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Introduction
Over the past few years, rapid advances in next-generation 
sequencing (NGS) technologies have enabled researchers 
to generate enormous numbers of sequence reads at mark-
edly reduced prices; this has not only led to unprecedented 
extension of the scope of genome-based research projects 
but also made NGS to revolutionize biological and biomedi-
cal research, including human disease studies.1,2 Moreover, 
NGS technologies are becoming more affordable and are 
replacing the microarray-based genotyping methods lim-
ited to interrogating regions of known sequence variation.2 
To date, diverse large-scale projects have been performed 
incorporating NGS technologies to characterize numerous 
cancers, including renal cancer,3 melanoma,4 hepatocellular 
carcinoma,5 acute monocytic leukemia,6 and head and neck 
squamous cell carcinoma.7 Despite these successes, there 
is still a growing next-generation gap between the genera-
tion of massively parallel sequencing data and the ability to 
analyze and interpret the resulting information. If this gap 
cannot be closed, the coveted $1,000  genome could come 

with a $20,000 analysis price tag.8 Although numerous com-
putational tools dedicated to specific aspects of NGS data 
analysis have been developed in the past few years, most have 
project-specific features and their functionality and param-
eterization are complicated. This is especially challenging for 
bench scientists and investigators, who are redirected to this 
new field and in the early stages of acquiring its technical 
knowledge. Although a recent study summarized the poten-
tials and challenges of NGS-based cancer genome analysis, 
it did not provide a conceptual strategy or a detailed example 
of how to cope with the complexity of this type of analy-
sis.9 In this review, we introduce an NGS-based workflow 
consisting of four major stages for the utilization of NGS 
data for the purpose of individualized medicine. The intro-
duction of a conceptual NGS workflow might also forge the 
basis for collaboration between computational biologists, 
who develop the analytical methods; bioinformaticians, who 
utilize diverse data resources and implement software and 
tools; and clinicians, who act as the system end user and are 
responsible for shaping a new clinical practice.
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Primary Stage: Template Preparation, Sequencing, 
and Imaging
The primary stage of the proposed NGS workflow includes 
three interconnected parts: template preparation, sequenc-
ing, and imaging. Each NGS platform utilizes a unique 
combination of specific protocols to interconnect these three 
parts, and this combination determines the type, coverage, 
and quality of the NGS data. However, all NGS platforms 
monitor the sequential addition of nucleotides into immobi-
lized templates containing spatially arrayed deoxyribonucleic 
acid (DNA) molecules (Fig. 1). The main differences among 
NGS platforms are in template generation and the methods of 
recording and identifying sequences.10 The following sections 
explain each part of this stage in detail.

Template preparation. The first part of the primary 
stage of the NGS workflow is to randomly break genomic 
DNA for generating sequence templates, which should serve 
as a representative material source of targeted genomic nucleic 
acids (Fig.  1). There are three well-established approaches 
for template creation as follows: clonally amplified template, 
single-molecule template, and circle template. The first one, 
as the name suggests, focuses on sequence amplification, 
which is based on polymerase chain reaction (PCR). The raw 
sample concentration of amplification processes should be less 
than 20  ng/µL, generally depending on the NGS platform 
(eg, Illumina: ∼15 ng/µL; Roche/454: 5–10 ng/µL). For this 
approach, a library of fragment templates with adaptors of 
priming sequence sites is created. Amplification of template 
can be performed via either the emulsion PCR (ePCR)11 or 
bridge PCR (bPCR).12 For example, the sequencing by oligo-
nucleotide ligation and detection (SOLiD), Roche/454, and 
Polonator platforms mainly rely on ePCR, while in Illumina 
platform, bPCR is mainly applied. After amplification, mil-
lions of DNA molecules can be separately captured by the 
targeted adaptor primers. Then, the NGS sequencing can be 
performed through a platform such as Roche/454, which pro-
vides the PicoTiterPlate wells for this process.13

Compared to the clonally amplified template, the 
approach of the single-molecule template is more straight-
forward and requires less preparation materials (,1 µg). For 
this approach, single-molecule templates are prepared and 
usually immobilized on a solid surface, where single DNA 

polymerase molecules can bind to the immobilized primer 
template for the subsequent NGS process.14,15 Another 
advantage of this approach is its independence from the PCR, 
which reduces the sequencing error rate and avoids amplifi-
cation bias of the AT-rich and GC-rich parts of the target 
sequences. Furthermore, larger DNA molecules (up to tens 
of thousands of base pairs) can be applied for this approach 
to prolong the read length16 and to facilitate the read-time 
sequencing (RTS) methods.17

The circle template is a recently developed library prepa-
ration method that is able to reduce error rate dramatically 
and increase efficiency for the sequencing process.18 For this 
method, double-stranded (ds) DNA is denatured and then 
single-stranded DNA is circularized. Afterward, random 
primers and the Phi29 polymerase are applied to perform 
rolling circle replication, during which multiple tandem-copy 
dsDNA products are generated and sequenced simultaneously 
by any high-throughput sequencing technology. Each read is 
computationally grouped into a read family according to the 
original location of the circle.18 It is noteworthy that DNA 
damage that occurred during the process of template prepara-
tion will prevent accuracy and efficacy in the circle template-
related approach.

Because it generates a representative material source, the 
template preparation step determines the quality of the NGS 
data, and therefore, it is ultimately crucial for all stages of the 
NGS workflow. The choice of a library preparation approach 
will be dependent on the task at hand. The chosen approach 
for this part should be highly robust and sensitive in order to 
reduce error rates. For an investigator who wants to conduct 
a quantitative NGS analysis, such as transcriptome or gene 
expression profile analysis, the single-molecule template is 
recommended in order to avoid the risk of sequence amplifi-
cation bias. Investigators who intend to conduct a qualitative 
NGS analysis, including methylation analysis or mutational 
analysis, are recommended to apply the amplified template 
to capture complete genomic sequences without arbitrary 
sequence loss. However, the substitution and biased pre-
sentation of AT-rich and GC-rich regions will be the most 
common error type when the amplification template is used. 
The circle template-related approach is especially suitable to 
deal with cancer profiling, including diploid and rare-variant 

Tissue Template Imaging Sequence

Figure 1. Workflow of the primary stage. This primary stage consists of four parts that include preparation of tissue materials, creation of sequencing 
template, perform imaging, and sequencing. Their unique combination determines how the genetic sequence information is generated from tissues 
of different organisms. Although the focus of this stage of workflow is on the latter three parts, the importance of selection and preparation of tissue 
materials for NGS analysis cannot be neglected. The biased preparation of tissue materials could lead to fatal result of NGS workflow.
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calling, microbial diversity, immunogenetics, and environ-
mental sampling. The potential of this approach is now being 
increasingly recognized.

Sequencing and imaging. The next two parts of the pri-
mary stage of the NGS workflow are sequencing and imaging. 
The central strategy for these steps is to utilize the spatially 
separated immobilization of templates generated from the 
previous part and to record large numbers of simultaneous 
sequencing reactions. Four major technologies currently exist 
for this purpose as follows: (1) the complementary metal-
oxide semiconductor (CMOS) used by Ion Torrent Personal 
Genome Machine (PGM)19; (2) single-molecular real-time 
(SMRT) sequencing used by Pacific Biosciences (PacBio)15; 
(3) incorporation of a fluorescently labeled reversible ter-
minator (FLRT) in the synthesis process used by Illumina 
Genome Analyzer (IGA)20; and (4) a combination of emPCR 
and pyrosequencing used by Roche/454.21 The CMOS is a 
nonoptical sequencing method, which has been designed 
with the facility of the ion-sensitive field-effect transistor 
(ISFET) to detect the hydrogen ions released by DNA poly-
merase during the synthesis process. The DNA fragments are 
ligated to adapters and amplified via ePCR onto beads that 
are loaded into proton-sensing wells on a silicon wafer. As 
sequencing proceeds, the incorporation of each base releases 
a hydrogen ion associated with a signal that can be detected 
by ISFET.19

SMRT and FLRT are the main optical sequencing meth-
ods in the current market. Briefly, these methods specifically 
incorporate dye-labeled modified nucleotides into the DNA 
sequence synthesis process. Using fluorescent imaging, these 
dye-labeled nucleotides can be efficiently cleaved, and the cor-
responding signals can be emitted and recorded. Because there 
are essential differences in sequencing the clonally amplified 
template and single-molecule template, there are four well-
established approaches for sequencing and imaging with 
regard to template selection as follows: cyclic reversible termi-
nation (CRT), sequencing by ligation (SBL), single-nucleotide 
addition via pyrosequencing (SAPY), and RTS (Table 1). The 
study by Metzker22 explains the functional principles of these 
four approaches in detail.

