecology, climatology, economics, genomics and proteomics, and

cognitive science. Moreover, a discrepancy between the measurement timescale τM and the

system timescale τS can make a difference: an apparent A → B connection at τM can be

consistent with any possible connection at τS: A → B, A ← B, or no connection at all. Thus,

it is critical that we not simply restrict our attention to learning connections at τM.

In this paper, we address the problem of learning the causal structure at τS from

measurements taken at a slower sampling rate, also called “undersampled” data.1 We focus

on cases in which the underlying system structure can be represented as a directed graphical

model (without simultaneous influence). There has been very little prior work on the

problem of structure learning from undersampled time series data, though there have been

important prior explorations of learning when the measurement and system timescales

diverge, or when causal influences operate on multiple timescales [3, 5, 9]. There are

1Measurements taken at a faster sampling rate pose a computational challenge, but not a distinctive theoretical problem.

HHS Public Access
Author manuscript
Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

Published in final edited form as:
Uncertain Artif Intell. 2015 July 12; 31: .

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

multiple algorithms for learning graphical structure from time series data [6, 7, 11, 14, 15],

but they all assume that τM is at least as fast as τS. Undersampling was explicitly addressed

in [2], but they focused on the “forward” problem of undersampling: given a structure at τS,

what structure will be realized at τM? That paper provided some preliminary theorems (used

below) to characterize the backward problem, but not a usable algorithm for actually

learning structure at τS from measurements at τM. In this paper, we introduce such an

algorithm: the Mesochronal Structure Learning (MSL) algorithm (from Greek méso (μέσω)

for “through” and chronos (χρóνoς) for “time”) (Section 3); and show that it can often learn

significant τS structure from τM data (Section 4). First, however, we provide a precise

statement of the problem.

2 Formal statement of the problem

We use a compressed graph representation of the underlying system structure.2 We assume

that the system is first-order Markov,3 and so temporal information can be encoded directly

in the graphical edges. This assumption also implies a form of “causal sufficiency”:

specifically, there cannot be unobserved variables such that nodes in the current timestep (at

the causal timescale) are conditionally associated once the variable values at the previous

timestep are known. Let be a directed graphical model over variables V such that Vi → Vj

means , where superscripts denote (relative) time index. We exclude

contemporaneous connections because τS can be arbitrarily fast. can be cyclic, including

self-loops, but the underlying system structure will be acyclic when “unrolled” through time.

Let P (2V) be a joint probability distribution over Vt and Vt−1. We connect and P (2V)

through standard assumptions, though adjusted for this setting. Specifically, let pa(Vi)

denote the parents of Vi in . The Markov assumption requires: is independent of

 conditional on . The Faithfulness assumption

requires that these be the only independencies involving some .

Let {t0, t1, …, tk, …} denote the timesteps at the system timescale. We say that the system is

sampled at rate u when the measured timesteps are {t0, tu, …, tku, … }. The system

timescale is thus “sampled at rate 1.” We focus on cases of undersampling; that is, when u >

1. Undersampling implies failure to observe intermediate steps on paths between variables,

and so the measurement timescale graph can be derived from the causal timescale graph

. More precisely, Vi → Vj in iff there is a path of length u from Vi to Vj in .

Undersampling can also introduce bidirected edges that represent unobserved common

causes of variables at time t. For example, if Vi ← Vc → Vj in , then for all u > 1, will

contain Vi ↔ Vj since the unmeasured is a parent of both and . If the true system

structure and the sampling rate u are known, then there are efficient algorithms for

computing the resulting (expected) measurement timescale structure [2].

2This framework is mathematically equivalent to dynamic Bayesian networks [4, 12], so all results could instead be expressed using
DBNs [2]. However, compressed graphs provide significant computational advantages for this particular problem domain.
3That is, the system-state at t is independent of all system-states at t − n for n > 1, conditional on the system-state at t − 1.

Plis et al. Page 2

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The general problem of inferring from data sampled at unknown rate u is

computationally intractable at the current time, and so we principally focus on the special

case in which u = 2 (though Section 4 shows how to generalize our algorithm to u > 2). That

is, what can be learned about if the input data is a time series in which every other

timestep is unobserved? It is straightforward to see that can be quite different from ;

for example, if is a directed cycle over three variables (e.g., X → Y → Z → X), then that

cycle will have the reverse direction in . At the same time, and cannot be arbitrarily

different; for example, if Vi → Vi in (i.e., Vi has a self-loop), then Vi → Vi in . We

now provide a multi-step algorithm for recovering as much information as possible.

