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Abstract

Most natural odors have sparse molecular composition. This makes the principles of com-
pressed sensing potentially relevant to the structure of the olfactory code. Yet, the largely
feedforward organization of the olfactory system precludes reconstruction using standard
compressed sensing algorithms. To resolve this problem, recent theoretical work has
shown that signal reconstruction could take place as a result of a low dimensional dynam-
ical system converging to one of its attractor states. However, the dynamical aspects of opti-
mization slowed down odor recognition and were also found to be susceptible to noise.
Here we describe a feedforward model of the olfactory system that achieves both strong
compression and fast reconstruction that is also robust to noise. A key feature of the pro-
posed model is a specific relationship between how odors are represented at the glomeruli
stage, which corresponds to a compression, and the connections from glomeruli to third-
order neurons (neurons in the olfactory cortex of vertebrates or Kenyon cells in the mush-
room body of insects), which in the model corresponds to reconstruction. We show that
should this specific relationship hold true, the reconstruction will be both fast and robust to
noise, and in particular to the false activation of glomeruli. The predicted connectivity rate
from glomeruli to third-order neurons can be tested experimentally.

Author Summary

Many olfactory systems are capable of accurately sensing a minimum of thousands of differ-
ent odorants using as few as hundreds of different receptors. This compression raises the
possibility that the mathematical properties of compressed sensing might be relevant to
olfaction, similar to how these properties were found relevant to other sensory systems. In
olfaction, previous applications of compressed sensing algorithms relied on the dynamics of
neural circuits to reconstruct high dimensional signals. Such approaches are relatively tem-
porally inefficient and sensitive to noise. To overcome these problems, we propose a purely
feedforward compressed sensing model of the olfactory system where high dimensional sig-
nals can be recovered with a single feedforward layer of neural processing. The reconstruc-
tions are shown to be robust to noise, account for a number of experimental observations,
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and because of the feedforward structure are temporally efficient. Using the model, we make
predictions that can be tested in future experiments with respect to optimal connectivity
within the olfactory system. Our results indicate that feedforward neural architectures can
provide an efficient way to implement compressed sensing in neural systems.

Introduction

Although it is still debated how many different odorants humans can perceive, the most com-
monly cited number is on the order of 10* [1-3], much greater than the 500 olfactory receptor
neuron (ORNs) types. Many other species, including both vertebrates and insects, have the
same order of magnitude of ORN types or even fewer (around 1000 in mice, 50 in Drosophila).
The order of magnitude difference between the number of odorants and ORN types implies
that humans as well as other species rely on compressed representations, potentially following
the principles of compressed sensing [4-7].

In the compressed sensing framework [4], sparse high dimensional signals can be accurately
reconstructed using a small number of measurements provided that the input signals are sparse.
Natural odors are sparse in the sense that they are dominated by a few molecular components
[8-10]. The relevance of compressed sensing algorithms to olfactory coding is reinforced by the
anatomical organization of the olfactory system. High dimensional odor signals are compressed
into a low-dimensional representation in terms of the activity of a relatively small number of
glomeruli in the olfactory bulb, in the case of vertebrates, or the antennal lobe in the case of
invertebrates. The standard compressed sensing algorithm performs signal reconstruction as a
constrained ¢; minimization [4]. Such optimization can be solved through neural dynamics [5,
6], but the resulting reconstructions were considerably less fault tolerant than observed experi-
mentally. For example, mice olfactory discrimination remains essentially intact when half of glo-
meruli are disabled [11] whereas theoretical reconstructions fail at this level of signal
interference [5]. Furthermore, signal reconstruction based on dynamical optimization by con-
struction requires more time for signal recognition compared to feedforward reconstruction
schemes. Here we describe a feedforward reconstruction scheme based on compressed sensing
ideas that is both fault tolerant and matches the main features of the organization of the olfac-
tory system. The results demonstrate that a purely feedforward network is capable of robustly
compressing/decompressing binary signal without dynamical optimization.