CRT is a cyclic sequencing approach including nucle-
otide incorporation, fluorescence imaging, and signal emis-
sion and recording22 and is suitable for both aforementioned 

templates. For instance, the Genome Analyzer (GA) devel-
oped by Illumina/Solexa applies the clonally amplified tem-
plate coupled with a four-color CRT cycle,20 whereas the 
HeliScope, a single-molecule sequencer developed by Heli-
cos BioSciences, uses the single-molecule template combined 
with a one-color CRT cycle.23 Despite these successful appli-
cations, care must be taken with the compound that will func-
tion as a reversible terminator to stop each cycle within CRT. 
Inappropriate use of the terminator compound will reduce 
the quality of CRT and dramatically increase sequencing 
error. Currently, several compounds including 3′-O-allyl-2′-
deoxyribonucleoside triphosphates (dNTPs)24 and 3′-O-azi-
domethyl-dNTPs25 have been shown to be efficient reversible 
terminators. SBL, also a cyclic sequencing approach, has only 
been applied with the clonally amplified template.26,27 In 
2008, Valouev et  al developed SOLiD, a commercial form 
of SBL. Their study successfully demonstrated the efficiency 
of SOLiD sequencing for the creation of a high-resolution, 
nucleosome position map of Caenorhabditis elegans.27 Fur-
thermore, they found that, in general, SOLiD data have the 
tendency to underrepresent AT-rich and GC-rich regions. It 
has also been shown that SOLiD lacks the ability to sequence 
the palindromic region efficiently.28 Moreover, substitution 
is another common error type in SOLiD data. SAPY is a 
nonelectrophoretic and bioluminescence method that has 
been improved by Roche/454  in order to increase the read 
length and data quality. However, insertion and deletion are 
still the common error types due to the light signal absorp-
tion. This approach has only been applied with the clonally 
amplified template.29

Finally, RTS is a parallelized DNA sequencing based 
on the single molecular template (Table  1). This method 
was invented by the PacBio.15 The current read accuracy is 
approximately 83% (131/158). By repeated sequencing of the 
same template more than 15 times, the read accuracy can 
be improved to .99%.15 The strength of this approach is to 
use DNA polymerase as the engine to achieve a base pair solu-
tion with a natural high catalytic rate and high processivity. 
The sequencing and imaging process is followed by base call-
ing for identifying the nucleotides in accordance with four 
fluorescence dyes (Fig.  1). Currently, the most commonly 
applied base calling method is Phred base-calling, which pro-
vides high sensitivity and a low error rate when compared to 
other methods.30 Both CMOS and SMRT have the potential 
to become essential parts of the third-generation sequencing 
technology, which includes nanopore sequencing,31 molecular 
force spectrometry,32 single-molecule motion sequencing,33 
electron microscopy,34 sequencing by tip-enhanced Raman 
scattering,35 and others.

The primary stage is an instrument-specific stage and 
is confined to the NGS machinery process to produce digi-
tal data from a biochemical process. Thus, choosing an NGS 
sequencing platform is the first factor to influence down-
stream data analysis. For example, the Illumina platform is 

Table 1. Sequencing methods of NGS.

Method Read 
Length 
(bp)

Accuracy 
(%)

Speed 
(Reads/
Hour)

Cost per 
1 megabase

CRT 50–300 98 45,000,000 $0.1

SBL 85–100 99.9 7,000,000 $0.13

SAPY 700 99.9 40,000 $10

RTS 14,000 99.9 500,000,000 $0.13–$0.60
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suitable for a wide range of applications, especially whole-
genome sequencing, although it can relatively have a high 
substitution error rate and the sequence quality of the IGA 
can decrease toward the end of the read. The SOLiD plat-
form has one of the lowest error rates due to the advantage 
of two base pair color encoding. However, it is limited by its 
short-read lengths (,100 bp). Therefore, this platform is more 
suitable for targeted resequencing and exome sequencing. 
Nevertheless, the limitation of the current state of NGS is not 
the cost, although $1,000 per genome might be expensive for 
a routine setting in a standard hospital, but the issue of high 
throughput, because the latest sequencing methods, such as 

HiSeq X Ten from Illumina, can only produce in a day about 
seven genomes with 30× coverage.36 It has been anticipated 
that third-generation sequencers might have the potential to 
overcome these limitations.37

Secondary Stage: Alignments, De Novo Assembly, 
Single-Nucleotide Variant, and Structural Variant 
Detection
After NGS reads have been generated in the primary stage, 
the secondary stage of the NGS workflow has goals that can 
be divided into four main categories: chromatin immunopre-
cipitation (ChIP)-seq, ribonucleic acid (RNA)-seq, bisulfite 

A

B

RNA sequencing
data analysis protocol

RNA sequencing generation Chip-seq data generation Bisulfite-seq data generation

Read QC and preprocessing
including trimme and filter

Read mapping

Transcript assembly
and quantification

Statistical analysis
visualization

Statistical analysis
visualization

Statistical analysis
visualization

Statistical analysis
visualization

Cufflinks

edgeR

DEGseq
MACS Bismark

BSMAP

BS-seeker MAQ

GATK Samtools

bam2mpg

MethylKit

cisGenome

PealSeq SISS peak-finder

Binding site identification Methylation calling Variant calling

WGS/WES data generation

Chip sequencing
data analysis protocol

Bisulfite sequencing
data analysis protocol

Whole genome/exome
sequencing data analysis protocol

Figure 2. Data analysis protocols of the secondary stage. (A) The secondary stage is critical for NGS-based projects. Four different types of data 
analysis protocols are summarized here. Each of them serves their corresponding investigation purposes and goals. However, they share common 
procedures that are the read quality control and read mapping: Cufflinks,188 EdgeR,189 DEGseq,190 MACS,191 cisGenome,192 PeakSeq,193 SISSr,194 
bismark,195 BS-seeker,196 BSMAP,197 methyKit,198 MAQ,74 bam2 mpg,76 GATK,78 and Samtools.77 (B) Sequence alignment, SNV detection, and SV 
detection are major parts for the secondary stage of workflow, whose results determine the quality of the downstream analysis in the NGS workflow.
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(BS) sequencing, and whole-genome/whole-exome sequencing 
(WGS/WES; Fig. 2A). The goal of ChIP-seq data analysis is 
to investigate the genome-wide protein–DNA interactions. 
This analysis approach has facilitated unprecedented extension 
of the ability to discover and identify protein-binding sites.38 
An excellent review by Park summarizes the advantages and 
challenges for current research and technology using ChIP-
seq.39 Figure  2A depicts the ChIP-seq data analysis protocol. 
RNA-seq has now become a reliable and popular alternative 
for transcriptomic studies, as it enables a large number of novel 
applications. Recently, two precise and informative reviews have 
elucidated that RNA-seq data analysis provides far more precise 
measurements of the level of transcripts and their isoforms than 
other methods and that RNA-seq is an unbiased method for 
investigating complex traits and the pathogenesis of common 
disorders.40,41 Figure 2A depicts the protocol of RNA-seq data 
analysis. BS sequencing data analysis has been recently devel-
oped with reduced representation BS sequencing technology. 
This technology is able to profile genome-scale DNA methyla-
tion from mammalian genomes at significantly lower cost and 
higher efficiency than other methylation-related methods.42 
Jeltsch and Zhang provided a comprehensive review about BS 
sequencing data analysis.43 Figure 2A depicts the protocol of the 
BS method. WGS/WES analysis aims to determine and dis-
cover genetic variations based on sequence data, which is also 
the main focus of our review for this stage. Different aspects have 
been investigated, including sequence-read alignment, sequence 
assembly, single-nucleotide variant (SNV) detection, structural 
variant (SV) detection, and others (Fig. 2B). Therefore, the sec-
ondary stage of NGS workflow is a critical part of NGS-based 
projects. The application of diverse methods within this stage is 
strongly dependent on the project aim and other factors such as 
cost, effort, and time.