3 MSL algorithm

There are a number of previously identified structural invariants of that hold across

sampling rates [2], but many of them provide only a coarse characterization of the structure

of . We thus must search in a more direct fashion for the that could have produced .

The Mesochronal Structure Learning (MSL) algorithm has two distinct steps. First, one

learns from data, expert knowledge, or a combination of the two (Section 3.1). There are

many different algorithms for learning causal structure at the measurement timescale (i.e.,

), and so we focus on the second step: infer the set of that could possibly have

produced (given undersampling) the learned (Section 3.2). The mapping is

one-to-many, and so the MSL algorithm out-puts an equivalence class (possibly a singleton)

of possible . The MSL algorithm is based on a conceptually simple inferential move, but

requires significant algorithmic (Section 3.3) and practical (Section 3.4) optimizations in

order to be computationally tractable.

3.1 Learning

There are many different algorithms for learning the structure of from time series data [6,

7, 11, 14, 15], as the measurement and structure timescales are the same. One can also

modify structure learning algorithms designed for i.i.d. data (e.g., the well-known PC or

GES algorithms [1, 13]) for the special case of time series data in which the causal direction

can be inferred from temporal information. We will mostly treat these algorithms as “black

boxes” that simply provide an estimated for input to the second stage. We cannot

completely abstract away from details of those algorithms, however, since errors learning

structure can result in errors by the overall MSL algorithm. We return to this issue in Section

4, but focus for now on the algorithmically novel aspect of inferring causal timescale

structure from estimated measurement timescale structure.

3.2 From to

Given a known and undersample rate u, [2] provides an efficient method for computing

. Thus, for an estimated ℋ2, there is an obvious brute-force approach: for all , compute

the corresponding and check if it equals the estimated ℋ2. The problem with this

approach is equally obvious: it must survey every possible , of which there are many.

This brute-force strategy could potentially work for 3-, 4-, or even 5-node graphs, but

rapidly becomes computationally completely infeasible. We thus pursue a different strategy.

Plis et al. Page 3

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We focus throughout on the case of a single Strongly Connected Component (SCC): a

maximal variable set S such that there is a path from every X ∈ S to every Y ∈ S. All

systems with feedback are composed of SCCs, and so they are the most scientifically

interesting systems when working with time series data. When a very weak additional

condition holds,4 then SCC membership is invariant under undersampling (Corollary 7 in

[2]). Thus, we can use structure to reliably identify SCC membership in , and then do

focused search over each SCC separately.

Theorems 4 and 5 in [2] show that, when u gets very large, such an SCC becomes a super-
clique: for every pair of nodes A, B (possibly A = B), we have A → B, A → B, and A ↔ B.

(The last two do not apply when A = B.) That is, a super-clique is a maximally dense graph

over the SCC. Moreover, these super-cliques are the worst-case for a “backwards” learning

algorithm, as a huge number of SCCs imply a super-clique under (significant)

undersampling. Thankfully, super-cliques rarely result for smaller undersample rates;

typically, more can be learned at u = 2.

Given an estimated ℋ2 that is an SCC, every directed edge corresponds to a path of length 2

in . More generally, if we have estimated ℋu for a known u, then each edge must

correspond to a path of length u in . Thus, we can add u − 1 “virtual” nodes within each

edge in ℋu, where each virtual node refers to some unknown, but actual, node in V. The

virtual-to-actual node mapping can clearly be many-to-one, as u can be significantly larger

than the size of V. This virtual node representation is shown in Figure 1.

The basic structure of this stage of the MSL algorithm is: (1) “identify” each virtual node

with an actual node, thereby yielding a candidate ; and then (2) check if that candidate

actually implies ℋu. As noted above, there is a computationally efficient algorithm for step

(2); the computational challenge is efficiently considering the relevant possible

identifications. We focus in the remainder of this section on the case of u = 2 as that is

sufficient to reveal significant complexities. The overall algorithm-schema is importantly not

limited to that case, however, and we provide a “proof-of-concept” for u = 3 in Section 4.

For e edges in ℋ2, there are ne possible node identifications,5 each of which results in a

candidate . Moving directly to complete identifications can require examining an

intractable number of (e.g., if n > 30 and e > 100, as below). We thus instead sequentially

identify virtual nodes, coupled with a (local) stopping rule based on the concept of a

conflict, and a lemma (with corollary):6

conflict— contains one or more edges that are not in ℋu.