Models and Methods
A compressed sensing model of the olfactory system

We begin by reviewing the main results from compressed sensing literature as they pertain to
olfactory coding. The odor signal s° can be described as a binary vector of length N where each
element is either 1 or 0 depending upon whether a given molecular component is present or
not in the odor. We refer to the number K of nonzero components in the odor as the odor spar-
sity. The main premise of compressed sensing is that a sparse signal s” can be compressed into
a vector x = As® of length M < N and then recovered with high reconstruction quality provided
K < N. The encoding matrix A has dimensions M x Nj its matrix elements can be chosen ran-
domly. With this setup, the original signal s” can be recovered exactly from the convex ¢, opti-
mization problem [4]

§= argmin]||s||, subject to x = As". (1)
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Although the ¢; minimization problem can be solved in polynomial time, it is not straight-
forward to implement such optimization algorithms in a neural circuit. One solution involves a
two-layer neural network that perform similar #; minimization through neural dynamics [6].
However, this imposes certain requirements on the structure of recurrent connections in the
second layer together with a static nonlinear activation function. Another alternative imple-
mentation relies on ¢, minimization instead of ¢;. In this case, the reconstruction is obtained
simply as § = (ATA) ' A"x where the ' represents a pseudo-inverse relation. However, such
an approach does not produce exact signal reconstruction [7] and would predict much larger
errors than observed in olfactory experiments.

Robust feedforward reconstruction of sparse odors

We now propose a model for the olfactory system, which can compress and robustly recover
sparse binary signal with high probability, without using any dynamical optimization. The
solution is based on a nonlinear binary encoding model instead of the linear encoding model
used in the conventional compressed sensing approach. Specifically, the compressed vector x
has the form of a threshold function x, = H(x! — 0.) where x' = As° and M is the Heaviside
step function with 7(0) = 1. We assume that the measurement matrix (affinity matrix) A is a
MxN random binary matrix where each element is chosen independently to be either 1 or 0
with equal probability p and 1 — p, respectively. It is worth mentioning that while we use a ran-
dom connectivity matrix in our model, we do not assume that this matrix differs across indi-
viduals. Rather, the randomness is meant to characterize how well the system works in the
absence of specificity between odorants and glomeruli identity. By extending the definition of
'H to vectors, the measurement vector x can be compactly written as

x=H(As" - 0), (2)

where 0, = 1, reflects that all measurements larger than 1 are set to 1 so that x is binary. This cor-
responds to a binary model of glomeruli activity described by the binary vector x. The threshold
value of 6. = 1 corresponds to a logical OR operation, so that glomerulus k will be activated if
any of the odor components that are associated with inputs to this glomerulus are activated.

To reconstruct the original signal, the glomeruli activity x are projected to another layer of
neurons (neurons in the olfactory cortex of vertebrates or Kenyon cells in the mushroom body
of insects) which has the same dimension as the original signal s°. The activity of neurons in
this layer is denoted by vector § which has the same dimensionality N as the original signal s°.
The reconstructed signal can be computed as

§=H(W'x—0,), (3)

where 0, is the activation threshold for neurons in the reconstruction layer. The reconstruction
matrix W equals the measurement matrix A normalized to 1 by column, i.e. Wy; = A/ Agi.
With this normalization, the reconstruction threshold 8, = 1 corresponds to logical AND oper-
ation. That is, odor component i will be detected as present if all glomeruli that feed signals to
node i in the reconstruction layer are activated. Below we will present most of the results for

0, =1 and then analyze how the reconstruction quality and recovery robustness depend on this
threshold. We will also determine the optimal connectivity ratio from the compression to the
reconstruction layer that maximizes the fidelity of reconstructions.