Sequence alignment. The central process of this stage 
of the NGS workflow is sequence read alignment, which 
provides the sequence precondition for RNA-seq, ChIP-seq, 
WGS/WES, and BS sequencing (Fig. 2A). A growing num-
ber of sequence-read alignment tools, including Bowtie,44 
BWA,45,46 CUSHAW,47 Genome Multitool (GEM),48 
Genomic Short-read Nucleotide Alignment Program 
(GSNAP),49 and TopHat,50 have been developed to handle 
alignment depending on diverse parameters of mapped reads, 
error rate, search speed, memory, sensitivity, and alignment 
accuracy. Bowie is an ultrafast, memory-efficient program for 
aligning short reads to genomes. Its functional strategy is to use 
a scheme based on the Burrows–Wheeler Transform (BWT)51 
and the FM Index52 for construction of genome indices, which 
allows Bowtie to align more than 25 million reads per CPU 
hour to the human genome in a small memory footprint of 
approximately 1.3 GB.44 In 2012, with the release of the sec-
ond version, Bowtie improved with fast and memory efficiency, 
strength of full-text minute index, and speed of hardware-
accelerated dynamic programming algorithm to achieve a 
combination of high speed, sensitivity, and accuracy.53

BWA is an alignment software package for mapping 
low-divergent sequences against a large reference genome. Its 
algorithm is based on backward search with BWT,54 which dra-
matically increases the memory footprint and alignment accu-
racy independent of the genome size.45 It needs to construct 
an FM index for the reference genomes to be used. The BWA 
consists of three algorithms as follows: BWA-backtrack, BWA-
SW, and BWA-MEM. The first is designed for short reads up 
to 100  bp, while the other two couple with long reads from 
70 bp to 1 Mbp.46 BWA is slower than Bowtie, but its alignment 
accuracy outperforms Bowtie slightly. At present, these two 
tools are the most applied in the field of sequence alignment.

CUSHAW is the first known sequence-read alignment 
software, whose algorithm is based on a compute unified device 
architecture parallel programming model. Although CUSHAW 
applies the same BWT and FM indices as Bowtie does, it is much 
faster and can provide comparable or even better alignment qual-
ity for paired-end alignment than Bowtie and BWA.47 However, 
CUSHAW is designed to deal with short-read alignment, sup-
porting a maximum read length of 256 bp. Currently, three dif-
ferent versions of this software have been released.47,55,56

The filtration-based GEM is the fastest alignment soft-
ware on CPU devices. Its functional strategy is to prune the 
search space without missing sequence-read matches, primed 
with careful optimizations by application of pigeonhole-like 
rules and refined by dynamic programming in bit-compressed 
representations.48 GEM is faster than all currently applied 
alignment tools on CPU devices and is well suited for align-
ing long reads due to its filtering-based pruning scale.

The Short Oligonucleotide Analysis Package (SOAP) 
is another well-established short-read alignment tool, which 
applies different fast and effective algorithms for indexing 
the reference genome. There have been four releases to date, 
which have improved memory reduction, increase of align-
ment speed, and utility on the GPU.57–60

The GSNAP is a fast and memory-efficient method for 
aligning both single- and paired-end reads as short as 14 nt and as 
long as desired. It works by considering complex variants involv-
ing multiple mismatches and long indels, and different splicings 
in individual reads. Moreover, GSNAP permits single-nucleotide 
polymorphism (SNP)-tolerant alignment by using probabilistic 
models or a reference database such as dbSNP to increase the 
precision of sequence alignment. Another additional function 
of GSNAP is to map reads from DNA treated with sodium BS 
to investigate the methylation state of genomic sequences. Cur-
rently, the major application of GSNAP is RNA-seq analysis.

TopHat is one of the most applicable mapping tools for 
RNA-seq analysis. It aligns all sequence sites relying on an effi-
cient 2-bit-per-base encoding and a data structure for efficiently 
using the cache on modern computer processors. It is notewor-
thy that TopHat considers RNA-seq reads spanning an exon 
boundary, which would be a major reason for alignment fail-
ure in previous mapping strategies.61,62 Furthermore, TopHat 
utilizes Bowtie for mapping non-junction reads. TopHat2 is 
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the second generation tool, with many significant functional 
enhancements, including aligning reads from fusion breaks and 
considering the presence of pseudogenes.63 Currently, TopHat/
TopHat2 are often used to localize RNA-seq reads generated 
from the Illumina and SOLiD platforms.

In general, choosing an aligner is highly dependent on the 
read length, alignment speed, hardware condition, and time of 
investigation. In the case of BWA, an MEM algorithm is usu-
ally preferred for read length of 70 bp or longer, such as those 
generated by Illumina, 454, ion torrent, and Sanger sequenc-
ing. The MEM algorithm has better accuracy than BWA-SW. 
Comparisons of the computational performance of these tools 
have been conducted by two recent studies.56,60 The compari-
sons were performed on specific data conditions and focused 
on alignment speed and sensitivity (Table  2). During these 
comparisons, multiple simulated data were generated for test-
ing. However, it is unknown whether the change of comparison 
conditions would lead to the change of tool rank. Mappers such 
as BWA and bowtie that are unaware of splicing are widely 
used for DNA-seq datasets, while TopHat and SOAP-splice 
are used for RNA-seq, since these aligners can handle spliced 
alignments such as mRNA transcripts without introns.

De novo assembly. Another cornerstone within the sec-
ond stage is the global assembly of sequence reads into a com-
plete genome (de novo assembly). This process facilitates more 
cost-effective and accurate genome analysis and removes all 
possible biases introduced by sequence alignment to a reference 
genome. Since NGS technologies pose tremendous challenges 
to de novo assemblers for assembling millions and billions of 
reads from different organisms, to the present, most de novo 
assemblers perform well on bacteria and small eukaryotes. For 
instance, Velvet, a de novo assembler based on the de Bruijn 
graph approach, has generated several genomes from bacteria 
to fungi with the ability to leverage short reads in combination 
with read pairs.64 Edena, another de novo assembler, has been 
developed based on the classical assembly approach where all 
overlaps are structured in a graph for exactly assembling accu-
rate contigs from data sets encompassing short reads of the same 
length. This software has been applied to generate several bac-
terial genomes with high-quality results.65 Table 3 summarizes 
the properties of several well-established de novo assemblers.

Only two recent studies have achieved breakthrough 
success by assembling human genomes. One study reported 
the development of a parallel short-read de novo assembler 

Table 3. De novo assemblers.

Name Supported Technology Assembly Coverage Error Rate References

ABySS Solexa, SOLiD 95.6% 1 per 8 kbp 66

Celera Solexa, Sanger, 454 95.23% 1 per 17 kbp 200

Edena Illumina 95.11% 1 per 4 kbp 201

Euler Sanger, 454, Solexa 92.78% 1 per 2 kbp 202

Forge 454, Solexa, SOLID, Sanger 93.67% 1 per 6 kbp 203

MIRA Sanger, Illumina, 454 94.48% 1 per 8kbp 200

PASHA Illumina 93.17% 1 per 7 kbp 204

SGA Illumina, Sanger, 454, Ion Torrent 95.9% 1 per 83 kbp 66

SOAPdenovo Solexa 94.8% 1 per 81 kbp 66

Velvet Sanger, 454, Solexa, SOLiD 94.5% 1 per 18 kbp 66

Notes: The coverage and error rate were measured by different studies under different conditions; therefore, the comparison might not be considered at quantitative 
level.

Table 2. Reads alignment softwares.

Name Average Alignments Speed 
(Million Reads/CPU Hour)

Maximum Sensitivity (%) Allowed Gapped References

Bowtie ∼2.3 96.52 No 45,56,60

BWA ∼3 94.40 Yes 45,56,60

CUSHAW .30 (GPU) 96.73 No 56,60

GEM .9 95.26 Yes 56,60

Soap ∼3 98.12 Yes 45,56,60

GSNAP 1.8∼2.8 94 Yes 49,199

Tophat/Tophat2 5∼10 96.1 Yes 50,199

Notes: In general, the sensitivity and speed are in inverse correlation. The benchmark tests of the following tools have been conducted by different studies under 
specific conditions; therefore, caution is needed when comparing them with each other.
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(assembly by short sequences [ABySS]) and its application 
for assembling a whole-genome sequence of a Yoruba man 
with 42-fold read redundancy.66 The other study developed 
an advanced de Bruijn graph-based approach for more effi-
cient and cost-effective de novo assembly and reported the 
successful generation of complete genomes of an Asian man 
and an African man by achieving a 71× sequencing depth of 
the NCBI human reference genome.67 Despite these success-
ful applications, de novo technologies face common challenges 
that impede their practical utilization. One conventional 
disadvantage of de novo assembly approaches is low speed, 
because the assembly of randomly positioned DNA reads is 
a computationally intensive process. Another disadvantage is 
the complication of repetitive sequence reads, which results 
in high error rate and imprecise assembly.68 However, the 
de novo assembly methods are irreplaceable and essentially 
important for characterizing unknown sequences of different 
organisms and discovering the cellular and biological diversity 
of our world.69 Thus, due to the rapid advances in sequence 
assembly technology, we anticipate that de novo assembly 
will become a practical method for creating disease-specific 
or individual family-specific reference genomes to help deter-
mine and detect the biological and cellular underpinnings of 
diseases and in other ways expand personalized medicine.