Lemma 3.1. Conflict persistence—If a virtual node identification results in a conflict,

then no further node identifications will eliminate that conflict.

4Every SCC S can be uniquely expressed as the union of a set of simple loops ℒS. Let gcd(ℒS) be the greatest common divisor of the
lengths of those simple loops. The additional condition is that gcd(ℒS) = 1.
5In general, there are ne(u−1) possible identifications.
6All proofs are provided in Supplementary Materials.

Plis et al. Page 4

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Corollary 3.2—If conflicts with ℋu, then every supergraph of conflicts with ℋu.

Thus, if any partial virtual node identification results in a whose contains an edge not

found in ℋu, then we need not consider any further identifications that build off of that base.

This naturally suggests a backtracking search on a search tree through the possible node

identifications, as shown in Figure 2. More precisely, the basic MSL algorithm is:

1. Let be the empty graph, and {E1, …, Ee} be an arbitrary ordering of edges in ℋu

(Table in Figure 1)

2. In a depth-first manner over the edges, consider each possible node identification

for the virtual nodes added to Ei and add the corresponding edges to

3. Check whether a conflict is found after adding the edges arising from virtual node

identification for Ei

4. If a conflict is found, then prune that search tree branch, backtrack by removing the

Ei identification, and try the next possible node identifications for Ei.

The process is illustrated in Figure 2 for the graph in Figure 1. In the worst case, this

algorithm obviously requires checking as many as if we simply surveyed all possible

simultaneous node identifications. In practice, however, the proactive pruning of branches in

the search tree can lead to considerable speed-ups, especially in cases in which e is relatively

large.

This algorithm is correct but not yet complete, as can contain edges that do not have

manifest in any way in . For example, if is A → B, then is simply the empty graph

over A, B. In that case, there are no virtual nodes to identify, so the algorithm would

correctly but incompletely return the empty graph as the only possibility. More generally,

especially for relatively dense ℋ2, the algorithm finds a suitable prior to reaching the full

depth of the search tree (i.e., without identifying all virtual nodes). One response would be

to simply force the algorithm to fully traverse the tree, but this can be quite expensive when

the branching factor is high (i.e., for dense ℋ2). Instead, we pursue a different strategy.

If the algorithm finds a suitable before reaching a leaf of the search tree, then we know

that every graph below it in the tree will be a supergraph of that (since virtual node

identifications can only add edges, not remove them). Thus, we only need to find all

supergraphs of that whose . That search is greatly aided by Corollary 3.2.

The supergraph construction step first tries to separately add each of the n2 possible directed

edges that are not yet in . Each resulting graph that equals ℋ2 is added to the output

equivalence class. The step then adds, in a depth-first manner, each edge that did not yield a

conflict to the other new graphs, and backtracks whenever an edge addition creates a

conflict.7 This step is extremely fast in practice for graphs of reasonable sparsity despite its

worst-case factorial behavior. If no edges create a conflict—for example, when ℋ2 is a

super-clique—then the running time is indeed Θ(n!). In that particular case, however, the

7See pseudocode in the Supplementary Material.

Plis et al. Page 5

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

equivalence class has been analytically determined to be any size-n SCC with gcd=1 (see fn.

4) [2, Theorem 4], and so the present algorithm is actually unnecessary.

The full MSL algorithm (including the supergraph step) has the following desirable

property:

Lemma 3.3—The MSL algorithm is correct and complete: given ℋ2, it finds all and only

 such that .

Unfortunately, preliminary experiments demonstrated that the algorithm can be very slow

(see Figure 4 for a highlight of the problem) and take days even for smaller (n = 10) graphs.

The order in which virtual nodes are identified can make a significant difference in runtime

speed, but even improving those orders is insufficient to yield an algorithm that is usable on

large graphs. Instead, we must exploit additional constraints and optimizations.

3.3 Using graphical constraints

The key intuition underlying the constraints in this section is that some virtual node

identifications can be excluded without ever actually constructing-and-testing the

corresponding . For example, suppose A → B → C in ℋ2. In this case, must contain,

for some X, Y: A → X→ B → Y → C. There is thus a length-2 path from X to Y in , and

so will contain X → Y. Hence, we only need to consider virtual node identifications for

A → B and B → C in which the two identifications correspond to nodes with a directed edge

between them in ℋ2. More generally, virtual node identifications can analytically constrain

one another in ways that can be exploited in this algorithm.