Maximal information transmission

Our feedforward model can be thought of as an information transmission channel that com-
presses, transmits, and decompresses a sparse binary signal. To find the optimal network
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configuration, we seek to maximize mutual information between the input and output of the
channel as has been done to characterize performance in the visual and other sensory systems.
The mutual information between s° and § is given by

199 = S Y PP tog, @

For a given signal sparsity K, the conditional probability P(5|s’) of the reconstructed signal $
given the original signal s” can be computed as:

P(§|SO) = pgi:;(l - pfalse)(NikiNm)’ (5)

where p,,. = P(5, =1 | s? = 0) is the probability of false detection for an odor component and
N, = ||3||, — K is the number of false detection events for the odor s. We note that for 6§, = 1,
the probability to miss an odor component is zero provided this odor component activates at
least one of the glomeruli. In this regime, the information is fully determined by the false detec-
tion rate pr,se, and as we show below decreases proportionally with pe,js..

Assuming a uniform prior over individual odor components P(s”) = 1/ (g) , one can also

compute the probability distribution of reconstructed signals:

(K + N)

~ N K N

P(E) =) PGI)P() = (Tpgié(l o (6)
sV K)

Putting together Eqs (4)-(6), the mutual information can be written as

° N — N - K err (N*K*Ncrr) K + Nerr
1(5075) ZIOgZ(K> _NZ:O< New )pglse(l _pfalse) 10g2 K :

When (N - K)pgase < 1, the summation above can be well approximated by its leading nonzero
term

YK /N-K K+ N
z : N, (N—K—-N,,,) err
etr 1 err 10
< N )pfalse( pfalse) g? ( K ) (7)

N =0 err

~ (N - K)pfalse logQ(K + 1)7
so that the expression for the mutual information becomes:

16.9) = togy () = (V= Kpas Tog (K + 1), (5

Thus, for given N and K, maximizing I(s°, $) can be approximated by minimizing the probabil-
ity of false detection pe,ge.
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Results
Optimal connectivity rate

The false detection rate that appears in Eq 8 can be computed as

pfalse EP(§1:1|S?:O)

M=

PGS, =1 [[|T]l, = HP(|T|l, =k | 5/ = 0)

M
< )p"(l -
K\ k

k.
Il

1

=;[1—(1—p)} T 9)
_ 1 M K1k M X M—k (1*P)M
_1_(1_1))1\4;[1_(1_1))] <k>P(1_p) _1_(1_p)M

[1-p(1-p))" —(1-p)"
1-(1-p"

where T; = {x; € x|Ax; = 1}, and p is the average connectivity rate from the compression to the

3

reconstruction layer. In the last line above we use the binomial expansion. Because we are inter-
ested in the regime where M is large, we have (1 — p)™ < [1 - p(1 - p)*]"' < 1 as long as p is not
too small. Thus, Eq 9 can be approximated with great accuracy by the following simple equation:

e = [L—p(1— )" (10)

As shown in the inset of Fig 1B, Eq 10 provides an accurate approximation when the connectivity
p is not too sparse. Since our main interest is near the optimal connectivity rate (see below) where
Eq 10 is very accurate, we will use Eq 10 unless specified.

As expected, the false detection rate pg,s. decreases as the number of glomeruli M increases
and as the signal sparseness K decreases. Importantly, for a given M and K, there is an optimal p,
which we refer to as p,,,, that minimizes pr,s., as shown in Fig 1B. Taking Opg1./Op = 0 leads to

1
CK+1°

P (11)
It is worth noticing that the optimal connectivity p,, is independent of the number of glomeruli
M, and depends only on the signal sparseness K. Thus, optimal connectivity depends exclusively
on the level of sparseness of signals in the environment and can be determined prior to any mea-
surements on neural circuits.

For an optimal connectivity p = p,,,, the probability of fault activation decreases exponentially
as M increases and thus can be very small. This indicates that the proposed feedforward com-
pression-reconstruction scheme from Fig 1A can achieve exact recovery with high probability.