SNV detection. Because the SNVs including small inser-
tions and deletions are the most abundant among the various 
types of mutations causing diseases, approaches for SNV detec-
tion have become an indispensable part of downstream NGS 
analysis. In general, the SNV detection approaches are per-
formed after mapping reads to a reference genome and are critical 
in both WGS and WES analyses. Based on empirical experi-
ence of several genome sequencing studies, the SNV detection 
approaches can generate 3–4 million SNVs as an initial set for 
WGS analysis, while for WES analysis, approximately 20,000 
SNVs can be found.70–73 Therefore, the essential functionality 
that diverse SNV detection approaches need to provide is to 
minimize false-positive rate and maximize high-quality SNV 
sets for follow-up analysis and interpretation (Table 4).

One early study developed the software MAQ for read 
mapping and SNV detection, which uses a Bayesian statistical 
model and considers the mapping quality and error probabili-
ties from raw sequence quality scores in order to detect SNVs 
accurately and efficiently.74 A follow-up study applied MAQ 
combined with a set of critical rules related to read counts, base 
quality, and SNP quality scores and detected 2.6 million validated, 
high-quality SNVs from an acute myeloid leukemia genome.75 
Another recent study developed the software bam2  mpg for 
SNV detection from sequence reads of haploid or diploid DNA 
aligned to a related reference genome. The bam2 mpg tool uses 
the most probable genotype (MPG) algorithm based on a Bayes-
ian model and applies heterozygosity-dependent prior probabil-
ity in order to calculate the likelihood of each possible genotype 
given the observed sequence data.76 A follow-up study utilized 
this software and successfully developed a ratio score for evaluat-
ing mutation-related SNVs in melanoma.4

Although the two aforementioned tools have achieved 
certain successes in SNV detection, the most frequently 
applied SNV detection tools are SAMtools77 and Genome 
Analysis Toolkit (GATK).78 Both implement various utili-
ties for pre- and postprocessing sequence data from different 
formats for indexing, variant calls, sequence alignment, and 
others. Both tools were developed during large-scale genome 
projects, so methods including variant calling within both 
tools are robust, efficient, and validated with large sequence 
data. However, SAMtools and GATK depend on multiple 
parameters for variant calling, and according to the documen-
tation, it is not clear how different parameters of both tools 
should be interpreted with regard to whether a variant call is 
correct or how variants should be prioritized.

The low frequency of many important somatic mutations 
is pervasive in samples of different types of cancer.79 There-
fore, precise identification of SNVs with low frequency from 
heterogeneous cancer samples is a major task and a great chal-
lenge for clinical diagnostic approaches. Currently, two widely 
used SNV detection methods for this purpose are MuTect80 
and Strelka.81 MuTect has been developed by using a Bayesian 

Table 4. SNV/SNP detection tools.

Name Features Coverage (%) Error Rate (%) Reference

bam2mpg Variant calling 98.23 2.34 76

GATK Variant calling, SNV/SNP filter and quality calibration 97.78 2.90 205

MAQ Variant calling 97.92 0.18 74

IMPUTE2 SNP filter and genotype likelihood 97.16 0.88 206

Samtools Variant calling, SNV/SNP filter and quality calibration 97.86 3.30 205

SOAPsnp Variant calling, SNV/SNP filter 98.12 0.16 77

SNP array Variant calling, SNV/SNP filter 98.43 0.13 205

VarScan Variant calling, SNV/SNP filter 97.67 8.50 205

MuTect Tumor Variant calling, SNV filter NA ,0.24 80

Notes: The benchmark tests of the following tools have been conducted by different studies under specific conditions. The comparison is with precaution.
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classifier to detect SNVs with very low allele fractions in 
cancer samples. This method also applies six internal filters 
to remove artifacts for increasing read quality. Many studies 
have shown that MuTect could identify important subclonal 
drive mutations responsible for tumor progression and treat-
ment resistance with high sensitivity and specificity.82–85 The 
known disadvantage is that the sensitivity of MuTect will 
decrease when running it with high confidence configuration 
to control false positives. Strelka is another popular method 
for detecting somatic SVNs and indels from sequencing data 
of matched tumor–normal samples. This method is based on 
a novel Bayesian approach by considering normal samples as a 
mixture of germline variation with noise and matched tumor 
samples as a mixture of the normal sample with somatic varia-
tion. The Strelka has also been designed to cope with diverse 
SNV scenarios of matched normal–tumor samples, including 
identification of alleles with absence in the host’s germline.81 
Under a standard configuration, the performance of both 
methods (MuTect and Strelka) is highly similar.80 However, 
it is unknown whether a change of performance would follow 
when the conditions of the benchmark test are changed.

For SNV analysis, it is not only important to apply a tool 
with a high coverage and a low error rate but also necessary 
to consider the systematic bias that a chosen reference genome 
could cause. Although at present plenty of software tools have 
been developed for the purpose of SNV detections, and some of 
them have been applied and even proven to be accurate and effi-
cient as mentioned before, the general challenge of SNV detec-
tion has not been fully addressed. What is lacking is a concept 
or method for assessing the accuracy of each individual variant 
in order to reduce false discovery rate.86 Fortunately, the first 
well-characterized complete whole-genome reference material 
(NA12878) has been released recently.87 Common sequenc-
ing biases that can result normally in hundreds of thousands 
of discrepancies between different sequencing approaches for 
the same human genome can now be dramatically reduced by 
the utilization of the NA12878. Furthermore, another opti-
mal option would be that one should apply a de novo assembly 
approach to generate a project-specific reference genome from a 
control group, then conduct the SNV analysis and subsequently 

the filtering process to identify the potential candidate SNVs. 
Afterward, apply a known SNP database such as dbSNP88 to 
identify the disease-related SNPs among the SNVs, because a 
SNP is a special SNV found on a population level.

SV detection. Structural variations in the genome can be 
defined as any DNA sequence alternation other than a single-
nucleotide variation, including insertions, deletions, duplica-
tions, inversions, translocations, and copy-number variants.89,90 
Detection and characterization of genomic SVs are crucial 
steps for investigating the relationships between genotype and 
phenotype and understanding the genetic cause of complex 
diseases including cancer. Many previous studies have reported 
discoveries or identifications of a large number of SVs within 
human genomes and revealed the pathological involvements of 
different types of SVs.91–95 This has led to invoke an increased 
interest in the study of genomic structural variations and cor-
responding software developments for SV detections (Table 5). 
Current SV detection software can be classified into four cat-
egories according to the applied strategies for SV discovery:

1.	 paired-end mapping (PEM);
2.	 split read mapping (SRM);
3.	 depth of coverage (DOC); and
4.	 assembly-based approach (ASA).

Each category has its advantages and limitations. PEM 
identifies SVs from mapped paired reads generated in a discor-
dant manner, whose distances differ very significantly from a 
predefined or a usual average distance of paired reads. Therefore, 
PEM-based methods such as PEMer92 and BreakDancer96 can 
efficiently detect many kinds of SVs including insertions, dele-
tions, inversions, and tandem duplication, but are not capable 
of detecting SVs in low-resolution or low-complexity genomic 
regions with segmental duplication. Moreover, PEM-based 
methods have difficulty identifying SVs with larger than aver-
age size defined in the genome library.97

SRM detects SVs based on unmapped or partially mapped 
reads that potentially provide accurate position information 
of breaking points in a genomic region. Usually, these failed 
mapped reads are split into different fragments by SRM-based 

Table 5. Structural variation detection tools.