Recall that the complexity of the MSL algorithm for u = 2 is approximately ne, where e is

the number of edges in ℋ2. By identifying pairs of virtual nodes (that analytically constrain

one another), we can potentially achieve a large reduction in the exponent in practice, since

we will have to consider many fewer branches.

Two different types of structures in ℋ2 guide the pairwise identifications. First, consider all

forks in ℋ2: pairs of edges X ← H → Y, where possibly X = H or Y = H (if there is a self-

loop plus another edge). If the two virtual nodes refer to the same actual node, then X and Y
will have a common cause in the previous (causal) timestep, and so there will be a bidirected

edge between them.8 Thus, if there is no bidirected edge between X and Y in ℋ2, then the

two virtual nodes cannot identify to the same node. Hence, we only need to consider n2 − n
possible identifications for that pair of virtual nodes.

The other relevant structure is the two-edge chain described at the start of this section, where

the only pairwise virtual node identifications that are considered are those for which there is

a corresponding edge in ℋ2.

In practice, the algorithm converts some elements of the edge list {E1, …, Ee} into edge-

pairs by first selecting (without replacement)} all forks in ℋ2, then selecting all remaining

8Note that the converse does not hold: X ↔ Y in ℋ2 does not imply that the virtual nodes correspond to the same actual node.

Plis et al. Page 6

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

two-edge directed paths. The remaining edges have the usual n possible virtual node

identifications.

Figure 3 shows a search space for the graph from Figure 1, and demonstrates the

computational advantage of considering pairwise identifcations, as the number of possible

identifications is significantly reduced.

In general, let {m1, …, ml} be the sets of virtual node identifications for each of the edges or

edge-pairs derived from the preceding procedure. The computational complexity of using

some edge-pairs is simply , where len is the number of possible identifications

for that particular edge or edge-pair. Thus, the computational advantage, expressed as a log-

ratio, of using (some) edge-pairs is: . This advantage is

plotted in Figure 4, which shows (on log-scale) the average log-ratio for 100 random 8- and

10-node SCCs. The practical advantage of edge-pairs is potentially even greater, as Figure 4

does not account for active pruning of the search tree.

3.4 Precomputation and other optimizations

The use of edge-pairs provides significant speed-up in the MSL algorithm (as seen in Figure

4), but its worst-case complexity still makes it difficult to use the algorithm for n > 10.

Moreover, around 10% of the graphs took many days to compute, and did not exhibit any

noticeable structural difference in ℋ2 that could be used to predict computation time.9 The

core problem is that much of the search tree eventually gets pruned, but structural features of

ℋ2 do not support predictions about which parts will be pruned. If we can instead prune

conflicting options prior to the traversal of the solution space, then we can potentially further

reduce the search time.

The key algorithmic move is to expand the “analytic conflict checking” beyond just

particular edge-pairs, to also pre-computing conflicts between multiple edge-pairs. In the

extreme, there can be a (seemingly) possible virtual node identification that conflicts with

every possible identification for some other edge or edge-pair, in which case the first

identification can simply be removed from consideration. Moreover, this precomputation is

independent of the evaluation order of the virtual node identifications, since a conflict

between identifications mi and mj does not depend on the particular values i and j. This

pruning thus also reduces the need for random restarts to be robust against evaluation order

effects.

The MSL algorithm was therefore expanded to include significant pre-computation to

further prune the initial search tree. Specifically, for each pair of edge-pairs, the algorithm

constructs a for every possible identification of both edge-pairs. If the resulting results

in a conflict with ℋ2, then we remove that pair of complex identifications from the search

tree. This precomputation can considerably prune the search tree, perhaps even yielding (as

in Figure 3) a search “tree” with only one branch. There is a cost because the resulting data

9Even with random restarts to account for order differences in edge-pair selection, the algorithm still behaved similarly to the “only
single edge” version.

Plis et al. Page 7

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

structure can be complex: it contains not only the reduced set of (complex) identifications

for each edge-pair, but also splits those options into subsets depending on the particular

(complex) identification used in the previous level of the search tree. This more complex

structure is required because some possible identifications will be incompatible with only a

subset of the identifications at the previous level, but we want to avoid checking them during

the algorithm flow (since we already checked in the precomputation).