To test the reconstruction quality, we compute the signal-to-noise-ratio (SNR) of the recov-
ered signal. Since all nonzero components in the original will be recovered, the only source of
errors in the reconstructed signal are due to false detection rates. Therefore, we can define the
SNR of recovered signal as

[1s°llo K

SNR = — = , (12)
<8Il > =11y (N = K)Pyge
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Fig 1. (A) lllustration of the model structure. An odor is represented by a sparse binary vector s° of its
mono-molecular components. This signal is compressed into the activities of M glomeruli represented by a
binary vector x through a binary measurement matrix A. The signal is then recovered as the activities of N
neurons in the mushroom body or olfactory cortex represented by a binary vector § through another matrix
WT. (B) The signal-to-noise ratio (SNR) as a function of signal sparsity K where N = 10000 and M = 500. For a
given K, there is a optimal connectivity rate p = p,, that maximizes SNR. At the same time, even for a system
optimized to a given K, decreasing K still increases SNR. Inset: false detection rate p,ise as a function of
average connectivity p; M = 500 and K = 15 are chosen for this illustration. Solid line is exact formula, while
dashed line is the approximation using Eq 10. We can see that Eq 10 is a very good approximation to the
exact formula when p is not too small.

doi:10.1371/journal.pcbi.1004850.g001

as shown in Fig 2A-2C, where < - > denotes the expectation value. We can see from Fig 2B
that the SNR increases exponentially with M. For our case where K < N, we can achieve a high
SNR for a number of glomeruli M much smaller than the number of odor components N or,
equivalently, the number of third-order neurons.

Compression rate and sparsity

A key characteristic of a compression algorithm is the compression ratio & = M/N. In previous
compressed sensing frameworks, the critical compression ratio o, above which the signal can be
perfectly recovered was shown to only depend on the relative signal sparsity f = K/N. As f — 0,
o) ~ —flog f[12]. To compute the critical compression ratio for our reconstruction algorithm,
we note that from Eq 12, log pgse = log f — log(1 — f) — log SNR. In the strong compression limit
where f = K/N is small, this yields

log pe... = logf — log SNR. (13)

On the other hand, for the optimal connectivity rate p,, and large K, log ps.ise can also be simpli-
fied using Eq 10 as follows:

K
1 1
log pri.. = Mlog [1 ) (1 + E) }

eil Q_M:_M
eK ef

(14)

~ Mlog (1_K+1

where asnr is defined as the compression rate to achieve a certain SNR. Combining Eqs 13 and
14, in the limit of strong compression where f — 0, the critical compression ratio behaves as

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004850 April 11,2016 6/15



@' PLOS | soMpuTaTioNAL
2 : BIOLOGY A Robust Feedforward Model of the Olfactory System

10000 10°
Z 8000 104
5
3] o
€ 6000 , =
8 10 a
o
S 4000 §
@ 10° °
o]
€ 2000
= 102
0 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 100 300 500 700 900
Signal Sparsity (K) Number of Glomeruli (M)
T T T T T T T T 6000 T T T T
40 \C — M =1000] D
B = L[ — SNR=10° ]
— M=2000| = — SNR = 10°
0:30* — M =3000 | 5400()? — SNR =10 4
= e — Theoretical Limit
wn i)
g 20} . %
—8 @ 2000 - .
o]
€
> | -
=
0 1 1 1 1
10 30 50 70 90 0 20 40 60 80 100
Signal Sparsity (K) Signal Sparsity (K)

Fig 2. Signal-To-Noise-Ratio (SNR) of the recovered signal in our model. N = 10000 is used. (A) SNR as a function of K and M. Black is shown for
SNR > 10°. The blue line shows SNR = 1, and the red line shows SNR = K, i.e. one error occurs on average. (B) Optimal SNR as a function of M. (C) Optimal
SNR as a function of K. (D) Number of glomeruli required to reach threshold SNR when optimal connectivity rate is used.

doi:10.1371/journal.pcbi.1004850.9002

osnr ~ —flog f. We note that care should be taken when the SNR becomes comparable to or
larger than N because 1/f= N/K < N, so that log SNR cannot be neglected when f — 0.