Name Coverage Error Rate Category Reference

PEMer 95% 0.2∼5% PEM 92

BreakDancer 88.5% 1.48% PEM 96

Pindel 87.2∼91.2% ,0.2% SRM 98

AGE 97% ,2.7% SRM 99

CNVeM .98.1% 1.90% DOC 102

ExomeCNV .95.3% ,0.78% DOC 103

Cortex .97.2% 1.7∼2.7% ASA 107

Magnolya 94% 6% ASA 108
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methods such as Pindel98 and AGE.99 Only the first and last 
fragments are further used for being aligned into the reference 
genome in order to localize the precise start and stop position of 
SV events. Therefore, the limitation of this type of approach is 
its tight dependence on the reference genome and the length of 
split reads. An interesting SV detection tool, DELLY, has been 
developed recently, which integrated PEM and SRM to accu-
rately delineate SVs at single-nucleotide resolution.100 This tool 
is suitable for detecting tandem duplication and copy-number 
variable deletion events as well as balanced rearrangements. A 
recent survey shows that only integrative approaches such as 
DELLY are able to meet high discovery criteria of sensitivity 
and specificity.101

DOC-based methods such as CNVeM102 and Exome 
CNV103 apply one important feature of massively parallel 
sequencing data with which several hundred million short 
sequence reads are efficiently produced to detect SVs based 
on the density of reads aligning to the reference genome.104 
Therefore, DOC takes the advantage of high-coverage NGS 
data and strongly varies from the aforementioned PEM and 
SRM, which focus on the genomic position information. There 
are two major bias factors of this approach: GC content and 
the presence of repetitive regions in the reference genome. 
Fortunately, several strategies have been developed to correct 
these bias factors.105,106 Furthermore, the utility of this kind of 

approach for investigating insertion, deletion, duplication, and 
other SVs needs to be investigated.

Entirely different from the three aforementioned 
approaches, the ASA tries to first reconstruct DNA fragments 
by assembling overlapping reads with or without a reference 
genome. The SVs can then be detected by comparing con-
structed DNA fragments with a reference genome. Therefore, 
ASA-based tools such as Cortex107 and Magnolya108 have a 
minimum requirement of read coverage and can discover novel 
genetic SVs ranging from a single base pair to a large structure 
variation. The main weakness of the ASA is its high demand 
on computational resources. This approach is not suitable for 
discovering SVs from a genomic sequence with low quality.

In summary, the secondary stage is an algorithm-
dependent stage, which is vital for NGS-based projects. 
Carefully considering and choosing appropriate methods 
and algorithms can dramatically improve the data quality of 
downstream analysis and reduce error rate.

Tertiary Stage: Statistics, Clustering, and Disease-
Specific Mutations
The second stage of the workflow reveals an abundant list 
of genetic variants. However, not all of them influence key 
functional factors that change normal cells into highly malig-
nant derivatives, and not all of them achieve survival and 

Figure 3. Five approaches for the tertiary stage on the investigation of disease-driven mutations: (A) Visualization of random data on multisegment 
plot, 4 Bartonella genomes by the genoPlotR115; (B) Annotate mutation according to an annotation database (http://creativecommons.org/licenses/
by-nc-sa/3.0/legalcode); (C) Predict mutation effect through analysis of the protein 3D structure generated by the tool PyMol (www.pymol.org); 
(C) Analyze the possible mutation effect with a statistical method; and (E) Detect mutation effect via generation of gene signature.
Note: Figure 3B is reused from http://barrymieny.deviantart.com/ under the conditions of the CC BY-NC 3.0 license.
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proliferation. Therefore, the important task within the tertiary 
stage of the NGS workflow is to detect variants that drive 
selective advantages.

In general, there are five independent approaches to 
identify functional and driver variants (Fig. 3):

 (a) Visualization of genomic variant distribution and 
relationship with (disease) phenotypes; (b) Annotations of 
mutations according to existing knowledge, such as publicly 
available annotation databases including dbSNP,88 Online 
Mendelian Inheritance in Man (OMIM),109 HapMap,110 
Human Gene Mutation Database (HGMD),111 and catalogue 
of somatic mutations in cancer (COSMIC),112 so that the 
functional implications of variants can be identified or deter-
mined; (c) Application of computational methods or tools to 
determine or predict the possible functional impact of muta-
tions; and (d) Using statistical methods to analyze the possible 
mutation effect based on the frequency or location of muta-
tions with regard to a genetic collection or a cohort of patients; 
and (e) Generating predictive gene signatures by applying a 
sophisticated machine learning technique, such as random 
forest, or stepwise regression selection, such as lasso.113

Visualize the distribution of genomic variants and 
their relationship with (disease) phenotypes. Efficient visu-
alization approaches have been developed to combine disease 
phenotypes with the genomic variants in individual samples. 
They are helpful to create hypotheses and to prepare inde-
pendent validation studies. Impressive examples for these 
complex visualizations are presented in the Nature series on 
The Cancer Genome Atlas (TCGA)-based analysis for spe-
cific tumor entities. For example, Figure 2 from the study of 
TCGA114 presents the individual genome-wide mutational 
changes (somatic exome versus tumor exome) for 195 colorec-
tal cancer (CRC) samples ordered with regard to several dis-
ease phenotypes as follows: tumor site, CpG island methylator 
phenotype expression phenotype, BRAF V600E mutations, 
methylation cluster, and RNA expression cluster.

The R-environment for statistical computation (https://
www.r-project.org/) provides an elaborated toolbox for com-
plex visualization. A more generic tool in this field is ggplot 
(http://ggplot2.org/), which is based on the grammar of 
graphics. The ggplot package takes care of many of the details 
that make plotting an effort providing tools for complex mul-
tilayered graphics. More genome-specific tools are provided 
by the package genoPlotR.115 This R package allows users to 
read from files with usual formats such as protein table files 
and blast results files, as well as home-made tabular files, to 
generate visualization with different layouts. Furthermore, the 
circular layout is an efficient way to create a visualization of 
huge amounts of genomic information. The R package circl-
ize116 provides an implementation of circular layout generation 
in R as well as an enhancement of visual effect. The package 
uses low-level graphics functions, and self-defined high-level 
graphics can be easily adapted by users for specific purposes. 
Together with the seamless connection between the powerful 

computational and visual environment in R, circlize gives users 
convenience and freedom to design figures for better under-
standing genomic patterns based on multidimensional data. 
Similar software is provided by Circos (http://circos.ca).117 
The Broad Institute offers the Integrative Genomics Viewer 
(IGV), which is a high-performance visualization tool for 
interactive exploration of large, integrated genomic datasets. 
It supports a wide variety of data types, including array-based 
and next-generation sequence data, and genomic annotations 
(https://www.broadinstitute.org/software/igv/home).

Database-based mutation annotation. Different 
large-scale projects, including 1,000 Genome projects, Can-
cer Genome Atlas Network, and the International Cancer 
Genome Consortium, provide new insights into cancerous 
genomic functions related to protein-coding and noncoding 
transcripts, transcription and epigenetic-regulation elements, 
and conserved genomic region. Databases such as dbNSFP118 
were developed for functional prediction and annotation of 
all potential nonsynonymous SNVs. dbNSFP compiles pre-
diction scores based on algorithms such as SIFT (http://
sift.jcvi.org/), Polyphen2 (http://genetics.bwh.harvard.edu/
pph2/index.shtml), GERP++ (http://mendel.stanford.edu/
SidowLab/downloads/gerp/), and MutationTaster (http://
www.mutationtaster.org/). Furthermore, the world’s largest 
and most comprehensive human mutation database, COS-
MIC,112 was updated recently in order to better emphasize 
the impact of the latest knowledge about cancer-related muta-
tions and allow systematical identification of the impact of 
known cancerous genes. Its potential has been waiting to be 
explored. These databases provide different types of valuable 
genetic information, made easily accessible by software tools 
such as SnpEff,119 AnnTools,120 ANNOVAR (http://annovar.
openbioinformatics.org/en/latest/misc/credit/), and Onco-
tator (http://www.broadinstitute.org/cancer/cga/oncotator). 
More recently, another database-based method, combined 
annotation-dependent depletion (CADD), has been devel-
oped by objectively integrating more than 14  million high-
frequency human-derived alleles. The score from CADD can 
quantitatively differentiate functional, deleterious, and disease 
causal variants across a wide range of functional categories 
in both research and clinical settings. Its performance has 
reached a higher level of efficiency when compared with other 
methods.121 However, the database-related approaches are 
confined to the “common disease, common variant” hypoth-
esis and are, therefore, not capable of classifying rare variants 
and mutations.122,123

Computational prediction approaches. If no assessment 
information for genetic variants and mutations is available, 
a computation-based prediction of functional impact is pos-
sible in order to identify a cancer-relevant or disease-associated 
functional impact. Some methods use physicochemical proper-
ties of a sequence as well as amino acid position information 
to predict the functional effect of a genetic variant or muta-
tion.124–126 More recently, it has become feasible to characterize 
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somatic noncoding mutations from genomic regulatory sites. 
Efforts have been made to apply high-throughput genomic data 
to characterize regulatory binding motifs that are subsequently 
used to predict the binding sites for diverse transcription factors 
in regulatory sequence regions.127,128 However, the challenge 
is how to interpret the mutational effect at system level. For 
instance, what is the relationship between the changed func-
tion of kinases or transcription factors and the cellular func-
tions such as evading apoptosis, sustained angiogenesis, drug 
resistance, limitless replicative potential, and others?