Further algorithmic speed-ups can be achieved by intelligently ordering the virtual node

identifications (i.e., the levels of the search tree). In particular, the MSL algorithm will run

fastest when search tree levels with significant breadth—that is, virtual nodes or node-pairs

for which there are many possible identifications—are pushed further down in the search

tree. If this is done, then pruning operations will remove more branches. In addition, each

search tree node is also a “conflict check” point, and this ordering of search tree levels

minimizes the number of search tree nodes, even if no branches are ever pruned. The

benefits of intelligent identification ordering can be substantial for deep trees with small

numbers of possible identifications for most of the edge-pairs.

These two optimizations—precomputation and intelligent search tree ordering—yield

substantial benefits. We again computed the potential reduction in computation for randomly

generated graphs (using the equation from Section 3.3). The “+ data structure” line on the

left-hand plot in Figure 4 shows that the more optimized approach can achieve over 40

orders of magnitude reduction in the number of conflict checks.

Each conflict check requires the algorithm to add edges to the constructed , compute ,

check for conflicts with ℋ2, and then remove the just-added edges in case of a conflict.

These steps are computationally expensive, and so we can achieve further performance gains

if we can analytically determine whether a complex identification creates a conflict before

starting these operations. These checks are not precomputed, but rather are performed in an

online fashion based on the constraints in the following lemmas (where and

denote the children and parents of A in , respectively):

Lemma 3.4—A virtual node V in cannot be identified with node X if any of the

following holds:

1.

2.

3.

4.

5.

6.

Plis et al. Page 8

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lemma 3.5—A virtual node pair V1, V2 for a fork cannot be identified

with nodes X1, X2 if any of the following holds:

1.

2.

3.

4.

5.

6.

7.

8.

9.

Lemma 3.6—A virtual node pair V1, V2 for two-edge sequence E cannot

be identified with X1, X2 if any of the following holds:

1.

2.

3.

As noted above, we apply these constraints in an online manner in order to prune branches

of the search tree without having to add edges and check for conflicts. The resulting

algorithm exhibits substantial reductions in runtime, enabling us to examine the MSL

algorithm’s behavior for ranging up to 35 nodes, as shown in the simulation testing

described in the next section.

4 Testing and validation

As we argued earlier, SCCs represent the scientifically most interesting situations, precisely

because they are ones in which feedback loops present a challenging learning task. In

addition, although connections between SCCs are undoubtedly of interest, the formal results

of [2] imply that we can reliably treat the SCCs relatively independently. We thus focus on

single-SCC graphs in our synthetic data studies. Any SCC can provably be decomposed into

a single simple loop with “ears” (i.e., sequences that branch off from, then return to, that

simple loop) that build on top of one another. We thus use a simple ear decomposition

skeleton to generate SCCs for our simulations.

Plis et al. Page 9

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

SCC generation procedure

For n nodes, first generate a single simple loop that passes through all nodes. Without loss of

generality, we can assume that this ring graph passes through the nodes in sequential order.

There are n(n − 1) possible edges that can be added to this ring graph, including self-loops

for each node. We sample uniformly from those possible edges until the required density—

i.e., the fraction of the n2 possible edges that are actual—is achieved.10 We use overall

density rather than average node degree to measure graph complexity because density is

normalized by the number of possible edges, so we can (approximately) match graph

complexity across different values of n.

We previously reported the theoretical maximum conflict checks for 8- and 10-node graphs

for different versions of the MSL algorithm. We also report (in Figure 4) a comparison of the

actual run times. We randomly generated 100 8-node graphs for each density in {15%, 20%,

25%, 30%} and ran both the naive approach (virtual node identification for each edge

separately) and the precomputation approach that takes advantage of edge-pairs and pairwise

constraints. The box and whisker plot shows the distribution of the individual run-times

expressed in minutes. Not only does the median execution time for 8-node graphs improve

by an order of magnitude, but the naive approach also generates considerably more outliers

that take much longer to compute. The run-times for the hardest graphs (which provide an

empirical estimate on the run-time upper bound) are five orders of magnitude longer for the

naive approach.11

4.1 Equivalence class sizes

We earlier noted that, when ℋ2 is a super-clique (i.e., every possible edge between each pair

of nodes), then there will typically be a large number of consistent with that super-clique.

That is, the equivalence class will be quite large. One question is about the sizes of the

equivalence classes when ℋ2 is not a super-clique. If the equivalence class is sufficiently

small, then expert knowledge or further studies may be a tractable way to reach a unique

solution.