The obtained critical compression rate can be compared to its theoretical limit. The latter
corresponds to the minimal number of bits required to encode a sparse signal:

M., = ’Vlog2<;\<]>—‘, (15)

where [x] is the smallest integer not less than x. When N and K are large but f = K/N is small,
using Stirling’s approximation, we obtain that

M, xlog2 = NlogN —KlogK — (N — K)log (N — K)

(16)
~ KlogN —KlogK + K =K — Klogf,

This yields that the theoretically possible compression ratio ,,,, in the strong compression
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limit of f — 0 as
amin _)f logZ e/f’ (17)

which also yields ,,,;,, ~ —flog fas f— 0.

Notice that although both asng and a,,;, behave as —flog f for f — 0, they have different pro-
portionality coefficients. To be more specific, asng ~ eflog 1/f while at,,;,, ~ (log 2)~" flog 1/f.
As a result, dgnr/Qmin — €1og 2 &~ 1.88 as f — 0. Thus, the number of glomeruli needed in our
model is about twice the theoretical limit but is achieved here with an extremely simple feedfor-
ward encoding model.

As shown in Fig 2D, the number of required glomeruli increases sub-linearly with K, and
logarithmically with SNR. In practice, with only a few times more glomeruli than the theoreti-
cal limit, a very high SNR can be achieved.

Robustness and fault tolerance

Advances in experimental techniques provide opportunities to test our theory under the cir-
cumstances of extreme genetic manipulations. For example, following a genetic manipulation
that caused most olfactory receptor neurons to express a single odorant receptor M71, the M71
ligand acetophenone activates half of the glomeruli. Despite this drastic manipulation, mice
can still readily detect other odors in the presence of acetophenone, while their discrimination
performance is only moderately compromised [11]. This result is consistent with our model.
Assume there are M glomeruli in our model and half of them are always turned on (corrupted).
Such a system is equivalent to a model with only M/2 glomeruli, since the anomalously acti-
vated glomeruli will not affect signal recovery. Thus, the odor signal can still be recovered, but
the SNR is decreased, which is in agreement with the experimental result. As a comparison, in
previous compressed sensing framework, one can only allow a small percentage of corrupted
glomeruli even when M > N [4].

In another set of experimental studies, part of the glomeruli in mice are removed or disabled
[13-15]. It is shown that the ability to discriminate odors and simple odor mixtures is not
impaired even when most of the glomeruli are removed or disabled. This seemingly surprising
finding is also consistent with our model. From previous results, one can see that decreasing M
will only lead to larger noise in the recovered odor signal but not to a failure of the system if the
activation threshold for neurons in the reconstruction layer can be properly adapted to the new
M. Assume the mice need SNR > v to discriminate odors. When K is small, the minimal M
needed for discrimination is

M, — 8Ny (18)
™ logll —p(1—p)"]

From experiment data, p ~ 0.05 (although this is a very rough estimation, see [11, 16-18]).
One can check that the equation above is insensitive to variations in K and Nv over a broad
range. If we assume K < 10 (as in the experiments) and Nv is within the range of 10* ~ 10,
then M, is roughly between 200 and 300, or around 20% of the glomeruli, which is in good
agreement with the data in those experiments.