Frequency- and location-based statistical analysis. 
Because of their ability to provide adaptive advantages to can-
cer cells, driver mutations (compared to somatic DNA) are 
positively selected during the clonal development and evolution 
of pathological cells and tissues. Therefore, in general, driver 
mutations occur at a higher frequency than passenger or non-
functional mutations, which occurs only at a random frequency. 
Furthermore, for certain genes that possess key functions for 
cancer development, such as oncogenes and tumor-suppressor 
genes, although mutations within these genes may be highly 
variable, most tend to cluster within functional domains or 
within evolutionarily conserved regions. In this way, they 
alter the cellular function of these genes for facilitating cancer 
development, in contrast to passenger mutations, which occur 
at random locations throughout the genome.129

Statistical methods have been developed to assess muta-
tion frequency or mutation density by location within a given 
cohort of patients in order to identify the disease-related muta-
tions. These instruments support frequency- and location-
based statistical analysis. For instance, the tool mutational 
significance in cancer (MuSiC) applies various statistical tests 
including the convolution test, Fisher’s combined P-value 
test, and the likelihood ratio test (LRT) to distinguish driver 
mutations from background (passenger) mutation according 
to mutation frequency and location.130 Reimand and Bader 
developed a statistical model, ActiveDriver, that focuses on 
location-related, phosphosite-specific mutation rates across 
multiple cancer types.131 The model assumes that a missense 
mutation of cancer genes followed the Poisson probabilities 
distribution, and P-value-based scores are created for rank-
ing the top candidates that may be driver mutations. In 2012, 
Hodis et  al described a sequence mutation-based permuta-
tion framework.132 By application of their framework, they 
proposed potential candidate genes for positive selection dur-
ing melanoma development and attempted to investigate the 
relationship between genes with high mutation burden and 
environmental factors including ultraviolet light for a cohort 
of melanoma patients. A specific aspect of their approach is to 
leverage intron and UTR sequences in each gene locus for cal-
culating the gene-specific basal mutation rates.132 However, it 
is noteworthy that the frequency- and location-based statisti-
cal approaches are generally not able to assess the functional 
consequence of mutations. Results of these statistical analyses 
have to be biologically validated.

It is also of interest to combine gene annotation with 
observed frequencies of variants. Variants of the gene set 
enrichment analysis may be helpful to discover over- or under-
representation of disease-specific variants in functional com-
plexes represented by a specific set of genes.133

Gene signature-based approach. Another popular 
approach for identification of mutation effects is the generation 
of a gene signature, which is a selected set of genes together 
with an algorithm to calculate a signature derived score value. 
This approach combines a genomic spectrum of variants with 
a phenotypic outcome. In this setting, logic regression-based 
methods may be applied. The logic regression is a generalized 
regression methodology primarily applied when most of the 
covariates in the data to be analyzed are binary. The goal of 
logic regression is to find predictors that are Boolean (logical) 
combinations of the original predictors.134

Many approaches developed for gene expression-based 
classification and prediction can be translated to the analy-
sis of the prognostic and predictive relevance of mutation and 
variant spectra. Penalized regression approaches are parti
cularly helpful for studying the relationship of single variants 
within a large set of potential genomic markers.113

Of specific interest for individualized medicine is the 
relevance of predictive genomic markers for treatment deci-
sions. A marker is predictive if it contains information with 
regard to the response of a specific patient to a specific 
therapy. For example, specific mutations in the KRAS gene 
impair the response to cetuximab in patients with advanced 
CRC.135 More and more clinical trials are scanning whole-
genome variant spectra for predictive markers, and providing 
the statistical instruments for this type of purpose is a very 
active field of research.136,137 However, the predictive marker-
based approaches have several potential disadvantages. Often, 
these approaches lose discrimination power when the test data 
sets are entirely different than the training data sets. Further-
more, the generation of one or more predictive markers would 
be highly dependent on the following four factors: (1) purity 
degree of the patient sample; (2) NGS or microarray platform; 
(3) the statistical analysis approach that is chosen to build a 
gene signature; and (4) strong transcriptional dependency 
within a gene signature. Slight changes in these four factors 
might result in the selection of entirely different markers. 
Therefore, it is essential to verify the robustness and unique-
ness of a predictive marker before any application.

Quaternary Stage: Pathway- and Network-Based 
Analyses
System aspects are seen as key to understanding cancer. The 
understanding of the diversity and frequency of genetic changes 
leading to deregulation of signaling pathways in CRC is of 
high interest. Insights into the systems biology of the cancer 
cell may help to improve cancer treatment.138 Therefore, it is of 
interest to explore how the components of the system interact. 
Most approaches are static, ignoring the dynamic behavior of 
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a system over time because of the complexity of human-based 
time-series studies.

In general, the network- and pathway-based approaches 
use different types of molecular data and are rarely restricted 
to genome-wide information on variants and mutations. 
Transcriptomics, proteomics, metabolomics, and data on 
methylation and microRNA regulation are typically assessed 
simultaneously in an integrative analysis. Since a review of 
the full spectrum of system-related integrative analysis goes 
beyond the purpose of this review, we restrict our consideration 
to a few relevant aspects. Again, the Nature series on TCGA 
analyses tries to express first insights into systemic aspects by 
informative graphs. See for example Figure 4 from the study 
of TCGA,114 which combines mutational and transcriptome 
information and studies up- and downregulation of specific 
pathways. Several large-scale genome-wide projects give 
excellent examples of role of pathways in the progression or 
etiology of different cancer types and indicate the importance 
of pathway- and network-based analyses for the understand-
ing of disease development.83,138–142 Therefore, pathway- and 
network-based analysis has been advocated as an important 
downstream analysis for genome-wide association study.143–145 
This type of analysis addresses at least two major issues as fol-
lows: it can identify groups of genes directly associated with 
disease or pathological phenotypes in a way that is easily com-
prehended by the investigators, and it can successfully separate 
noisy genetic bystanders caused by the instability of malignant 
genomes.146 The computational challenges of cancer genome 
analysis are summarized by Vazquez et al.9

Network-based analysis. A network is defined by nodes 
and edges expressing the neighborhood between two nodes. 
Network analysis is a straightforward first approach to systems 
biology. Algorithms for constructing networks and defin-
ing neighborhoods of specific nodes are under study. Often 

very simple approaches are used: two genes are neighbors if 
they are quoted in the same paper. However, neighborhood 
may also be defined by human protein–protein interaction 
(PPI) maps,147,148 related chemical reactions as proposed in 
the molecular signaling map,149 or curated maps of human 
metabolism and regulatory networks.150 Chuang et al devel-
oped a PPI-based network analysis with the potential to inte-
grate genome-wide data including sequencing data and gene 
expression data.151 This approach showed the advantages and 
high potential of the subnetwork signature for metastatic 
breast patients.

Visualization of networks is helpful. Hairball plots are 
typically used, but the best way to plot networks is under dis-
cussion.152 Interpreting hairballs is made difficult by several 
significant shortcomings as follows: (1) their form is deter-
mined by layout algorithms; (2) many layout algorithms are 
stochastic and can produce many different layouts of the same 
network; (3) layouts of the same network created by differ-
ent algorithms cannot be easily compared; (4) the layout can 
be disproportionately affected by very small changes in a net-
work; and (5) layouts of different networks created by the same 
algorithm cannot be easily compared.