To better explore the equivalence class sizes, we generated 100 random 6-node SCCs (using

the above procedure) for each density from 20% to 60% in 5% increments, then analytically

computed and passed that to the optimized MSL algorithm. n = 6 is sufficiently large that

brute-force inference is infeasible, but the graphs are still tractable for the optimized MSL

algortihm even at high densities. This is a particular worry since the complexity of the

search grows exponentially with the number of edges in . Figure 5 shows the sizes of the

equivalence classes for the graphs at different densities.

Some of the most notable findings from Figure 5 are i) for densities up to 35%, the

overwhelming majority of the equivalence classes are singletons; ii) for densities above

50%, the equivalence classes often grow to quite large sizes; however, iii) those graphs

are incredibly dense, and so unsurprisingly are difficult to analyze tractably. The MSL

10Note that the bare ring graph has a density of 1/n.
11This may be less relevant in practice, except for the unlucky 10% of researchers who happen to deal with the hardest graphs.
Nonetheless, this difference is substantial, and shows the importance of the algorithmic optimizations.

Plis et al. Page 10

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

algorithm complexity depends exponentially on the number of edges in , and so

increasing n for a fixed density rapidly leads to significant computational barriers. Figure 5

suggests that densities above 35% will frequently lead to very large equivalence classes, and

so we focus on lower densities for larger n.

In particular, we performed the same analysis (including run-times) for 8-node (Figure 6)

and 10-node graphs (Figure 7). The results for 6-node graphs largely generalize. MSL is a

fast and practical algorithm for these graph sizes, as demonstrated by the wall-clock run-

time measurements summarized in Figure 7. Note that these are quite challenging graphs, as

shown in Figure 8. 10-node graphs with 30% density can have more than 65 edges in ,

and so the naive approach would have to consider 1065 virtual node identifications.

The MSL algorithm is also computationally tractable for significantly larger n. For 15-node

graphs, it can readily learn structures up to 25% density, though outlier cases can take

multiple days to compute. Figure 9 shows results for 100s of random SCCs with density of

10% for node sizes from 15 to 35. This density actually corresponds to quite challenging

learning tasks. For example, a 35-node graph with 10% density can have nearly 400 edges in

. Despite these large numbers of edges, the MSL algorithm rarely takes longer than an

hour, even for 35-node graphs.

4.2 Generality of the MSL algorithm

The MSL algorithm is actually an algorithm-schema that can be generalized to different

known u, though its complexity rapidly increases. We performed a “proof-of-concept” of

MSL for u = 3 with 100 random 6-node graphs. In this variant, each edge has two virtual

nodes that must be identified. Figure 10 shows the equivalence classes for u = 3.

Interestingly, we obtain similar results with singleton equivalence classes dominating at low

densities, but a rapid increase in the proportion of larger equivalence classes.

4.3 Violations of the rate assumptions

If we know that u = 2, then MSL can successfully recover all graphs in the equivalence

class. That assumption could easily be violated, however, as one might (for example) believe
u = 2 when actually u = 3. Figure 11 shows results when MSL assuming u = 2 was applied

to the for 100 6-node graphs. Importantly, for densities up to 30%, the MSL

(assuming u = 2) algorithm fails to find a solution; that is, there is no whose matches

the given graph (which is actually a). One can thus infer that a key algorithmic

assumption has likely been violated. Unfortunately, the testability of the u = 2 assumption

does not seem to extend to higher densities, which further suggests focusing our attention on

 with no more than 30% density.

4.4 From undersampled data to

The above results show that the nonparametric component of the MSL algorithm

is correct and computationally efficient, enabling us to learn equivalence classes for SCCs

with densities up to 30%. For finite sample data, we need to incorporate a stable, reliable

algorithm to learn the ℋ2 structure. As noted earlier, there are multiple learning algorithms

for this task (i.e., learning measurement-timescale structure), though they must allow for the

Plis et al. Page 11

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

possibility of bidirected edges to encode correlation between variables at the same time. We

have used both a restricted version of the PC algorithm [11] and direct optimization of log

likelihood in a structural vector autoregressive (SVAR) model [10]. In our experiments, we

found that SVAR optimization provided more accurate and stable solutions, likely because

of errors in conditional independence tests used in the modified PC algorithm. The best

choice for learning ℋ2 structure is an open research question. In the following, we only

show results for the SVAR procedure.