On the other hand, our model can tolerate negative gloleruli noise (false negative) by chang-
ing its recovery threshold 0,. Although we use 6, = 1 in our results for analytical solution, it is
very likely that real biological systems would use a lower threshold 8,. With 6, < 1, the SNR is
somewhat lower, as shown in Fig 3, yet the system is more robust to noise in the reconstruction
stage since the activation of a third-order neuron doesn’t require all of its connected gloleruli
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Fig 3. Demonstration of the accuracy-robustness trade-off. N = 10000, K = 15, M = 1000 and the optimal
connectivity rate are used. (A) praise and SNR for different activation thresholds at the reconstruction stage.
With lower recovery thresholds, the robustness of the system to recovery noise increases, while the false
detection rate increases, and the SNR of recovered signal decreases. (B) An example of the recovered signal
with different recovery thresholds. True signal is shown in big colored dots, while the reconstruction error is
represented by small colored dots. As we lower the threshold, the recovered signal becomes noisier.

doi:10.1371/journal.pcbi.1004850.9003

to be active and it also leaves room for odor generalization and pattern completion [19].
Indeed, when the threshold at the reconstruction stage is less than 1, the reconstruction can tol-
erate some incompleteness in the glomeruli activation patterns. Real biological systems likely
have the ability to adaptively change the activation threshold in order to balance the needs of
high quality reconstruction and pattern completion.

Our model is shown to be very robust and fault tolerant, and this robustness is achieved
with accuracy. As one can see, each glomerulus in the model only contains part of the informa-
tion about the original signal. Because the measurement matrix A is random, no single glomer-
ulus or cluster contains more or unique information, so any subset of the glomeruli could
recover the original signal. The more glomeruli there are, the better recovery quality (SNR) can
be achieved. Thus, removing or disabling part of the glomeruli will not change the system qual-
itatively, but will make the recovered signal more noisy, up to a point where noise becomes
comparable to the true signal at which point the reconstruction fails. For a real biological sys-
tem, it is reasonable to assume that the recovered signal has very high SNR, which also means
high redundancy, as is observed experimentally.

Discussion
Predicted optimal connectivity rate compared with experimental data

From our analysis we observed that for a given level of signal sparseness K, there is an optimal
connectivity rate p,,, that maximizes SNR as well as the mutual information. Assuming that the
biological system is adapted to a given value of odor sparseness in its environmental niche, one
can essentially make predictions on the connectivity rate of matrix A. This is followed by
another prediction that the percentage of glomeruli activated by a single odorant should be
close to the percentage of glomeruli that could activate a neuron in olfactory cortex or a Ken-
yon cell, and this number should be similar among species which operate in similar olfactory

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004850 April 11,2016 9/15
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environments. The latter prediction should be easier to test, since the number of coexisting
odorants in the environment is hard to measure.

Fortunately, previous experiments have gathered sufficient data to test our prediction indi-
rectly. It has been shown that in Drosophila, 9% of the glomeruli have a strong response to an
odorant [20], while the connectivity rate between glomeruli and Kenyon Cells is 6.5% [21] to
12.5% [22]. (The latter number is obtained based on the average number of claws per Kenyon
cell measured in [22]) These estimates are consistent with model predictions. Furthermore, in
the locust, a typical projection neuron responds to about half of the odorants [23], while the
connectivity rate between projection neurons and Kenyon Cell is also around 50% [24], which
is also consistent with our prediction.

We can see that the connectivity rate is very different between species. Such differences can
be unified in our model as the adaptation to different environmental niches. The locust has an
anomalously high connectivity rate (50%), which in our model implies that its olfactory system
is adapted to extreme odor sparseness tuned to odors with primarily a single component (p,,, =
0.5 when K = 1). Similarly, Drosophila is adapted to sense odors composed of a mixture of
about 10 odor components, while mice are tuned to detect a mixture of about 20 mono-molec-
ular odors. In general, our model predicts that species with sparse connectivity will behave bet-
ter in environments with complex odor mixtures, while species with dense connectivity have
better performance in detecting simple odor mixtures.