Pathway-based analysis. A pathway encompasses a set 
of biochemical events that operate within a cellular process 
and includes a group of genes defined by some biological 
commonality for certain phenotypes. Pathway-based analysis 
begins with biological knowledge and can provide concrete 
and detailed functional or mechanistic insight into the con-
nection between genotype and phenotype. There are several 
large-scale, public pathway databases, expert-curated and 
peer-reviewed to ensure high quality, including Reactome,153 
KEGG,154 PANTHER Pathway,155 and others. These public 
pathway databases form the fertile data basis for conducting 
pathway-based analysis. Recently, a genome-scale molecular 

Mapped reads

Recorder
SAM/BAM

Sort SAM/BAM

Indel realignerRealigner
target creator

Base
recalibrator Print reads

Mark
duplicates Phase 1

output

Variant calling

UG-dafault

HC-dafault

VS-dafault

VS-P value
VS-cons1

VS-cons2

Phase 2
output

Slice BAM
Add or replace

read groups

Figure 4. Whole workflow of variant calling procedure. Output from mark duplicates is considered as phase 1 output while that of print reads were 
considered to be phase 2 output.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Application of ngs to therapeutic response prediction

99Cancer Informatics 2015:14(S5)

metabolic model containing .90 diverse metabolic pathways 
has been successfully reconstructed based on the 50-year leg-
acy bibliome data combined with some aforementioned path-
way databases. This model possesses strong potential related to 
predicting the outcomes of adaptive evolution. This model has 
also been applied for identification of key metabolic functions 
or components corresponding to specific environmental or 
genetic perturbations.150 A follow-up study utilized this 
metabolic model and developed a model building algorithm 
in order to automatically build case-specific cancer-metabolic 
models for elucidation of drug target effects and prediction of 
synthetic lethal effects.156

Another recent study by Bordbar et al applied the afore-
mentioned genome-scale metabolic model to elucidate the 
functional relationship between the activation of macro
phages, immune response, and metabolic reprogramming by 
integrating multiple omics data including transcriptomics, 
proteomics, and metabolomics.157 The approach of this study 
is based on the metabolic flux, which has been widely accepted 
for analyzing metabolism.158,159 The result of this study pro-
vides an important indication to delineate metabolic mecha-
nisms as immunotherapeutic targets, which further evidences 
the strength of pathway-based analysis.

More recently, in order to better understand the dynamic 
behavior of cancerous cellular systems, Li and Mansmann 
conducted literature research to collect molecular information 
for construction of a large-scale human signaling model.149 
This published model includes .20,000 biochemical reac-
tions that can be organized into .50 diverse cancer-relevant 
signaling pathways. In addition, both authors developed the 
Flux-Comparative-Analysis (FCA) to incorporate the tran-
scriptome data of individual cell lines into this signaling 
model with the goal of drug response prediction at an indi-
vidual level. They applied FCA to predict the drug response 
of NCI-60 cancer cell lines and achieved a promising result, 
demonstrating the usefulness of pathway-based analysis for 
the targeted therapy.

The result of this stage can directly influence the individual 
patient treatment and outcome. However, care must be taken to 
verify the quality of an applied biological network. The applica-
tion of an unverified biological network can substantially increase 
the false-positive rate. A second error source is the quality of the 
data generated by the previous three stages. Therefore, these four 
stages are interconnected parts. The following section gives an 
application example of this four-stage workflow and highlights 
the key points of the workflow. We would like to finish this 
chapter with a warning by Sadeh et al.160 Our current under-
standing of cellular networks is rather incomplete. We overlook 
important, but so far unknown, genes and mechanisms in the 
pathways. Moreover, we often only have a partial account of the 
molecular interactions and modifications of the known players. 
When analyzing the cell, we look through narrow windows, 
leaving potentially important events in blind spots. Network 
reconstruction is naturally confined to what we have observed. 

Little is known on how the incompleteness of our observations 
confounds our interpretation of the available data.

Reproducibility
The reproducibility is becoming an essential part of the NGS 
landscape. The bioinformatics community has developed 
different systems including Galaxy (http://usegalaxy.org) to 
address this issue. Our application example demonstrates that 
our proposed NGS-based four-stage workflow can be imple-
mented in a Galaxy instance. Galaxy, an open-source, web-
based platform for biomedical research, is one of the current 
leading workflow systems. A local galaxy instance can be built 
up with necessary tools and computational capacities and can 
be used as an ideal platform for bioinformatics. Since Galaxy 
manages the tool versions and tool dependencies, it provides 
opportunities for reproducing identical results even after tool 
upgrades. Project-specific workflows can be generated and can 
be used repeatedly in an orderly fashion. Workflows and even 
complete analyses can also be shared among different galaxy 
instances, which provide great scope for knowledge sharing and 
uniformity among consortiums. Another potential platform for 
reproducible bioinformatics is the Docker (www.docker.com). 
It is a very recent technology for facilitating reproducibility 
by encapsulating a complete environment with system tools, 
scripts, libraries, tool dependencies, etc., into a Linux operat-
ing system. Docker containers can be launched on any operat-
ing system, and the necessary tools can be used without any 
interference from the operation system itself. A well-configured 
and documented Docker image can be shared among different 
study groups, and the designed workflows can be executed in a 
reproducible manner. Although Docker has the potential to be 
recognized as one of the most fundamental workflow systems 
developed in recent years, we have not incorporated our work-
flow into the Docker environment because of several security 
issues raised recently.161 Currently, we are following the projects 
relating to common workflow language (CWL) very closely 
and are in close contact with the main developers. We believe 
that CWL can define the future direction for annotation and 
development of NGS-related tools. Although there is no final 
specification of CWL, Galaxy and Docker continue to interact 
to push the development of CWL, and our proposed workflow 
has the potential as a draft version of a standard NGS workflow 
for reproducibility. In the following section, we demonstrate an 
application workflow within the Galaxy.

Application Example
The aim of this example is to reproduce the genomic profile of 
colon patients reported by the TCGA,114 which gives a demon-
stration of the suggested four-stage workflow. The application 
starts with processing the digitalized genomic data, the BAM 
files, containing sequence reads from Illumina platform. These 
BAM files include raw exome reads, which were mapped to 
the GRCh37-lite reference genome (https://browser.cghub.
ucsc.edu/help/assemblies/). Thus, in our example, the primary 
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stage and the beginning of the secondary stage (mapping) 
have already been performed by TCGA. Five CRC samples 
(both tumor and normal) were used for our analyses. All the 
included datasets were downloaded from the TCGA data 
portal (https://tcga-data.nci.nih.gov/) in order to reproduce 
their published genomic variants. Subsequently, our variant 
calls were compared with the variant calling made by TCGA 
to demonstrate the concordance and discordance among the 
variants. Moreover, variant callers specific for tumor–normal 
sample pairs such as Mutect80 and Strelka81 were also used to 
obtain somatic variants in this example.

Among the 24 significantly mutated genes presented by 
TCGA, we restricted our region of interests to the following 
six genes: APC, TP53, SMAD4, PIK3CA, KRAS, and ARID1A. 
The gene list includes some tumor-suppressor genes, such as 
TP53 and APC, and an oncogene, KRAS, and others frequently 
associated with cancer.162–164 The secondary stage proceeds 
with preprocessing raw mapped reads before the variant calling 
procedure is carried out to filter out noisy background informa-
tion. There are no gold standard preprocessing steps established 
for variant calling. The best practice guides (https://www.
broadinstitute.org/gatk/guide/best-practices) and common 
usages (http://varscan.sourceforge.net/support-faq.html) were 
applied and were grouped into two phases in order to deter-
mine their effects over variant calling. Phase 1 preprocessing 
involved the removal of read duplicates, reordering and sort-
ing the mapped reads, while phase 2 extended the steps from 
phase 1 with indel realignment and base recalibration. Two of 
the most popular variant calling tool boxes, GATK (v2.7.4) 
and VarScan (v2.3.6), were used to create six variant calling 

procedures common for variant detection. Unified Genotyper 
(UG-default), HaplotypeCaller (HC-default), and VarScan 
with default parameters (VS-default) restricted P values (VS-
pvalue) and two conservative parameters (VS-cons1 and VS-
cons2). These are shown in Supplementary File 1. The SNPs 
and indels were called with the workflow pictured in Figure 4. 
Variant callers such as MuTect (v1.1.7), Strelka (v2.0.5), and 
VarScan (v2.3.6) were used for the detection of somatic variants. 
Default values were used in all three somatic variant callers.