We generated 100 random 8-node SCCs for each density in {15%, 20%, 25%, 30%}. These

graphs are complex and interesting, but also are computationally tractable for the full MSL

algorithm. For each random graph, we generated a random transition matrix by sampling

weights for the non-zero elements of the adjacency matrix, and controlling system stability

(by keeping the maximal eigenvalue at or below 1). This transition matrix was then used for

a vector auto-regressive (VAR) model [10] with noise (standard deviation of 1) to generate

data. Every other data sample was removed (to undersample at rate 2), and the resulting data

was provided to the SVAR optimization to yield a candidate ℋ2. The MSL algorithm was

then applied to this ℋ2 to obtain an equivalence class of that can be compared to ground

truth in terms of two error-types: omission error: the number of omitted edges normalized

to the total number of edges in the ground truth; comission error: number of edges not

present in the ground truth normalized to the total possible edges minus the number of those

present in the ground truth. Figure 12 shows the results of these simulations. We also plot

the estimation errors of the SVAR (on the undersampled data) to understand the dependence

of MSL estimation errors on the estimation errors for ℋ2. Interestingly, applying the MSL

algorithm does not significantly increase the error rates over those produced by the SVAR

estimation.

In some cases, SVAR estimation errors result in an ℋ2 for which there are no possible .12

For the simulations described in Figure 12, we deal with these cases by i) modifying MSL to

accept (at the final step) those solutions that produce an undersampled graph that has the

same directed edges as the estimated ℋ2; ii) restarting the simulation if a solution is not

found. The former improves performance because bidirected edges often contain a weaker

signal and are prone to mis-estimation, while the latter is to ensure comparability of results.

We have also modified the MSL algorithm so that, in these cases, it sequentially considers

all neighbors of each ℋ2 in the Hamming cube constructed on the length binary

string that represent directed and bidirected edges. If MSL finds a solution for one of these

neighbors of ℋ2, then we return it and compare to the ground truth as before.

We repeated our 8-node experiment successively checking neighborhoods from 1–5 steps

away from the learned ℋ2. In the worst case, this can require over 5.2 × 107 additional MSL

12Because the map is many-to-one, there are multiple such ℋ2. In fact, the set of “reachable” ℋ2 is at most
of the theoretically possible graphs.

Plis et al. Page 12

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

runs (for n = 8), so there can be a significant increase in run-time. The results are

summarized in Figure 13. The increased complexity did not allow us to proceed to the 30%

density. This time, however, we did not have to restart a single computation at densities or

15% and 20% with only few rejected at 25%.

5 Conclusions

Many scientific contexts depend on learning the structure of a system at some timescale that

is faster than the measurement timescale. Standard structure learning algorithms can extract

the measurement-level structure, but that structure can be quite different from the structure

of the underlying system. The apparent structure given undersampled data is not

immediately informative about the actual structure at the causal or system timescale. We

have presented the first computationally efficient algorithm for learning the equivalence

class of system-timescale structures that could have produced the measurement-timescale

data. The algorithm can, in theory, be applied for arbitrary known undersample rates u,

though it is computationally intractable for u > 3. Nonetheless, we have shown that the MSL

algorithm exhibits promising performance for u = 2, including reliably learning underlying

structure over large node-sets. The MSL algorithm also provides a novel tool for

investigating the sizes of those equivalence classes. We showed that small amounts of

undersampling typically do not destroy much information, as the equivalence class for many

 was a singleton. Undersampling greatly increases the complexity of structure learning,

but does not make it impossible or infeasible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Thanks to Kun Zhang for helpful conversations. SP & DD contributed equally. SP was supported by awards NIH
R01EB005846 & NSF IIS-1318759. DD was supported by awards NSF IIS-1318815 & NIH U54HG008540 (from
the National Human Genome Research Institute through funds provided by the trans-NIH Big Data to Knowledge
(BD2K) initiative). The content is solely the responsibility of the authors and does not necessarily represent the
official views of the National Institutes of Health.

References

1. Chickering DM. Optimal structure identification with greedy search. The Journal of Machine
Learning Research. 2003; 3:507–554.

2. Danks D, Plis S. Learning causal structure from undersampled time series. JMLR: Workshop and
Conference Proceedings. 2013; 1:1–10.

3. Dash D. Restructuring dynamic causal systems in equilibrium. Proceedings of the Tenth
International Workshop on Artificial Intelligence and Statistics (AIStats 2005). 2005:81–88.