Structural and functional evidence

In addition to the predictions above, further experimental evidence supports the structure of
our model, in particular the approximate logical OR/AND operations associated with the com-
pression/reconstruction stages, respectively. For example, it has been observed experimentally
that Kenyon Cells in Drosophila receive convergent input from different glomeruli and require
several inputs to be co-active to spike [25]. This is consistent with our threshold activation
function which at the reconstruction stage uses a logical AND operation.

Functionally, experiments have shown that locust Kenyon cells are individually much better
than projection neurons from glomeruli at detecting a single odorant; Kenyon cells that
respond to an odorant also often respond to odor mixtures containing it [26]. This observation
agrees with our assumption that each Kenyon cell only responds to one odorant and it will
respond when an odor mixture contains that odorant.

Stereotyped versus non-stereotyped connectivity

Since the affinity matrix A is determined genetically, all the connections in our model are pre-
determined before birth. There is some debate about such stereotypy versus random connectiv-
ity, and a compressed sensing model of olfaction based on random connections from glomeruli
to mushroom body has been proposed [27]. Yet, our model supports both stereotyped and
non-stereotyped projection from glomeruli to the mushroom body/olfactory cortex because
the model is invariant under the exchange of neurons within the same layer. In order to verify
such predetermination, one needs to obtain a detailed connectivity map from glomeruli to the
mushroom body/olfactory cortex for different individuals, which is experimentally very chal-
lenging. An indirect approach to verify the predetermined connectivity hypothesis could be
through an examination of innate behaviors that should depend primarily on predetermined
connections. If one could relate innate behaviors to projections between glomeruli and the
mushroom body/olfactory cortex, it would then provide additional supporting evidence for the
genetically predetermined structural connectivity of the feedforward model.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004850 April 11,2016 10/15
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Effective feedforward model for non-feedforward structure

The feedforward structure of our model is an effective approximation to the more complicated
structure of biological olfactory system where recurrent and feedforward-feedback connections
exist. For example, it has been observed that inhibitory interneurons modulate neuronal
responses in the olfactory bulb [28, 29]. In linear dynamic systems, such feedforward-feedback
structure could be mathematically modeled as a pure feedforward system with different effective
feedforward connectivity. Suppose that we add a layer of interneurons z in Fig 1 that is connected
to the glomeruli layer x by feedforward-feedback connectivity B. Then the linear dynamics of the
system are x = —x + As’ — B'zand Z = —z + Bx, where we assume B is feedforward excitatory
and feedback inhibitory. The steady state solution is x = (I + B" B)™" As’ which is the same for a
pure feedforward system, except that connectivity A is replaced by (I + B B)™" A. This analysis is
not exact if the activation function is nonlinear. In general, the feedforward-feedback system in
steady state with a nonlinear activation function does not have an equivalent feedforward system,
but one can still write the linear perturbation when neurons receive only weak inputs, which
allows a feedforward approximation. Such a feedforward approximation is supported by experi-
mental observations that the representations of odor mixtures in mouse glomeruli can be
explained well by the summation of the glomeruli responses to their components [30].

One advantange of the effective feedforward model is that it enables an adaptive affinity
matrix even with pre-determined connectivity. In the feedforward-feedback architecture men-
tioned above, the effective affinity matrix is (I + B” B) " A, where A is the pre-determined affin-
ity matrix encoded in the genes, while B could be a learned matrix adapted to the environment.
From this perspective, the existence of interneurons in both insects and vertebrates [31, 32], as
well as adult neurogenesis in the olfactory bulb of mammals [33], could play the role of adjust-
ing the effective affinity matrix for the purpose of adaptation.