The resulting variants were then compared with the 
TCGA variants, which were considered as reference, to deter-
mine concordance and discordance among them (Supplemen-
tary File 1). In the case of SNP detection, all six variant calling 
procedures showed similar performance, with a concordance 
range of 90%–95% (Fig. 5). But a wide variation in indel call-
ing (45%–90%) was observed. The variant calling VS-default 
could reach the highest true positive rate independent of the 
preprocessing phases used. However, it also showed a high 
false-positive rate (Fig. 6). Although most of the preprocessing 
steps are included in the best practice guides for GATK, this 
does not seem to increase its performance with UG and HC. 
Among the GATK variant callers, HC-defaults seem to have a 
high concordance rate with comparably low false-positive and 
false-negative rates. Among the VarScan parameter sets, VS-
pvalue shows better performance than others. These variants 
can then be filtered with quality, frequency, etc., depending on 
the study. Of the somatic variant callers, MuTect from Broad 
Institute detected many variants among tumor–normal pairs 
when compared with Strelka and VarScan. Although somatic 
variants were detected, almost all of them were rejected by 
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the inbuilt filtering algorithms of the variant callers. Several 
criteria were used for filtering somatic variants. For example, 
MuTect rejects the variants with strand artifacts, poor mapping 
regions, triallelic sites, etc., whereas Strelka considers chromo-
somal mean depth, fraction of base calls filtered, etc. Apart 
from the filtering criteria, the region of interest also restricts 
the somatic variant calls and thus resulted in the detection of 
very few variants (Fig. 7).

The tertiary stage involves the annotation of detected 
variants. The SNP ids were annotated from the dbSNP data-
base.88 The functional predictions of potential nonsynonymous 
variants were annotated from dbNSFP database,118 which 
provides prediction scores from SIFT, Polyphen 2, LRT, etc. 
SnpSift (http://snpeff.sourceforge.net/SnpSift.html) was the 
tool platform used for the annotation processes. It was fol-
lowed by predicting effect, effect impact, codon change, etc., 
performed using SnpEff.119 An additional way to comprehen-
sively understand the effect of SNPs is to visualize the anno-
tated variants. The figures in Supplementary File 2 represent 
the relative genomic positions of SNPs and the exon regions 
of genes of interest.
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Notes: X-axis denotes the false-negative values, while Y-axis denotes false-positive values. Both axes were log transformed. The pale blue and yellow 
boxes indicate phase 1 and phase 2 boxplots of the axes variables, respectively. The results from variant callers were color coded.

The quaternary stage is network-based analysis, with the 
aim of associating the genes with pathological phenotypes. 
We performed the analysis similar to that described in the 
study of TCGA, counting the mutational frequency of these 
genes of interest and applying the human molecular signaling 
map149 to locate the potential molecular influences of these 
genes on cancer development (Fig. 8). In this way, it is easy for 
investigators to comprehend or identify the major therapeutic 
targets for prevention and for halting tumorigenesis from 
a global molecular perspective.

Conclusion and Summary
NGS technologies perform massively parallel sequencing, which 
can facilitate high-throughput genome data sequencing and 
provide an unprecedented opportunity for genome research. 
Thus, NGS technologies can become an essential part of indi-
vidualized precision medicine. Although a large number of 
NGS-related tools and softwares have been developed for spe-
cific purposes with NGS data, there has not been a generalized 
NGS data analysis protocol that can be interpreted easily and 
generate results that can be reproduced independently. To face 

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10
http://snpeff.sourceforge.net/SnpSift.html


Li et al

102 Cancer Informatics 2015:14(S5)

this challenge, we have set out a four-stage NGS workflow that 
gives an overview for adoption of NGS technology in a clini-
cal context for individualized medicine. The primary stage is an 
instrument-dependent stage, focused on the elucidation of the 
effects and influence of different combinations of sequencing 
protocols on the NGS data. The choice of NGS platform and its 
related sequencing protocol could be the main factor influencing 
downstream analysis. The secondary stage is an algorithm-depen-
dent stage, which is a critical part of any NGS-based project. 
This stage introduces diverse methods and related algorithms for 
different purposes of processing NGS data and provides an indi-
cation of how to process NGS data with optimization of cost, 

time, and effort. The tertiary stage is an application-dependent 
stage, which summarizes five kinds of approaches for identifi-
cation of driver mutations. The quaternary stage is a patient-
dependent stage, which is the key stage for combining patient 
data with molecular modeling approaches. This stage reveals 
the importance and advantage of pathway- and network-based 
analyses for the purpose of NGS-related personalized medicine. 
In summary, this four-stage workflow provides an opportunity 
to examine the possible benefits of incorporating NGS data into 
individual patient care and attempts to lay out a workflow struc-
ture for optimized storage of NGS data and results.

Different research reports show that clinicians possess 
critically low knowledge and experience of combining treat-
ments with application of multiplex genomic test results.165,166 
This could be the major reason why many clinical centers join 
molecular tumor boards (MTBs), which include expertise from 
molecular pathologists, medical oncologists, bioinformaticians, 
genetic counselors, and others in order to serve as treatment 
advice organizations for individualized medicine.167,168 Unfor-
tunately, most MTBs still apply gene panels with limited num-
bers of genes and cannot fully utilize the advantages of NGS 
sequencing technologies.

We believe that our proposed four-stage workflow could 
function as guidance for MTBs to resolve the situation of lack 
of NGS-based experience. For example, the primary stage can 
provide a clear indication of which sequencing platform should 
be applied, and how much the related cost for sequencing and 
downstream data analysis might be. This gives organizers of an 
MTB a basis for calculation of a treatment budget. The second-
ary and tertiary stages illustrate how disease-related mutations 
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are identified and classified. The procedures of both stages can be 
designed and interpreted by MTB researchers in bioinformat-
ics, clinical genetics, and translational science, enabling them 
to determine the driver mutations or disease-causing muta-
tions. The result of the quaternary stage can be used by path-
way analysis specialists, medical and surgical oncologists, and 
pathologists to predetermine the scope of possible therapeutic 
interventions that can be discussed with other members of an 
MTB to determine the optimal treatment option for an indi-
vidual. Furthermore, regarding the educational efforts, the 
workflow might foster better cooperation within an MTB and 
provide basic knowledge for bench scientists and investigators 
who are redirected to this new field.

Because of rapid advances in NGS technologies, the gene
ration of new data and the corresponding scientific publications 
are happening at a previously unprecedented rate. Unfortunately, 
diverse evidence shows that majority of these scientific findings 
cannot stand the test of time and suffer the problem of irrepro-
ducibility.169 Our proposed four-stage workflow can be incorpo-
rated into the Galaxy framework170 or other web services to help 
with constructing a basic framework for scientific reproducibility. 
Although it has been widely recognized that NGS technologies 
have the strongest potential for a powerful clinical diagnostic 
and prognostic application, there still exist multiple challenges 
for the interpretation of NGS data. These must be overcome in 
order to make such technologies routine in clinical applications.

1.	 A robust clinical protocol is still needed to extract high-
quality DNA from different tumor samples in order to cre-
ate a good sequencing library, especially, because most tumor 
samples are stored in the form of formalin-fixed, paraffin-
embedded (FFPE) samples. FFPE storage may damage 
DNA or decrease DNA quality.171 Furthermore, many 
tumor samples are available in limited amounts, such as 
small core needle biopsies or the small cell blocks generated 
by separating malignant pleural effusion.172 Fluid biopsies 
may also offer new potential to harvest DNA of interest.

2.	 The criteria for the selection of tumor specimens need to 
be considered carefully, because of tumor heterogeneity 
and low quantity of tumor nuclei in some cases.173 There-
fore, uniformly high sequence coverage and appropriate 
analysis approaches are needed.

3.	 The nature of NGS data encompasses different technolog-
ical and biological biases, as well as systematic errors, that 
may result from different sources including uncertainties 
in read alignments,174,175 batch effects,175 sequence effects 
and base calling sequence error,174–177 platform-specific 
mechanistic problems,178,179 and others.179,180 Therefore, 
the careful processes within each stage of NGS workflow 
are critical to reduce the potential error rate for the final 
result and interpretation.

Many studies provide evidence that genetic intratumor 
heterogeneity may be the major reason for failure in prognosis,  

diagnosis, and treatment.181–184 Recently, regarding differ-
ent cancer types, several studies have shown clear quantita-
tive differences of genetic aberrations between primary tumor 
sites and metastatic sites or recurrent sites using NGS-based 
methods.185–187 This trait of tumor heterogeneity might elicit a 
main reason why a treatment of monotherapy can result in resis-
tance in many cases, and combination therapy might be effective. 
Given these facts, it is advisable to define and use the tissue 
material of a tumor carefully, following a clear protocol in order 
to ensure an appropriate starting point of NGS workflow.
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