4. Dean T, Kanazawa K. A model for reasoning about persistence and causation. Computational
intelligence. 1989; 5(2):142–150.

5. Fisher FM. A correspondence principle for simultaneous equation models. Econometrica: Journal of
the Econometric Society. 1970:73–92.

6. Friedman, N.; Murphy, K.; Russell, S. 15th Annual Conference on Uncertainty in Artificial
Intelligence. San Francisco: Morgan Kaufmann; 1999. Learning the structure of dynamic
probabilistic networks; p. 139-147.

Plis et al. Page 13

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

7. Granger CWJ. Investigating causal relations by econometric models and cross-spectral methods.
Econometrica: Journal of the Econometric Society. 1969:424–438.

8. Huettel, SA.; Song, AW.; McCarthy, G. Functional magnetic resonance imaging. Sinauer Associates,
Publishers; Sunderland, MA, USA: 2004.

9. Iwasaki Y, Simon HA. Causality and model abstraction. Artificial Intelligence. 1994; 67(1):143–
194.

10. Lutkepohl, H. New introduction to multiple time series analysis. Springer Science & Business
Media; 2007.

11. Moneta A, Chlaß N, Entner D, Hoyer P. Causal search in structural vector autoregressive models.
Journal of Machine Learning Research: Workshop and Conference Proceedings, Causality in Time
Series (Proc NIPS2009 Mini-Symposium on Causality in Time Series). 2011; 12:95–114.

12. Murphy, K. PhD thesis, UC Berkeley. 2002. Dynamic Bayesian Networks: Representation,
Inference and Learning.

13. Spirtes, P.; Glymour, C.; Scheines, R. Causation, prediction, and search. Vol. 81. MIT press; 2001.

14. Thiesson, B.; Chickering, D.; Heckerman, D.; Meek, C. Proceedings of the Twentieth Conference
Annual Conference on Uncertainty in Artificial Intelligence (UAI-04). Arlington, Virginia: AUAI
Press; 2004. Arma time-series modeling with graphical models; p. 552-560.

15. Voortman, M.; Dash, D.; Druzdzel, M. Proceedings of the Twenty-Sixth Annual Conference on
Uncertainty in Artificial Intelligence (UAI). Corvallis, Oregon: AUAI Press; 2010. Learning why
things change: The difference-based causality learner; p. 641-650.

Plis et al. Page 14

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
A 3-node SCC at undersampling rates 1 and 2, as well as its virtual nodes and their merging

options.

Plis et al. Page 15

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
The search tree for 3-node SCC of Figure 1

Plis et al. Page 16

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Edge-pairs for 3-node SCC of Figure 1 and merging options for their virtual nodes: all

possible options (raw) and the one that remain after constructing the pairwise data structure

(pruned).

Plis et al. Page 17

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Comparison of the search-space size (left) and computation time (right) between the naive

backtracking and our approaches.

Plis et al. Page 18

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Equivalence class size distribution among 100 randomly generated 6-node SCCs at a given

density and examples of 6-node SCCs for each.

Plis et al. Page 19

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.
Equivalence class size distribution for 100 randomly generated 8-node SCCs at a given

density and examples of 8-node SCCs for each of the densities.

Plis et al. Page 20

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7.
Distribution of run-time (wall clock) and sizes of equivalence classes across densities of 10-

node graphs.

Plis et al. Page 21

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8.
Example 10-node graphs at different densities and their corresponding .

Plis et al. Page 22

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9.
Graphs with 15, 20, 25, 30, and 35 nodes at the density of 10%, their corresponding and

equivalence class size distribution as well as the running time summarizing the computation

of 100 random SCCs per node size.

Plis et al. Page 23

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 10.
Applying the MSL algorithm to the problem: results for 100 random 6 node

graphs per density. Example and their corresponding are shown for reference.

Plis et al. Page 24

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 11.
Equivalence class size distribution for 100 randomly generated 6-node SCCs at a given

density after the MSL search when the input graph to the algorithm was in fact

Plis et al. Page 25

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 12.
The MSL estimation and search errors on synthetic data undersampled at rate 2.

Plis et al. Page 26

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 13.
The estimation and search errors on synthetic data undersampled at rate 2 when the

Hamming cube neighborhood search is used.

Plis et al. Page 27

Uncertain Artif Intell. Author manuscript; available in PMC 2016 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