Comparison with £; minimization algorithm

We compare the performance of our feedforward architecture with the often-used LASSO ¢,
minimization algorithm [34] provided by the Python scikit-learn library

min 145 — 2 + Bl (19)
where N = 1000, M = 500, 8 = 0.001 are used. Linear measurement x = As is used for LASSO.
For each K, we conduct 100 experiments with different random measurement matrices and sig-
nals, and compute the average of the reconstruction errors ||$ — s°||, as well as the number of
iterations used in LASSO. We also compute the mean reconstruction error when only 5 itera-
tions are used in LASSO as a comparison. The results are shown in Fig 4. As shown in the fig-
ure, the feedforward architecture has a lower reconstruction error when the signal is very
sparse, while LASSO has a lower reconstruction error than the feedforward architecture when
K becomes larger. However, the number of iterations also increases as the signal becomes
denser. If we restrict the number of iterations to 5 in the LASSO (equivalent to setting a maxi-
mum response time), LASSO performs much worse when the signal is very sparse. But as K
increases, it still has a lower reconstruction error than the feedforward architecture.

Performance with non-sparse signal

One drawback of this feedforward architecture is that it may not be able to achieve both com-
pression and high-quality reconstruction simultaneously when the signal is not sparse. Unlike
the £, minimization method where the number of measurements required to reconstruct the
signal will never exceed signal length N (N/2 for binary signal)[35, 36], the feedforward
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Fig 4. Comparison of the performance of feedforward architecture with that of LASSO. For this
example, we chose N = 1000 and M = 500. Linear measurement is used for LASSO. Feedforward
architecture performs well when the signal is very sparse, while LASSO has lower reconstruction error as K
increases, at the price of increasingly more iterations. On the other hand, if we constrain the number of
iterations, LASSO still performs better when K is large, but significantly worse with very sparse signals.

doi:10.1371/journal.pcbi.1004850.9004

architecture may need more measurements than the signal length to accurately reconstruct the
signal. This can be seen by restoring the term in Eq 13 that we have previously neglected
assuming that fis small

log pry. = logf —log (1 — f) — log SNR. (20)
Combining this with Eq 14 that remains the same when fis not small, we obtain:
dgr = €f logSNR +eflog (f ! — 1), (21)

which could be larger than 1 when fis not small. Thus, the feedforward computation may
require number of measurements that are larger than the input dimensionality to achieve reli-
able reconstruction.

From another perspective, we can compute the upper bound on the reconstruction SNR
that can be achieved for a given compression level. From Eq 21 and asyr < 1 we get

1
log SNR < s log(f ' — 1), (22)

which only depends on signal sparsity. For example, if f = 0.1, then SNR < 4.4, and the recon-
structed signal will not be accurate.
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Extension to continuous variables and other activation functions

Although our analysis above is based on a binary signal / measurement matrix / glomeruli
activity and threshold activation function, our results can be extended to positive real-valued
signal / measurement matrix / glomeruli activity and any monotonically increasing activation
function. Consider the case where the signal s° and the element of measurement matrix A;;
could take any positive value rather than just 0 and 1. Denoting x’ = As’, and letting the activa-
tion function g be any monotonically increasing function, the output at the glomerulus stage
can be written as x; = g(x!). Now, signal reconstruction can proceed based on the evaluation of
a minimum function (rather than the logical AND function that was used in the case of binary
inputs and binary measurement matrices). Indeed, when the ith component of the recon-
structed signal §, is computed as the smallest value {gfl(xj)/Aﬁ} across the set of its inputs (i.e.
where Aj; # 0), then our analysis remains valid. The only modification is that now the distribu-
tion of the signal and the measurement matrix elements are both required to compute the
noise magnitude. This procedure ensures that the recovered components are still recovered
exactly, while corrupted components are still corrupted. As a practical aside, we note that the
minimum function can be implemented by short-term synaptic plasticity, see S1 Text and S1
and S2 Figs.

Supporting Information

S1 Text. Neural implementation of min function using short-term plasticity. We show by
simulation that the output firing rate of a Leaky Integrate and Fire neuron could be well
approximated by its minimal input firing rate when synaptic weight is controlled by Short-
Term Plasticity.

(PDF)

S1 Fig. Simulation results of S1 Text.
(EPS)

$2 Fig. Simulation results of S1 Text.
(EPS)
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